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Introduction
Prostate cancer (PCa) is the most common solid 
organ cancer in men in the United States, with 
191,930 new cases and 33,330 deaths in 2020.1 
Although the lifetime risk of developing PCa is 1 
in 9, the risk of death from the disease is only 
2%.1 Screening and early detection of PCa is per-
formed through a digital rectal exam (DRE), 
prostate specific antigen (PSA) and its deriva-
tives. Those with abnormal DRE and elevated 
PSA would then proceed to a prostate biopsy. 
Prostate biopsy, however, is associated with the 
risk of infectious hospitalization, bleeding, or 
obstructive complications in ~1–3% of cases.2–5 
To decrease unnecessary biopsies, multiparamet-
ric MRI (mpMRI) can be used to identify those at 
risk of clinically significant disease for biopsy.6 
But mpMRI has its shortcomings, including a 
wide range of diagnostic variability among cent-
ers,7 a positive predictive value (PPV) of 35% for 
clinically significant PCa (csPCa) with 
PI-RADS ⩾ 3 lesions,7 and up to 35% of csPCa 

in men with negative mpMRI.7,8 Molecular bio-
markers may supplement PSA and mpMRI for 
early detection and risk stratification of csPCa. 
Here, we review test characteristics and clinical 
performance data for both serum [4 K score, 
prostate health index (phi)] and urine [SelectMDx, 
ExoDx Prostate Intelliscore, MyProstateScore 
(MPS), and PCa antigen 3 (PCA3)] biomarkers 
to aid decisions regarding initial or repeat biop-
sies as well as tissue-based biomarkers (Confirm 
MDx, Decipher, Oncotype Dx, and Polaris) for 
risk stratifying patients and identifying those 
patients most likely to benefit from treatment ver-
sus surveillance or monotherapy versus multi-
modal therapy.

Biomarker characteristics and performance 
evaluation
A biomarker is ‘a defined characteristic that is 
measured as an indicator of normal biological 
processes, pathologic processes, or responses to 
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an exposure or intervention’.9 The performance 
of a biomarker can be evaluated using several 
metrics summarized in Table 1. Unlike sensitivity 
and specificity, positive predictive value (PPV) 
and negative predictive value (NPV) depend on 
the prevalence of the disease in the population of 
interest. In general, area under curve (AUC) is 
preferred for comparing biomarker performance 
since sensitivity and specificity are unique to a 
decision threshold. The AUC is more reflective of 
accuracy independent of the cut point. AUC val-
ues range from 0 (perfectly inaccurate) to 1 (per-
fectly accurate).10–12

Prostate Specific Antigen (PSA)
A member of the kallikrein family of serine pro-
teases, PSA (human kallikrein 3) is the most 
widely used oncologic biomarker.13 It is produced 
by prostatic luminal epithelial cells and plays a 
role in the regulation of semen coagulation.14 
Elevations of PSA are thought to occur due to 
disruptions of cellular architecture, and it circu-
lates in both free and complex forms. PSA is FDA 
approved for PCa screening. Implementation of 
PSA testing at scale has been estimated to account 
for 45–70% of the decrease in PCa mortality 

observed in the 1990s.15 However, while PSA is 
organ-specific, it is not cancer-specific, and PSA 
can be elevated in benign conditions like benign 
prostatic hyperplasia (BPH) and prostatitis. 
Thus, PSA screening can lead to unnecessary 
biopsies of benign prostates, over diagnosis and 
over treatment of indolent diseases, as well as 
missed diagnoses in some men with apparently 
normal PSA.16 In the PCa Prevention Trial, the 
AUC for PSA to discriminate any PCa versus no 
cancer and Gleason ⩾ 7 versus Gleason  < 7 PCa 
was 0.68 and 0.78 respectively. For detection of 
any PCa, PSA cutoff values of 1.1, 2.1, 3.1, and 
4.1 yielded sensitivities of 83.4%, 52.6%, 32.2%, 
and 20.5%, respectively, and specificities of 
38.9%, 72.5%, 86.7%, and 93.8%, respectively.17 
While the introduction of PSA certainly revolu-
tionized the field of PCa detection and treatment, 
newer biomarkers may improve decision making 
along the complex and nuanced PCa clinical care 
pathway.

Overview of existing biomarkers in prostate 
cancer
The clinical care pathway for those with sus-
pected PCa, based on elevation in PSA, 

Table 1. Definitions and examples of test performance metrics mentioned in this review.

Metric Definition Example

Sensitivity Proportion of patients with a positive test 
among all patients with the disease.
Sensitivity = TP/(TP + FN)

A blood test with 95% sensitivity for 
cancer would be positive for 95% of 
patients with cancer and negative for 5% 
with cancer.

Specificity Proportion of patients with a negative test 
among all patients without the disease.
Specificity = TN/(TN + FP)

A blood test with 80% specificity for 
cancer would be negative for 80% of 
patients without cancer and positive for 
20% of patients without cancer.

PPV Proportion of patients with the disease among 
all of those testing positive.
PPV = TP/(TP + FP)

A blood test for cancer with a PPV of 
90% indicates a 90% probability of having 
cancer in those testing positive.

NPV Proportion of patients without the disease 
among all of those testing negative
NPV = TN/(TN + FN)

A blood test for cancer with a NPV of 99% 
indicates a 99% probability of not having 
cancer in those testing negative.

Area Under 
ROC Curve 
(AUC)

The area under the ROC curve which plots 
sensitivity versus 1-specificity. AUC ranges 
from 0 to 1. An AUC of 0.5 means the test is 
no better at discriminating an outcome than a 
coin toss.

A cancer blood test with an AUC of 0.9 is 
better at discriminating between cancer 
and healthy patients than a test with an 
AUC of 0.7

AUC, area under the curve; FN, false negative; FP, false positive; NPV, negative predictive value; PPV, positive predictive 
value; ROC, receiver operating characteristic; TN, true negative; TP, true positive.
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abnormal DRE, or both, involves consideration 
of prostate biopsy. Per clinical guidelines, the 
decision to proceed with biopsy (initial or 
repeat) can be supported by multiparametric 
MRI (mpMRI) or molecular biomarkers (Table 
2). Once prostate biopsy reveals cancer, bio-
markers can also facilitate appropriate risk strat-
ification for treatment versus surveillance, 
intensity of treatment, and the necessity for 
multi-modal therapy (Table 3). This review is 
focused on available molecular biomarkers in 
PCa, starting with serum and urine markers to 
inform prostate biopsy and concluding with tis-
sue-based biomarkers for PCa risk stratification. 
A summary of the care pathway and available 
biomarkers in each clinical scenario is presented 
in Figure 1. For each biomarker, we will discuss 
the source (serum, urine, or tissue), what is 
measured, the performance of the test (includ-
ing in racially diverse populations, specifically 
focusing on Blacks and/or African Americans), 
how it is interpreted, and, where available, 
approval status, insurance coverage, and inclu-
sion in clinical guidelines from various societies. 
To facilitate direct comparison of biomarker 
performance, we will utilize AUC. In addition, 
we will include information on the number of 
biopsies avoided and the percentage of csPCa 
missed, if available.

Article selection process
Studies were selected for inclusion in the review 
based on the following criteria: (1) Patients have 
a suspicion for or a diagnosis of non-metastatic 
prostate cancer AND being evaluated for initial 
or repeat biopsy, placement on active surveil-
lance, treatment with radical prostatectomy 
(RP) or radiation, OR post-RP treatment by one 
or more of the relevant commercially available 
biomarkers, (2) Original research, (3) Publication 
in the English language, (4) Reporting on out-
comes that enable quantification and cross com-
parison of diagnostic or prognostic performance, 
namely sensitivity, specificity, area under the 
ROC curve (AUC). Articles were identified 
using the PubMed database. Search terms 
included a combination of the disease state (e.g. 
‘prostate cancer’), stage of the clinical care path-
way (e.g. ‘initial biopsy’), desired study charac-
teristics (e.g. ‘African American Patients’, 
‘mpMRI’), and the biomarker name. Sample 
test reports were sourced from the manufactur-
er’s websites.

Biomarkers for consideration of initial 
biopsy

4kscore
The 4 K score is a CLIA-certified test, included 
in the NCCN guidelines, that combines serum 
levels of four kallikrein proteins, including PSA, 
fPSA, intact PSA, and human kallikrein 2 (hK2), 
with DRE findings, age, and history of prior 
biopsy. The algorithm was developed based on 
data from the European Randomized Study of 
Screening for PCa (ESRPC) studies and the 
Prostate Testing for Cancer and Treatment 
(ProtecT) study.18 The 4Kscore provides a prob-
ability (0–100%) that a patient will have csPCa 
on biopsy, defined as Gleason ⩾ 7 (Figure S1). 
The direct bill cost of the test is $500.19

In a large, multi-center study of 1012 men, the 4 
K score outperformed a modified Prostate Cancer 
Prevention Trial Risk Calculator (PCPTRC) 2.0 
score in the prediction of csPCa (AUC 0.82 ver-
sus 0.74, p < 0.0001). At a cutoff of ⩾ 6%, 30% 
of biopsies can be avoided while delaying diagno-
sis in 1.3% of those with csPCa.18 In a multi-insti-
tutional validation study done at the VA Health 
System in which most of the subjects were African 
American (56%), the AUC of the 4Kscore test 
was 0.81 compared to 0.74 in a base model con-
sisting of age, DRE, and total PSA (p < 0.01).20 
Using the official score cutoff of ⩾ 7.5%, there 
would be a 22% biopsy avoidance rate with a 1% 
rate of missed csPCa.20

When studied in conjunction with MRI, the high-
est NPV for PI-RADS 1-2 lesions on mpMRI 
were for patients with a low (96.9%) or interme-
diate (97.1%) 4 K score. In assessing the sequence 
of MRI and biomarkers, the initial 4 K score fol-
lowed by mpMRI if 4 K score was ⩾7.5% fol-
lowed by subsequent biopsy if mpMRI was 
positive, or 4 K score was ⩾ 18% would miss 
2.7% of csPCa and avoid 34.2% of biopsies. This 
was postulated to be the most viable of seven 
strategies evaluated by decision curve analysis.21 
In a cohort of 925 men with a previous negative 
biopsy, the 4 K score had a higher discriminative 
accuracy for PCa than PSA and DRE, with an 
AUC of 0.68 compared to 0.58 (p < 0.001). For 
high grade PCa (Gleason ⩾ 7), AUC improved 
from 0.76 to 0.87 (p = 0.003). At a 15% risk 
threshold, the number of biopsies would be 
reduced by 71% while missing  < 6% of high-
grade cancers (3/53).22
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Prostate Health Index (phi)
The Prostate Health Index (phi) is an FDA-
approved test that combines three PSA isoforms 
in the blood, including [-2] proPSA (p2PSA), 
free PSA (fPSA), and total PSA (tPSA), to cre-
ate a composite score that predicts the likelihood 
of PCa on biopsy (Figure S2).23 The test is 
included in the NCCN guidelines and is the 
least expensive of commercially available PCa 
biomarkers in the USA, at a cost to the patient 
with insurance coverage of $80.19 Notably, sam-
ples should be centrifuged within 1–3 h of collec-
tion as [-2]proPSA increases significantly after 
blood draw at room temperature.24,25

In a multicenter study evaluating the ability of 
phi to detect aggressive PCa in biopsy naïve 
men, de la Calle et al.26 reported an AUC of 
0.815 and 0.783 in the discovery and validation 
cohorts, respectively. In another multicenter 
cohort of 658 men with a PSA between 4 and 
10 ng/ml, Loeb et al.27 reported that phi outper-
formed each of the three individual PSA iso-
forms for predicting Gleason ⩾ 7 PCa (AUC of 
phi 0.70, fPSA 0.65, [-2]proPSA 0.55, PSA 
0.55). Using a phi cutoff of 28.6, 30.1% of 
patients could have been spared an unnecessary 
biopsy.27 In a head-to-head comparison with 
PCA3 and PSA derivatives in 300 patients 
undergoing initial biopsy, phi had an AUC of 
0.77 for the prediction of PCa on biopsy, which 
was not significantly different than PCA3 (0.73), 
despite a significant outperformance of PSA 
derivatives (fPSA (0.60), %fPSA (0.62), and 
p2PSA (0.63)). On decision curve analysis, there 
was a very close net benefit profile between phi 
and PCA3.28 Further evidence for the utility of 
phi in detecting csPCa was provided by 
Nordström et al.,29 who found that phi outper-
forms base clinical models of PSA and age in dis-
criminating between benign versus GG1 as well 
as ⩾ GG2 PCa. The performance of phi in 
biopsy naïve African American men to pre-
dict ⩾ GG2 PCa was not significantly different 
from PSA (AUC = 0.63 versus 0.57, respec-
tively, p = 0.27).30 Phi has also been shown to be 
an effective predictor of higher T stage (T3 ver-
sus T2, AUC = 0.85) and high-volume disease 
(tumor volume  > 0.5 ml, AUC = 0.94).31

An expanding body of literature has evaluated 
strategies for combining phi and mpMRI. In a 
study of 196 biopsy-naïve men undergoing 
mpMRI, phi outperformed PI-RADS (differ-
ence in AUC of 0.14, p < 0.001) in predicting 
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positive biopsy. A subset of patients went on to 
undergo RP, and it was found that phi (cutoff of 
61.68) and PI-RADS of 4 or greater had a com-
parable performance in identifying csPCa at RP.32 
In another single center study, Tosoian et al.33 
demonstrated that there were no GG ⩾ 2 cancers 
in those with a phi < 27 and a PI-RADS ⩽ 3, and 
phi can reduce the rate of prostate biopsy by 9% 
(39% versus 48%, p < 0.001). A small prospective 
study of 102 Asian men found that the AUC for 
prediction of Gleason ⩾ 7 PCa was greater with 
the combination of phi and mpMRI (0.87) than 
with phi alone (0.74, p = 0.002) or mpMRI alone 
(0.830, p = 0.04). Restricting biopsy to patients 
with either PI-RADS 5 or PI-RADS 3 or 4 with a 
phi ⩾ 30% would have avoided 50% of biopsies 
with only one csPCa being missed.34 In patients 
undergoing repeat biopsy, the incorporation of 
phi into a clinical prediction model demonstrated 
an AUC = 0.85 for all PCa and 0.88 for 
Gleason ⩾ 7 PCa.35

SelectMDX
SelectMDx combines clinical parameters with the 
mRNA expression levels of DLX1 and HOXC6 
to estimate the likelihood of any PCa and 
Gleason ⩾ 7 PCa on biopsy (Figure S3). It is a 
non-FDA approved test performed on post-DRE 
urine in a CLIA certified lab and is included in 
the NCCN guidelines. The test has limited cover-
age by Medicare, and the direct bill cost is $500.36 

Utilization of SelectMDx resulted in a cost sav-
ings of $1694 per patient over an 18-year 
horizon.36

In a prospective multicenter study, Van Neste 
et al.37 found that a combined model using both 
HOXC6 and DLX1 as well as clinical risk factors 
(age, DRE, PSAD, previous biopsy, PSA, and 
family history) yielded an AUC of 0.9 (95% CI, 
0.85–0.96) in the training cohort and 0.86 (95% 
CI, 0.80–0.92) in the validation cohort for detec-
tion of csPCa, with a potential to decrease total 
biopsies by 42%. Notably, PSA was higher in 
both the discovery (Mean: 15.8, Median: 7.4, 
IQR 5.5–11.1) and validation (Mean: 11.9, 
Median: 7.3, IQR: 5.2–10.9) cohorts used in this 
study than the contemporary biopsy referral pop-
ulation. In a follow up large multicenter study of 
1,955 men in Europe using a model encompass-
ing urinary HOXC6 and DLX1 mRNA levels, 
patient age, DRE, and PSA density, AUC was 
0.82 (95% CI, 0.79–0.86) in the validation cohort 
for detecting GG ⩾ 2 PCa, compared to 0.70 
(95% CI, 0.65–0.74, p < 0.001) for the PCPTrc.38 
Notably, the diagnostic and prognostic accuracy 
of the test in a racially diverse study population is 
unknown.

SelectMDx testing may contribute to the stratifi-
cation of patients for mpMRI. A study of 310 
patients who underwent SelectMDX testing and 
mpMRI prior to prostate biopsy revealed that 

Figure 1. Graphical summary of the decision points prior to and following prostate cancer diagnosis and the biomarkers that are 
relevant to each phase.
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SelectMDx was more sensitive (86.5% versus 
51.9%) but less specific (73.8% versus 88.3%) 
than mpMRI for the detection of PCa on biopsy. 
The same trend was observed for sensitivity 
(87.1% versus 61.3%) and specificity (63.7% ver-
sus 83.9%) for the detection of csPCa.39 
SelectMDx scores (AUC = 0.83) has been 
shown to outperform PSA (AUC = 0.66) and 
PCA3 (AUC = 0.65) for the prediction of suspi-
cious lesions (PIRADS 4 and 5) on mpMRI. It 
could be of additional value when a PI-RADS 3 
lesion is found, but developing a formalized strat-
egy would require further evaluation.40

ExoDx prostate intelliscore
The ExoDx Prostate Intelliscore measures uri-
nary exosomal mRNA of PCA3 and ERG nor-
malized with SPDEF. It is reported on a scale of 
0–100 (Figure S4).41 The test is performed in a 
CLIA certified lab, is non-FDA approved, and is 
included in the NCCN guidelines. The test is 
covered by most insurance plans, including 
Medicare and private payers, with a direct bill 
cost of $795. The ExoDx test has a distinct 
advantage of not requiring a DRE prior to sample 
collection and does not incorporate any clinical 
variables as part of the score.

In a multicenter study, the ExoDx Prostate 
IntelliScore improved discrimination between 
Gleason ⩾ 7 PCa and benign disease, with an 
AUC of 0.77 (95% CI, 0.71–0.83) when com-
bined with clinical variables versus clinical varia-
bles such as PSA level, age, race, and family 
history of PCa alone (AUC = 0.66, 95% CI, 
0.58–0.72) (p < 0.001). The ExoDx Prostate 
IntelliScore alone had an AUC of 0.74. Using a 
cutoff of  > 15.6 to prompt a biopsy avoids 20% 
of all biopsies while only missing 2% of 
Gleason ⩾ 7 PCa. In an independent validation 
cohort of 519 patients, the assay plus clinical vari-
ables (AUC = 0.73, 95% CI, 0.68–0.77) outper-
formed clinical variables alone (AUC = 0.63, 95% 
CI, 0.58–0.68, p < 0.001). With the official cut 
point of 15.6, 27% of biopsies could have been 
avoided while only 5% of patients with primary 
pattern 4 Gleason ⩾ 7 PCa would have been 
missed.41 Using pooled data from three studies 
(n = 1212) of biopsy naïve patients with a median 
age and PSA of 63 and 5.2 ng/ml respectively, the 
Prostate Intelliscore AUC (0.70) was superior to 
PCPT-RC (0.62), ESRPC (0.59) and PSA alone 
(0.56) (p < 0.001) for discriminating ⩾ GG2 from 
GG1 and benign histology. In this combined 

cohort, 17% identified as African American, but 
no distinct studies have yet been done to specifi-
cally evaluate the performance of the test in a 
racially diverse population.42

In the study by de la Calle et al.,43 a strategy con-
sisting of up front ExoDx, mpMRI in those with 
a ExoDx score of ⩾ 15.6, and biopsy in those 
with ExoDx score ⩾ 19 or those with ExoDx 
score ⩾15.6 and a PI-RADS 3-5 lesion on 
mpMRI resulted in a biopsy avoidance rate of 
43% while missing 4.8% of GG ⩾2 cancers. In 
229 men with a prior negative biopsy, ExoDx had 
an AUC of 0.66 (95% CI: 0.55–0.78), which was 
superior to PSA alone (0.54, 95% CI: 0.43–0.66), 
and the ERSPC Risk Calculator (AUC = 0.47, 
95% CI = 0.36–0.58) in predicting GG ⩾ 2 
PCa.44

MyProstateScore (MPS)
Previously referred to as the Mi-Prostate Score 
(MiPS), the MyProstateScore (MPS) is a non-
FDA approved test, not yet specifically endorsed 
by the NCCN, that combines urinary PCA3 and 
TMPRSS2:ERG fusion gene expression with 
PSA to provide a score, ranging from 0 to 100. 
Scores increase with the likelihood of detecting 
Gleason ⩾ 7 PCa, and they are grouped into low, 
intermediate, or high-risk (Figure S5). The uri-
nary gene expression assay requires a post-DRE 
urine specimen. The test is not yet covered by 
public or private payers, and the direct bill cost is 
$760. Using MPS as a tool to guide biopsy deci-
sions was found to be more cost-effective than 
MRI or ordering biopsies for all men with inde-
terminate PSA levels.45

In a multicenter trial consisting of a training 
cohort of 677 men and a validation cohort of 
1225 men, MPS was able to discriminate GG ⩾ 7 
PCa with better performance (AUC = 0.77) than 
PSA (AUC = 0.65, p < 0.001), PSA with 
TMPRSS2:ERG (AUC = 0.73, p < 0.001), and 
PSA with PCA3 (AUC = 0.75, p < 0.001).46 
MPS-based models had significantly greater 
AUC (p < 0.001) than models incorporating 
PCPTRC with PCA3 or TMPRSS2:ERG.46 In a 
separate study that investigated the use of a MPS 
cutoff of 10 to proceed with biopsy in a combined 
validation cohort consisting of 1,525 patients 
from community and academic practices, MPS 
testing would have led to biopsy avoidance in 
26% of men while missing GG ⩾ 2 PCa in 3%. 
Among African Americans (n = 150), sensitivity 
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was similar (97.6% versus 97% overall), and 15% 
of men were able to avoid biopsy with 2.4% of 
GG ⩾ 2 PCa missed.47

Tosoian et al. have reported that MPS score 
increases with increasing PI-RADS score 
(p < 0.001). Furthermore, in the PI-RADS 3 
(43.2 versus 28.4, p = 0.003), 4 (40.6 versus  
30.1, p < 0.001), and 5 (48.0 versus 28.2, p = 0.04) 
populations, MPS was significantly higher in 
those with GG ⩾ 2 PCa. In the equivocal 
PI-RADS 3 population, MPS outperformed PSA 
(AUC = 0.55), PSA Density (AUC = 0.62) for 
prediction of GG ⩾ 2 PCa. A MPS threshold 
of ⩽ 25 would prevent 39% of biopsies in the 
PI-RADS 3 population while missing 6% of 
GG ⩾ 2 PCa.48 MPS has also been evaluated in 
men with a prior negative biopsy. Using a slightly 
higher threshold of MPS ⩽ 15 to rule out biopsy 
would avoid 21% of biopsies with a 100% NPV.49

Biomarkers for consideration of repeat 
biopsy
There are an estimated 1 million prostate biopsy 
procedures in the United States annually, the 
majority of which reveal benign pathology.1 In a 
serial biopsy study that included 2500 men, the 
authors found that nearly 25% of cancers are 
missed on initial biopsy, with detection rates of 
17%, 14%, and 11% on the second, third, and 
fourth biopsies, respectively.50 Implementation of 
molecular testing to reduce unnecessary repeat 
biopsies may result in cost savings.51

PCA3
The prostate cancer antigen 3 (PCA3) gene is a 
non-coding mRNA with expression that is 
60-100-fold greater in cancerous than in benign 
tissues.52 The PCA3 test is FDA-approved and 
requires the collection of the first 20–30 ml of 
post-DRE urine. The quantitative result provides 
the ratio of PCA3 mRNA transcripts in the sam-
ple to serum PSA (Figure S6). The test costs 
roughly $230.53

In an early study of 570 men undergoing biopsy, 
the performance of PCA3 for detection of PCa 
was found to be equivalent in biopsy naïve 
(AUC = 0.70) and prior negative biopsy 
(AUC = 0.68). A model using PCA3 score, serum 
PSA, prostate volume and DRE results increased 
the AUC in the combined cohort (biopsy naïve 
and repeat biopsy) from 0.69 (PCA3 alone) to 

0.75 (p = 0.0002).54 For the detection of high-
grade PCa, AUC improvements for initial and 
repeat biopsies were 0.74 to 0.78 and 0.74 to 
0.79, respectively.55 In another prospective multi-
center study published by Wei et al.,55 adding 
PCA3 to the PCPT risk calculator increased the 
AUC from 0.64 to 0.69 (p < 0.001) for detection 
of any cancer and from 0.74 to 0.79 (p < 0.003) 
for high grade cancers, in the repeat biopsy set-
ting. In a separate, prospective multi-center study 
in Europe (n = 463), the AUC for PCA3 score in 
predicting a positive repeat biopsy was 0.66 com-
pared to 0.578 for %fPSA (p = 0.08) and using a 
PCA3 cutoff of 20 was estimated to reduce the 
repeat biopsy rate by 44% while missing 9% of 
>/= GG2 disease.56 PCA3 has also been shown 
to be an accurate predictor of high stage (T3 ver-
sus T2, AUC = 0.74) and high tumor volume 
(>0.5 ml, AUC = 0.86) disease.31 In a multi-
center cohort study, O’Malley et al. demonstrated 
that PCA3 did not provide any significant increase 
in predictive value for csPCa in AAM. However, 
the study was limited by the small number of AA 
patients (n = 72, 10% of the cohort).57 PCA3 has 
been previously demonstrated in combination 
with mpMRI in the repeat biopsy setting to 
improve the NPV for detection of PCa on biopsy 
(95%) in comparison to PCA3 (40%) and 
mpMRI (83%) alone.58

ConfirmMDX
ConfirmMDX is a Medicare-covered tissue-
based assay included in the NCCN guidelines 
that tests for hypermethylation of three PCa asso-
ciated genes – GSTP1, APC, and RASSF1 (Figure 
S7).59 The assay capitalizes on the field effect 
principle – detectable changes can occur in non-
malignant tissue that is contiguous in space with 
cancerous tissue, thus mitigating the sampling 
error issue that is inherent in traditional prostate 
biopsy.60 The specificity of GSTP1 hypermethyla-
tion for PCa (present in 82% of cancer cases, 5% 
of benign controls),61 coupled with the strong 
field effect of APC and RASSF1A, provides the 
basis for the ConfirmMDX test. The retail price 
for the assay is $206 per core or $2060 for a 
10-core biopsy.51

In the MATLOC study (n = 483 men), 
ConfirmMDx was able to identify 68% of cases 
(sensitivity) while confirming the benign diagno-
sis (specificity) in 64% of men, with a NPV of 
90%.59 The DOCUMENT multi-center study in 
the US, Partin et al.62 found a similarly high NPV 
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(88%), supporting the conclusion that the epige-
netic assay can decrease unnecessary repeat pros-
tate biopsies. In a combined study, the AUC for 
the identification of men with high grade PCa on 
repeat biopsy was 0.76, which was significantly 
higher than PSA (0.57, p = 0.004) and PCPTRC 
(0.62, p = 0.029). Analyses of the performance of 
the assay in an African American population con-
sisting of 211 men from 7 centers across the US 
revealed a sensitivity of 78% and a specificity of 
53% for the detection of Gleason ⩾ 7 PCa. The 
NPV in this study for the detection of Gleason ⩾ 7 
PCa was 94.2% consistent with the performance 
of assays in other large multicenter studies.63 
Notably, in a small study of 113 patients under-
going ConfirmMDX testing and MRI, 71% of 
ConfirmMDX negative patients also had a nega-
tive MRI (PI-RADS1-2), and most of the other 
cases were PI-RADS3 transition zone lesions in 
large glands.64

Guideline statements – early detection
The NCCN states that while biomarkers are 
not yet first-line screening tests in conjunction 
with serum PSA, the probability of high-grade 
cancer can be further defined using the PHI, 
SelectMDX, 4 K score, and ExoDX prostate 
tests. PHI, 4KScore, ConfirmMDX, and PCA3 
are also listed as options to improve biopsy 
specificity in individuals who have previously 
undergone a negative prostate biopsy. It is not 
yet known how these tests can be applied in 
optimal combination with MRI. The AUA does 
not mention specific tests but provides a similar 
statement on the applicability of urine and 
serum biomarkers to inform biopsy decisions. 
Finally, the EAU concluded that further studies 
are required to validate the efficacy of biomark-
ers, and at the moment, the data is too limited 
to implement these markers into routine screen-
ing programs. The EAU guidelines consider 
MPS and ExoDx as investigational while PCA3, 
SelectMDx, 4 K score, PHI, and Confirm 
MDX are all listed as options with weak evi-
dence to guide biopsy decision making in those 
with PSA between 2 and 10 ng/dl and a normal 
DRE.65–67

Biomarkers for risk stratification
Tissue-based molecular biomarkers may facilitate 
accurate risk stratification for appropriate treat-
ment in the clinical continuum of PCa. For exam-
ple, since more than half of patients on active 

surveillance eventually proceed to treatment, bio-
markers could help stratify patients with favorable 
risk disease for appropriate management.68–70 
Another distinct clinical challenge is determining 
the optimal treatment approach for men with 
NCCN high-risk disease, especially with the high 
rate of recurrence (50–95%) in this group of 
patients.71 Furthermore, in the event of adverse 
pathology at RP or BCR, only a fraction of men 
receives adjuvant and salvage radiation, respec-
tively.72 Molecular biomarkers may play an inte-
gral role in identifying patients for additional 
treatment following initial therapy.

Decipher
The Decipher tissue-based gene expression clas-
sifier is an insurance reimbursed test included in 
NCCN and ASCO guideline statements. The 
Decipher score is based on the microarray-based 
expression of 22 genes involved in androgen 
receptor signaling, cell proliferation, differentia-
tion, motility, and immune modulation.73 
Notably, even though a small number of genes 
are used to calculate the score, the microarray 
measures the expression data of 46,000 genes. 
The reported score is on a scale of 0–1 and is 
independent of clinical or demographic data. 
Those with scores ⩽ 0.6 are classified as low risk, 
while those with scores above this threshold are 
classified as high risk. The test can be performed 
on either a positive biopsy specimen or a post-RP 
specimen. The report provides several prognostic 
variables, including percentage risk of distant 
metastasis in 5- and 10-years, 15-year disease 
specific mortality, and the risk of adverse pathol-
ogy at RP (Figure S8). With over 130 studies 
across the spectrum of disease after positive 
biopsy, Decipher is the most broadly validated of 
all the tissue-based biomarkers.

Prognostic value of Decipher. For patients with 
very-low, low, and favorable intermediate risk dis-
ease, Decipher alone (AUC = 0.65, 95% CI, 
0.56–0.74) and Decipher in conjunction with 
Cancer of the Prostate Risk Assessment (CAPRA) 
groups (AUC = 0.65, 95% CI, 0.58–0.70) 
improved prediction of adverse pathology at 
RP.74,75 In a prospective statewide registry study 
by Vince et al., a high risk Decipher score was 
associated with shorter time to treatment in men 
on active surveillance (AS) [hazard ratio 
(HR) = 2.51, 95% CI = 1.52–4.13, p < 0.001],76 
suggesting that this test may play a role in identi-
fying patients for AS.
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In patients undergoing primary radiation therapy, 
Decipher testing on biopsy specimens has a higher 
AUC (0.76–0.86) for predicting 5-year metasta-
sis free survival (MFS) compared to NCCN risk 
groups (0.54–0.63).77 Similar findings were 
observed in a cohort of 100 intermediate and 
high-risk patients in a single center receiving 
definitive radiation and androgen deprivation 
therapy (ADT).78

The decipher has been extensively studied in 
post-RP samples for its ability to predict future 
recurrence and metastasis in patients undergoing 
RP.79 In a multi-center cohort of 561 patients 
with high-risk PCa (PSA  > 20, Gleason score 
8–10, stage pT3b or pN1), the AUC for bio-
chemical recurrence (BCR) was 0.72 (0.03 
greater than CAPRA-S) and the AUC for metas-
tasis was 0.64 (0.03 greater than the CAPRA-S).80 
In a multicenter study by Spratt et al.,81 a clinical-
genomic model consisting of 6 tiers combining 
NCCN risk groupings and Decipher scores dem-
onstrated improved performance (AUC = 0.84, 
95% CI = 0.61–0.93) in comparison to NCCN 
(AUC = 0.73, 95% CI = 0.6–0.86) and CAPRA 
(AUC = 0.74, 95% CI, 0.65–0.84) risk groupings 
in prediction of 10-year distant metastasis.

In patients with BCR after surgery, Decipher has 
also been shown to predict later development of 
metastasis (AUC = 0.82, 95% CI, 0.76–0.86), 
more so than Gleason score (AUC = 0.64, 95% 
CI, 0.58–0.70) and PSA doubling time 
(AUC = 0.69, 95% CI, 0.61–0.77).82 Spratt et al. 
demonstrated similar discrimination ability in a 
multi-center study of 477 patients, 150 of whom 
had a detectable PSA postoperatively. In this sub-
set, the 5-year metastasis rate was 0.90% for 
Decipher low or intermediate risk, and 18% for 
Decipher high risk (p < 0.001).83 In a study within 
the VA system of 548 patients deemed to be high 
risk after surgery, 301 of whom were African 
American (AAM), Decipher had a higher AUC 
than CAPRA-S for 5-year metastasis in AAM ver-
sus non-AAM (0.86 versus 0.69) as well as 10-year 
PCa specific mortality in AAM versus non-AAM 
(0.91 versus 0.78).84

In multiple studies by Den et al. analyzing the 
optimal timing of post-operative radiation ther-
apy, the authors suggest that those with low 
Decipher scores are best treated with salvage RT 
while those with higher scores may benefit from 
adjuvant therapy. The AUC for prediction of 
metastasis 5 years after radiation therapy was 0.66 

for the CAPRA-S model (95% CI, 0.56–0.78) 
and 0.83 for the Decipher score (0.83, 95% CI, 
0.27–0.89).85 A retrospective multi-center and 
multi-ethnic cohort study by Freedland et al.86 
also demonstrated that Decipher provides a high 
predictive accuracy (AUC = 0.85, 95% CI = 0.73–
0.88) for metastasis after salvage RT. In an analy-
sis of Decipher data from patients in the NRG/
RTOG 9601 trial investigating salvage 
RT +/- 2 years of bicalutamide, Decipher scores 
were independently associated with distant 
metastasis (HR = 1.19, 95% CI = 1.06–1.35, 
p = 0.003), PCa specific mortality (HR = 1.37, 
95% CI = 1.18–1.61, p < 0.001), and OS 
(HR = 1.16, 95% CI = 1.06–1.28, p = 0.002) on a 
multivariable analysis adjusting for clinical 
parameters. The absolute impact of ADT was less 
in patients with a lower versus higher Decipher 
score.87

Impact of Decipher on treatment decisions. In 
assessing the role of the Decipher GC in influenc-
ing treatment decision making, Michalopoulos 
et al.88 demonstrated in the PRO-ACT study that 
review of Decipher increased the proportion of 
patients recommended treatment who were 
deemed Decipher high risk and an increase in the 
number of patients recommended observation 
who were deemed Decipher low risk (p < 0.001). 
Similar conclusions have been made by Badani 
et al.,89 who showed a 20% increase in observa-
tion recommendations for Decipher low risk 
patients and a 16% increase in treatment recom-
mendations for Decipher high risk patients, and 
Marascio et al.,90 who demonstrated a ‘number 
needed to test’ of 3 to change one treatment deci-
sion, with Decipher testing changing recommen-
dations for 39% of patients.

Oncotype Dx
The OncotypeDx Gene Expression classifier is a 
quantitative RT-PCR assay specifically men-
tioned in both the ASCO and NCCN guidelines 
that measures the expression of 17 genes (12 can-
cer specific and 5 housekeeping genes). The 
numeric Oncotype score, on a scale of 0 to 100, is 
combined with NCCN risk groupings on the test 
report to provide a comprehensive risk score. 
Furthermore, the report provides a percentage 
risk of PCa death within 10 years, metastasis 
within 10 years, and risk of adverse pathology 
(defined as Gleason ⩾ 4 + 3 or pT3 +) on RP 
(Figures S9-10). The cost of the test is $4520, 
but studies have shown an average savings of 
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$2286 per patient (including Oncotype test cost) 
in the first 180 days after diagnosis for very low-
risk and low-risk patients.91

Prognostic value of Oncotype. In a single institu-
tional cohort of 514 prostatectomy patients (91% 
white) with NCCN low or intermediate-risk dis-
ease, every 20-point increase in Oncotype score 
was associated with high grade (OR = 2.3, 95% 
CI = 1.5–3.7) and non-organ confined pathology 
(OR = 1.9, 95% CI = 1.3–3.0). Adding Oncotype 
to CAPRA resulted in less treatment of patients 
with favorable pathology.92 In a separate study of 
279 men with low, intermediate, and high-risk 
PCa, the addition of Oncotype to CAPRA 
improved the AUC for prediction of PCa specific 
death in a 10-year interval from 0.78 to 0.84 
(p < 0.001).93 A larger meta-analysis consisting of 
732 patients revealed improved prediction ability 
for favorable pathology when Oncotype was 
added to CAPRA (AUC = 0.68–0.73) and NCCN 
(AUC = 0.64–0.70) risk groups.94 In two separate 
cohorts that included NCCN unfavorable inter-
mediate risk patients, incorporation of Oncotype 
improved the AUC for prediction of BCR to 0.76 
from 0.63 and distant metastasis to 0.76 from 
0.69 when incorporating only clinical variables. 
In addition, the AUC improved to 0.78 from 0.69 
for prediction of PCa specific death in the unfa-
vorable intermediate patients within the cohorts.95 
In a racially diverse cohort of 431 men (20% AA) 
with very low, low or intermediate-risk PCa, 
incorporation of Oncotype improved the AUC for 
prediction of adverse pathology from 0.63 
(NCCN risk groups alone) to 0.72, and from 
0.60 to 0.69 in the subset with Gleason 3 + 3 
and low volume Gleason 3 + 4 (p = 0.001). For 
prediction of BCR, Oncotype improved the AUC 
from 0.59 (NCCN risk group alone) to 0.68. The 
association between Oncotype and recurrence 
free interval and adverse pathology was statisti-
cally significant in both white patients alone and 
African American patients alone.96

Impact of Oncotype testing on treatment deci-
sions. In a 297-patient cohort of men with low-
risk PCa eligible for AS, AS utilization was higher 
in the Oncotype tested cohort than the baseline 
cohort, and the percentage of men remaining on 
AS at 1 year was 55% and 34%, respectively. 
Decision conflict scores fell from an average of 29 
to 16 after Oncotype testing and the fraction of 
men expressing low decisional conflict increased 
from 36% to 59%.97 Dall’Era et al.98 showed that 
in a low-risk or very low-risk cohort of 211 men, 

the use of Oncotype testing, increased the recom-
mendation and use of AS by 22% and 56%, 
respectively. Similarly, Lynch et al.99 showed a 
12% increase in AS utilization in Oncotype tested 
patients within a VA cohort. The impact of Onco-
type testing on clinical decision-making in high-
risk patients after prostatectomy was evaluated by 
Badani et al. They found that knowledge of the 
OncotypeDx score changed treatment recom-
mendations in 31% of patients (95% CI, 27–35), 
with a 20% increase in observation recommenda-
tions in low-risk patients and a 16% increase in 
treatment escalation (e.g. adjuvant radiation) in 
those deemed to be high risk by the genomic clas-
sifier. Oncotype predicted probability of metasta-
sis was the dominant risk factor driving decision 
making in a multivariable analysis consisting of 
clinical variables (OR = 8.6, 95% CI = 5.3–14.3, 
p < 0.001).89

Use of Oncotype in the context of MRI. In a study 
of the relationship between Oncotype results 
and MRI, Oncotype scores were significantly 
higher in those with positive MRI (28, IQR 21–
34) than indeterminate (23, IQR 14–27) and 
negative MRI (16, IQR 13–21). While the 
authors found stratification among MRI find-
ings, additional study is required to recommend 
definitive clinical sequencing of MRI and tissue-
based biomarkers.100

Polaris
The Polaris test, which is mentioned in the 
NCCN and ASCO guidelines, consists of meas-
urement of mRNA levels of 46 genes, comprising 
31 genes involved in cell cycle progression and 15 
housekeeping genes by RT-PCR.101 The score is 
reported on a 10-point scale and gives the score 
percentile within the patient’s NCCN risk group 
(Figures S11 and S12). The report also provides 
a percentage risk of 10-year disease specific mor-
tality and distant metastasis. Although the test 
costs $3400, the estimated cost savings per patient 
in a commercial health plan using Polaris testing 
is estimated to be ~$1900.102

Prognostic value of Polaris score. The Prolaris 
score has been shown in several studies to predict 
BCR, metastasis, and PCa-specific death. In a 
multivariate analysis, the Polaris score was inde-
pendently associated with a higher risk of BCR 
(HR = 1.77, 95% CI = 1.40–2.22, p = 4.3 × 10−6), 
but there was no difference in the AUC for BCR 
in the RP cohort (AUC = 0.825 for clinical 
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variables alone, AUC = 0.84 for a combined 
model including the Polaris score).101 Following 
primary radiotherapy, Polaris’s score was associ-
ated with 5-year BCR, with a HR per score unit 
of 2.55 (95% CI = 1.43–4.55, p = 0.002). In addi-
tion, the Polaris score was associated with 10-year 
disease-specific mortality, with a HR per score 
unit of 3.77, 95% CI = 1.37–10.4, p = 0.013.103 In 
a group of 582 biopsy patients from multiple cen-
ters, Polaris was a significant predictor of BCR 
on multivariable analysis (HR = 1.47, 95% 
CI = 1.23–1.76, p = 4.7 × 10−5). Although the 
cohort included only 12 metastatic cases, the 
Polaris score was a highly significant predictor of 
metastatic disease (HR = 4.19, 95% CI = 2.08–
8.45, p = 8.2 × 10−6).104 In a conservatively man-
aged TURP cohort, the Polaris score was also 
independently associated with PCa specific death 
risk on multivariate analysis (HR = 2.56, 95% 
CI = 1.85–3.53, p = 1.3 × 10−8). Furthermore, 
AUC for prediction of PCa death increased from 
0.806 to 0.878 with the addition of Polaris to 
clinical variables.101 A combined model consist-
ing of CAPRA-S and Polaris was better able to 
predict BCR after prostatectomy as compared to 
CAPRA-S alone (AUC 0.77 versus 0.73) in a 
post-RP, low-risk cohort of 413 men.105

Impact of Polaris testing on treatment decisions. In 
305 cases from a national registry, Prolaris testing 
de-escalated treatment from interventional to non-
interventional and vice versa in low and intermedi-
ate risk patients. There were no significant changes, 
however, in high-risk patients. Overall, clinicians 
felt that Polaris testing was useful in clinical deci-
sion making in 88% of cases.106 In the larger PRO-
CEDE-1000 prospective registry (n = 1206), 47.8% 
had a change in treatment, 72.1% of which were 
de-escalations; 26.9% were intensifications in treat-
ment.107 With respect to active surveillance, Kaul 
et al. showed in a multicenter study of 547 men 
after prostate biopsy that the rate of selection of AS 
in low-risk patients was 84.2% when patients had 
both Polaris score and NCCN risk criteria. This is 
significantly higher than the 20–40% utilization of 
AS in men with low-risk disease that was observed 
in other studies. In addition, there was a durability 
of AS utilization observed, with a 4-year durability 
rate of 69% in the academic setting and 63% in the 
community setting among patients in this study.108

Guideline statements
Per NCCN guidelines, Decipher is covered 
post-biopsy for NCCN very-low, low-risk, 

favorable-intermediate, and unfavorable inter-
mediate-risk PCa in patients with at least 
10 years life expectancy who have not received 
treatment and are candidates for active surveil-
lance or definitive therapy. Post-RP, Decipher 
is recommended and covered for those with 
pT2 disease with positive margins, any pT3 dis-
ease, and rising PSA. Oncotype and Polaris are 
covered post biopsy for very-low, low, and 
favorable intermediate risk patients. These tests 
are primarily validated in low and intermediate-
risk patients, and no explicit recommendation 
is made for their use post-RP or in higher risk 
patients.109

Per ASCO guidelines, Oncotype, Polaris, and 
Decipher are to be offered to patients who are 
likely to benefit from active surveillance and in 
whom the assay result is likely to change manage-
ment. Decipher is specifically mentioned to help 
guide the decision of post-prostatectomy adju-
vant or salvage radiation.110

Other biomarkers in clinical development
Although this review focuses on biomarkers that 
are commercially available in the United States at 
present, there are several on the horizon with 
promising results. The miR Sentinel platform is 
certainly one of these tests. It consists of three 
modules that rely on exosomal miRNAs isolated 
from urine – the Sentinel PCa test, which distin-
guishes PCa from benign prostatic tissue; the 
Sentinel CS test, which distinguishes GG1 from 
GG2-5 disease; and the Sentinel HG test, which 
delineates patients with GG3-5 cancer who are 
candidates for therapeutic intervention rather 
than active surveillance. The AUCs of Sentinel 
PCa for detection of cancer and Sentinel CS for 
detection of GG2-5 disease were 0.98, and the 
AUC of Sentinel HG for detection of GG3-5 dis-
ease was 0.99.111

Another emerging biomarker for early detection 
is Stockholm 3 (S3M), a test developed at the 
Karolinska Institute. It combines clinical varia-
bles with 232 SNPs and 6 protein markers (total 
PSA, fPSA, intact PSA, hK2, MSMB, and 
MIC1). In a multicenter study conducted in 
Norway and Sweden, S3M had an AUC signifi-
cantly higher than PSA and PSA density in pre-
dicting GG2+ cancer (85.9 versus 74.8).112,113 
The major limitations of the S3M are a validation 
population consisting of mainly Northern 
Europeans and reliance on 232 SNPs. It is 
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currently only commercially available in Sweden. 
Proclarix is another novel test that combines 
thrombospondin-1 and cathepsin D with age, 
PSA and fPSA and has been shown to predict 
csPCa on biopsy with an AUC of 0.83, which is 
significantly higher than fPSA alone (AUC = 0.64). 
However, this was a retrospective, single-center 
study.113,114

Circulating immune cells have also been pro-
posed as biomarkers across the PCa clinical 
care continuum, including predicting adverse 
pathology at RP and risk stratification of 
patients being considered for AS. While none of 
these tests have been implemented at scale clin-
ically, circulating neutrophil, platelet, eosino-
phil, and lymphocyte content have shown early 
promise.115,116

Conclusion
The selection of the appropriate biomarker is 
highly nuanced and dependent on the specific 
clinical scenario. Here, we have provided foun-
dational information to guide decision making 
on the use of these biomarkers and suggest 
opportunities for additional data collection. In 
the early detection space, such areas of study 
include more robust studies of test performance 
in racially diverse populations and how these 
biomarkers can be integrated with MRI. The 
risk stratification biomarkers all demonstrate 
similar prognostic performance and utility for 
low-risk patients considering active surveillance. 
Decipher is unique in that it has been exten-
sively studied in high-risk patients and in the 
guidance of multi-modal therapy in post-RP 
patients with high-risk features or treatment 
failure. Future opportunities exist to further 
evaluate how these biomarkers can be used in 
the management of higher-risk patients requir-
ing multi-modal therapy and in the guidance of 
surgical approaches.
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