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Abstract.  Cytoplasmic dynein is a multisubunit, 
microtubule-dependent mechanochemical enzyme that 
has been proposed to function in a variety of intracel- 
lular movements, including minus-end-directed trans- 
port of organelles. Dynein-mediated vesicle transport 
is stimulated in vitro by addition of the Glued/ 
dynactin complex raising the possibility that these two 
complexes interact in vivo. We report here that a class 
of phenotypically identical mutants of the filamentous 
fungus Neurospora crassa are defective in genes en- 
coding subunits of either cytoplasmic dynein or the 
Glued/dynactin complex. These mutants, defined as 
ropy, have cured hyphae with abnormal nuclear distri- 

bution, ro4 encodes the heavy chain of cytoplasmic 
dynein, while ro-4 encodes an actin-related protein 
that is a probable homologue of the actin-related pro- 
tein Arpl (formerly referred to as actin-RPV or cen- 
tractin), the major component of the glued/dynactin 
complex. The phenotypes of ro-1 and ro-4 mutants 
suggest that cytoplasmic dynein, as well as the 
Glued/dynactin complex, are required to maintain uni- 
form nuclear distribution in fungal hyphae. We pro- 
pose that cytoplasmic dynein maintains nuclear distri- 
bution through sliding of antiparallel microtubules 
emanating from neighboring spindle pole bodies. 

ONEMAL and cytoplasmic dyneins axe large, multi- 
subunit complexes that function as microtubule- 
dependent mechanochemical enzymes (Porter and 

Johnson, 1989; Vallee, 1993; Walker and Sheetz, 1993). Ax- 
onemal dynein is the motor that powers movement of cilia 
and flagella by sliding adjacent doublet microtubules. Cyto- 
plasmic dynein has been implicated in a number of intracel- 
lular transport processes including retrograde transport of 
organdies in axons, the endocytic pathway, and organization 
of the Golgi (Walker and Sheetz, 1993). In addition, cyto- 
plasmic dynein has been localized to kinetochores, spindle 
fibers and centrosomes, indicating a likely role in micro- 
tubule-dependent mitotic processes (Pfarr et al., 1990; 
Steuer et al., 1990). 

Cytoplasmic dynein has a mass of 1.2 x 106 kD and con- 
sists of two heavy chains (•500 kD), three or four inter- 
mediate (*70 kD) chains, and four light (59-53 kD) chains 
(Paschal et al., 1987; Schroer et al., 1989). This complex 
is sufficient to support the movement of microtubules in vitro 
(Lye et al., 1987; Paschal et al., 1987); however, it does not 
support efficient in vitro microtubule-dependent movement 
of vesicles (Schroer et al., 1989). A second protein complex 
referred to as the Glued or dynactin complex (~6 subunits) 
is required for cytoplasmic dynein to mediate efficient 
microtubule-dependent transport of organdies in vitro 
(Schroer and Sheetz, 1991). Three subunits of the Glued/dy- 
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nactin complex (150-, 50-, and 45-kD subunits) partially 
copurify with cytoplasmic dynein (Gill et al., 1991; Schroer 
and Sheetz, 1991; Paschal et al., 1993). The 150-kD subunit 
is homologous to the product of the Drosophila Glued gene 
and the 45-kD subunit has been identified as the actin-related 
protein Arpl that was originally named actin-RPV or cen- 
tractin (Gill et al., 1991; Holzbaur et al., 1991; Schroer and 
Sheetz, 1991; Lees-Miller et al., 1992a; Fyrberg et al., 
1994; Schafer et al., 1994). 

Genetic analysis of dynein has, until recently, been re- 
stricted to axonemal dynein. The unicellular alga Chlamydo- 
monas reinhardtii has been used extensively for the analysis 
of flagellar structure, and many mutants with altered motility 
have been identified as defective in either inner or outer arm 
dyneins which generate the force required for flagellar move- 
ment (Dutcher and Lux, 1989). The absence of a system for 
the genetic analysis of cytoplasmic dynein has been due in 
part to the unknown phenotype of cytoplasmic dynein mu- 
tants. Recently, the gene encoding cytoplasmic dynein heavy 
chain has been isolated from a number of organisms in- 
cluding Dictyosteliura discoideum, rat, Saccharomyces cere- 
visiae, and Aspergillus nidulans (Koonce et al., 1992; Eshel 
et al., 1993; Li et al., 1993; Mikami et al., 1993; Zhang et 
al., 1993; Xiang et al., 1994). With the availability of the 
cloned gene, cytoplasmic dynein mutants have been con- 
structed in S. cerevisiae (Eshel et al., 1993; Li et al., 1993). 
Yeast dynein mutants show a reduced growth rate and a dis- 
ruption in mitotic spindle orientation such that '~25% of 
budded cells have a binucleate mother cell and an enucleated 
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bud. A screen of temperature-sensitive mutants of A. nidu- 
lans, a filamentous fungus, led to the identification of four 
mutants that are defective in nuclear distribution (nud mu- 
tants) (Morris, 1976). Recently, the nudA gene ofA. nidu- 
lans was shown to encode cytoplasmic dynein heavy chain 
(Xiang et al., 1994). This result implicates cytoplasmic 
dynein as playing a role in the distribution and movement of 
nuclei in filamentous fungi. 

In this paper, we report the characterization of a class of 
Neurospora crassa mutants that identify genes encoding 
subunits of cytoplasmic dynein and the Glued/dynactin com- 
plex. We determined previously that the cot-1 gene of the 
filamentous fungus N. crassa encodes a serine/threonine 
protein kinase required for hyphal elongation (Yarden et al., 
1992). In an effort to identify either the substrate(s) or 
specific process(es) regulated by Cotl kinase, we have iso- 
lated mutants that show suppression of the hyphal growth de- 
fect of a cot-1 mutant. We now describe a group of eight iden- 
tical, but unlinked, mutants known as ropy (ro) that partially 
suppress a cot-1 defect. All ro mutants have curled hyphai 
(ropy) growth and altered nuclear distribution. Our analysis 
of two of eight known ro genes shows that ro-1 encodes the 
heavy chain of cytoplasmic dynein and ro-4 encodes the 
actin-related protein Arpl. We propose that all mutants 
defective in genes specific for either cytoplasmic dynein or 
the Glued/dynactin complex will exhibit a ro phenotype. The 
ease with which ro mutants can be isolated and ro genes 
cloned makes N. crassa an ideal organism for the genetic dis- 
section of cytoplasmic dynein. 

Materials and Methods 

Strains and Media 

N. crassa strains used in this study were obtained from the Fungal Genetic 
Stock Center (FGSC), Department of Microbiology, University of Kansas 
Medical Center, Kansas City, KS. The wild-type N. crassa strain was 74- 
OR23-1A (FGSC 987). cot-l(ClO2t) (FGSC 4065) was used to isolate mu- 
tants containing cot-1 suppressors (see below). The to mutants were ro-1 
(FGSC 146), ro-1 (FGSC 4351), ro-2 (FGSC 44), to-3 (FGSC 43), to-4 
(FGSC 2981), to-4 (FGSC 1511), ro-6 (FGSC 3627), to-7 (FGSC 3322), 
to-7 (FGSC 4025), to-lO (FGSC 3619), ro-ll (FGSC 3911), and to(P904) 
(FGSC 1669). The construction of to; cot-I double mutants and the forma- 
tion of heterokaryotic strains was done using standard genetic procedures 
(Davis and de Serres, 1970). Media and growth conditions are as described 
(Davis and de Serres, 1970). 

Identification of to Mutations as Partial Suppressors 
of cot-1 
cot-I suppressors were isolated by plating 105 cohidia of the temperature- 
sensitive cot-1 mutant on a sucrose supplemented minimal medium and in- 
cubating at 37°C for 3-7 d. cot-I eonidia germinate under these conditions 
and produce colonies that are '~0.1 mM in diameter (Fig. 1 B). Fully sup- 
pressed cot-I mutants grew very rapidly and covered a plate within 24 h, 
while partially suppressed cot-1 mutants produced colonies that were 1-5 
mM in diameter. Approximately 90% of partially suppressed cot-I mutants 
had curled hyphal growth when incubated at 25°C. Because curled hyphal 
growth is characteristic of a group of N. cmssa hypbal growth mutants 
known as "ropy" mutants (Garnjobst and Tatum, 1967), we used hetero- 
karyon analysis to determine if any of these mutants were alleles of known 
to mutants. Analysis of two of these mutants, ro(PFM23) and to(PFM30), 
showed them to be allelic with to-1 and to-lO, respectively, to; cot-1 double 
mutants were constructed for all eight nonallelic to mutations that were 
available from the FGSC and all were determined to partially suppress cot-1. 

Cloning and Sequence Analysis 
Cosmids complementing the ro4 and ro-4 mutants were identified by sib- 

selection (Vollmer and Yanofsky, 1986). Pools of 96 cosmid clones from the 
Orbach/Sachs cosmid library (FGSC) were used to transform to mutants 
to hygromycin resistance. Hyg R transformants were examined microscopi- 
cally at 18-24 h after plating to identify transformants that showed straight 
hyphal growth instead of the characteristic curled hyphal growth of to mu- 
tants. Pools of cosmids containing complementing clones were further sub- 
divided until single cosmids were identified that complemented the to-1 or 
to-4 mutant. Complementing cosmid clones were digested separately with 
various restriction endonucleases, and to mutants were cotransformed with 
the digested DNA and pMP6, a plasmid coding for Hyg R (Plamann and 
Yanofsky, unpublished observations). (N. crassa is efficiently transformed 
with linear DNA.) The smallest fragment that efficiently complemented a 
to mutant was subeloned. The map location of cloned DNA was determined 
by restriction fragment length polymorphism analysis (Metzenberg et al., 
1985). 

DNA sequencing was performed by the dideoxy-chain termination 
method (Sanger et al., 1977), using Sequenase version 2.0 (United States 
Biochemical Corp., Cleveland, OH) and custom oligonucleotide primers 
synthesized by the Gene Technologies Laboratory at Texas A&M Univer- 
sity. DNA sequences were analyzed using programs of The University of 
Wisconsin Genetics Computer Group (Devereux et al., 1984). GenBank 
searches were performed at the National Center for Biotechnology Informa- 
tion (Bethesda, MD), using the BLAST network service (Alischul et al., 
1990). 

Standard procedures for Southern analyses, restriction endonuclease 
digestions, agarose gel electropboresis, purification of DNA from agarose 
gels, DNA ligations, and other cloning-related techniques were performed 
as described (Sambrook et al., 1989). Genomic DNA was isolated from N. 
crussa as described (Yarden et al., 1992). 

Isolation and Analysis of cDNA Clones 
cDNA clones of to-1 and to-,/were isolated by screening ,~360,000 plaques 
from a h ZAI  ~ II N. cmssa cDNA library constructed by R. H. Garrett 
(University of Vh'giuia, Charlottesville, VA) and available through the 
FGSC (Sambrook et al., 1989). Restriction fragments covering the distal 
one-third of to-I and the proximal one-half of to-4 were used as probes. 
Four positive ro-1 cDNAs clones and 10 to-4 cDNA clones were identified 
and rescued as phagemid (Stratagene Inc., La Jolla, CA). The DNA se- 
quence of one of the to-1 cDNA clones was determined to verify the position 
of the distal intron (Fig. 3). The DNA sequence of an apparently full-length 
ro-4 cDNA clone was determined to identify the 5' end of the gene and 
verify the positions of three introns that were predicted, from analysis 
of the to-4 genomic DNA sequence, to interrupt the to-4 structural gene 
(Fig. 5). 

Analysis of Hyphal Morphology 
and Nuclear Distribution in Wild-type, cot-l, 
and ro Mutants 

Hyphal morphologies of wild-type, cot-I, various to mutants, and to; cot-1 
double mutants were determined by inoculating sucrose minimal agar media 
with conidia and incubating plates at the designated temperature for 2 d. 
Conidia from cot-1 were plated with 100/~l of I M sorbitol solution to help 
prevent lysing of cot-1 spheres. Pictures were taken with TMAX 100 or 
TMAX 400 film on an Olympus binocular dissection microscope at 70x 
magnification with transmitted light. 

Nuclear distribution was examined by staining cells with 4'6-diamidino- 
2-phenylindole (DAPI).I Coverslips were placed on an agar surface and 
,~100 eonidia, suspended in sucrose minimal liquid media, were placed on 
each coverslip and the plates were incubated at 34°C for 16 h. Hyphal mate- 
rial on coverslips was treated for 1 rain with fixing solution (3.7% formalde- 
hyde, 67 % ethanol), rinsed for 5 min with wash solution (50 mM KPO4, 
pH 7.0), and then soaked in wash solution containing 0.5 ~g/ml DAPI for 
10 rain. Vaseline was placed around the edges of the coverslip which was 
then pressed to a slide. Pictures were taken with TMAX 400 film on an 
Olympus microscope using a SPlan Apo 60X oil objective and differential 
interference contrast optics. The sample was illuminated with UV light to 
view the DAPI stain. 

1. Abbreviations used in this paper: DAPI, 4',6-diamidlno-2-phenylindole; 
MT(~,  micrombuie-organizing center; ORFs, open reading frames; 
uORFI, upstream ORFI; SPB, spindle pole bodies. 
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Results 

Ropy  ( to)  M u t a n t s  A r e  Partial Suppressors  o f  cot-I 

cot-1 is predicted to encode a serine/threonine protein ki- 
nase, and inactivation of cot-1 results in cessation of hyphal 
elongation and massive induction of branching (Yarden et 
al., 1992). To learn more about the role of C o t  kinase, cot-1 
suppressors were identified by plating conidia (asexually de- 
rived spores) of a cot-1 ~ mutant strain at 37°C and screen- 

ing for colonies with increased radial growth rates. The 
majority of mutants (>95%) were partially suppressed for 
cot-1 function and showed only slightly improved radial 
growth rates as compared to wild type (Fig. 1, C vs. B), 
while a small minority (<5%) were fully suppressed. Most 
of the full suppressor mutations had no visible effect when 
mutants were grown at 25°C, but many of the partial sup- 
pressor mutants had an unusual hyphal growth phenotype 
consisting of curled and distorted hyphae (Fig. 1 D). This 
unusual hyphal growth phenotype was independent of the 

l~gure 1. Partial suppression of a 
cot-1 mutant by ro-1 and ro-4 mu- 
tations. Conidia from N. crassa 
cot-l, ro and ro; cot-1 mutants 
were inoculated on sucrose mini- 
mal agar media and incubated at 
either 25 or 37"C for 2 d. (,4 and 
B) cot-1 growing at 25 and 37"C, 
respectively. (Cand D) to-l; cot-1 
growing at 37 and 25"C, respec- 
tively. Note the increased colony 
size ofa ro-1; cot-1 double mutant 
(C) vs. a to+; cot-1 strum (B). (E 
and F) I"o-/ and ro-4 mutants 
growing at 37"C, respectively. 
Bar, 0.5 raM. 
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original cotol mutation (Fig. 1, E and F). Because these mu- 
tants appeared similar to a class of hyphal growth mutants 
known as ~ropy" mutants, we tested the genetic relationship 
between partial suppressors and the eight previously de- 
scribed ro mutants (Garnjobst and Tatum, 1967). The first 
two cot-1 suppressor mutants we isolated were determined 
to be alleles of ro-1 and ro40, respectively, and all eight ro 
mutants (ro4, -2, -3, -4, -6, -7, 40, -11) partially suppressed 
cot-1 in the same manner (not shown). 

Ro Mutants  Are  Defective in Nuclear Distribution, 
Hyphai Growth and Sexual Development 

Nuclei are relatively evenly distributed in N. crassa and 
other coencytial fungi (Fig. 2 A). In ro mutants nuclear dis- 
tribution is highly asymmetric (Fig. 2, B and C; ro4 and ro-4 
mutants, respectively). Large numbers of nuclei are ob- 
served in some regions of hyphae while other regions have 
none. The clumpy nuclear distribution found in ro4 and ro-4 
is typical for all ro mutants (not shown). Along with the un- 
usual nuclear disuibution, we find that hyphal tips grow in 
a curled fashion and are able to extend a considerable dis- 
tance (>200 #m) without nuclei (Fig. 2, B and C). In addi- 
tion, these long enucleate hyphae are able to branch which 
indicates that the formation of a new hyphal tip can occur in 
the absence of close proximity to a nucleus. We have also 
examined the ability of ro mutants to participate in crosses 
and we find that all are able to function as males, but only 
strains containing weak (nearly normal hyphal growth) m al- 
leles are able to function as females. All ro mutants have 
nearly normal conidiation (asexual reproduction). 

ro-1 Encodes the Heavy Chain o f  Cytoplasmic Dynein 

m mutants define at least eight genes that when mutated give 
rise to abnormal nuclear distribution and hyphal growth. 
The to-1 and to-4 genes were isolated by complementation 
of the respective m mutants with a N. crassa genomic cos- 
mid library (Materials and Methods). Complementation was 
defined as restoration of straight hyphal growth and rapid 
radial extension of individual colonies (Fig. 1, A vs. E and 
F). Complementing DNA was subcloned by identifying re- 
striction endonuclease-generated fragments that were able to 
complement the respective mutant (N. crassa is efficiently 
transformed with linear DNA). The smallest complementing 
DNA fragment was 18 kb for to-1 and 4.0 kb for to-4. RFLP 
mapping was used to determine the map location of the 
clones (the RFLP data will be presented in the Fungal 
Genetics Newsletter). The map position of ro-1- and ro- 
4-complementing DNA coincided with that of the respective 
mutations indicating that complementing DNAs were likely 
to contain functional copies of the genes and not extracopy 
suppressors. 

ro-1 has a 4367-codon open reading frame that is inter- 
rupted by two short introns and is predicted to encode a poly- 
peptide with a calculated tool wt of 495,574 (Fig. 3). Rol is 
53 and 49% identical to the cytoplasmic dynein heavy chain 
of rat and Dictyostelium, respectively, and 29% identical to 
sea urchin fiagellar dynein/3 heavy chain (Fig. 4, A and B). 
Based on extensive similarity with the rat and Dictyostelium 
proteins, and the absence of flagella and cilia in N. crassa, 
we conclude that ro-1 encodes the heavy chain subunit of cy- 
toplasmic dynein. It is likely N. crassa has only a single cy- 

Figure 2. The effect of ro mutations on nuclear distribution. (A) 
W'dd-type (74-OR23-1A), ( B ) to-l, and ( C- ro-4 N. crassa mutants 
were grown overnight in sucrose minimal media at 34°C, and nuclei 
were visualized by staining with the DNA-specific dye DAPI. Bar, 
20/~m. 

toplasmic dynein heavy chain, because probing Southern 
blots of genomic DNA and cDNA libraries with ro-1 se- 
quences at low stringency did not identify additional cyto- 
plasmic dynein heavy chain-like sequences (data not shown). 
N. crassa Rol is also 72% identical to theA. n/du/ans cyto- 
plasmic dynein heavy chain. Interestingly, the cytoplasmic 
dynein heavy chain of S. cerevisiae is only ,x,32 % identical 
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1 MMDSV~S~PPQPS~DANGVATTPFAAVDP~K~VDHL~LLLEATLGAKRDELEAPGSLLSK~RYSDTVQRCSRFALD~VALYIQKDLAPT~LDGDNGAE 

i01 AEEPEPTHVYTISSDLT~SPTTVAYL~LLKR~QPLDPIVPLT~QIQMLNLPGPAYLSTSG~EQGPTSSPYEILQLYLHNGLAPYFDASTK~QQLLNGARG 

201 RPDVDAKTGIPVTKKRWTELELSLSH~QQNVEIPEVSLPFH~LVQ~TLEEAATKNVKPSIDLLPATVLADsTFLNNLQATVNNWIKSIQVITKMTRDPTT 

301 GTANQEINFWLSMEAALEGIENQLRSEGVMLTLDILKHAKRFQATVSFTADTGLKEAMEKVQKYNQLMRDFPLDELLSATTLTKVQESIGQIFGHLNKKL 

401 RICPYPIRRAL•LVEAISGDLDEVLHRLLPGTELVKLDYEEFKGVMKQAGSIFRAWDESIKEFTNVAREVTRRRNEK•IP•K•N•RHAELQSRLDYVHNF 

501 RDNHEQLQRTIINVLGPKATVNGIVTASGANGVAwEEIGDVDAVDEVKQAWEALKDVDLLDCTREGTEKWVRAENIYNERTARVEN•IIARLRDRLATA 

601 KNANEMFRVFSKFNALFVRPKIRGAIAEYQq~LIDNvKQAISSLHERFKQQYGHSEAHAMAQLHDLP~V~GAIIWARQIERQLDQYMKKvEQVLGSDWAL 

701 HTEGQKLQNEEDLFRKKLDTRPIFEAWLHDVQRKQI~ISGLLFTINRIREAGNILELAVNFDAQVIALFKETRNLLWLNYPVPHSVNNVAKEAKRVYPFA 

801 V~LME~VRTFAQTNRQISDMSEVAVLLEGHRNDVYTLIEKGIPLRWETFVNTYEVHFKPTFNPNTPLGQTG~KV~ETKHvMFIREFAASVSLLQ~KTLLL 

901 ANIYVTVQKALNELKT~YEASAFQSRLETIQHAVDQLNLEQYVNLGYWVERMNRQ~KDVLYTRLQVAIQAWIQAFEDEDVER~ERKRLLEIASPDAAK 

1001 SIGPVIK•LVHEITMRNQVIYLDPPLEYARA•WFAQLQDWIGVICNLKKIKATRYTMSLSTEVVDEPRFNDLPGD•TEELLRVQTSVEKKIREIGAYVDK 

1101 WLQFQ~LWDLQSEHVYDVLGDQL~RWLQLLQEIRKTRQTFDTTEV~R~FGHITIDYDQVQTKvNAKYDQWQQDILIKFASRLGNRMREVYAELEKARKDL 

1201 EGQAMTAN~TAEAVRFITIVQ~CTRQVKLWAPEIETFRQGESTLVRQRYHFQNDWLHAEQVDGMWDMLNELLARKEKIvTDQSDALRAKITAEDKVVNDK 

1301 IAEIAHQWNEEKPVSGTIAPDVAEATLTHFEQRITKLQEESAMvAKAKEALDLAPTPDTSLGVILEEVQDFK~VWASLSTIWKNLNELRETLWN~VQ~RK 

1401 IRA~IDNLIKMTKEM~RMRQYAAFEHIQNVL~QLMKVN~ILGELKSEAVRDRHWTKIYKQIKPGKRYS~VSMTLGDVwDLNLvATEVIVKDIIIQAQGE 

1501 MALEEFLKQVRE~TNYGLELVQYQQKCRLIRGWDDLFAK~SENLNSLQAMKHSPYYKEFEEEA~WEEKLNRVHV~FDIWIDVQRQWvYLEGVFHGNAD 

1601 IKHLLPIESSRFQNINSEFLAVMKKVYKQPNVLDVLNI PNVQKSLERLAELLNKIQKALGEYLEKERVEFPRFYFVGDEDLLEMIGNSNDTMRIAKHFKK 

1701 MFAGLNGLVMDDEGVISGFTSKEGETVRLKKEINLVKTPRINDWLALLENGMKVTLAELLAEAVDEFTPIFSSENVDRDALIKFMNTYPSQIVVLATQw 

1801 WTTAVDQA~ADGGKDLQLLFDREVQvLRMLADTV~GDLEVLLRKKCEQLITEC~HQRD~IEKL~KLNANSNTHYMWLLQMRYVYNPEGDFLQRLHIKMAN 

1901 AKLNYGFEYLGV~DRLVRTPLTDRCFLTLTQALCQRLGGSPYQPA~K~ESVKALGLQ[~RFTLVF~DDTFDNQAMGRIFLGICQVGAWGCFDEFNRL 

2001 EEKI LSAVsQQIQDIQLGLKMGAEDEKAQIELDGRQIHVNANAGIFITMNPGYAGRSNL•DNLKKLFR•VAM•KPDKELIAEVMLYSQGFNQAKQLSKHT 

2101 V~FFDQC~EKL~KQAHYDFGLRALK~VLVSSGGLKRARLLETGDAEELGPEDwEPEIIVQ~IRETIA~KLIKEDVE~MMEIESVCFPGVKYV~ASLEKL 

2201 QEAI~RLAAERQLVVND~WMTKVLQLYQIQKIHHGVMMV~B~KBAAWRLLLDALQQTENVEGVSHVIDSKVMSKEA~YGNLDSTTREWTDGLFTSIL 

2301 RKIVDNLRGEDAKRHWIVFDGDVD~EWVENLN~VLDDNKLLTLPNGERLNLP~NVRIMFEVENLKYAT~ATV~RCGMV~SEDTVTPDMMV~NYIETLRT 

2401 VAFEDLDEDAVATGQSEAKALA~Q~QAADLLQEFLT~DNLINEVLKEAANYEHIMEFTVARVLSTLFSLLNKAVRDIIEYNSAHVDFPMDPEQvEGYIAK 

2501 KVL~ALVWALTGDCPLKDRKAFGDKVAGLASFGS~PLDGTS~LIDFTVTMPQGEWQq%4QQHV~TIEVNTHSV~QTDVVIPTLDTIRHEDVLYSWLAEHKP 

2601 LLLCg~g~K~MTLF~ALRKLPNMEVVGLNFS~ATTPDLLIKTFEQY~EYKKTLNG~MLSPTQIGRWLVIF~DEINLPAPDKYGTQRAISFLRQLVEHN 

2701 GFWRTSDKAWVTLDR•QFVGACN•PTDAGRTPMGARFLRHAPLIMVDYPGELSLMQIYGSFNAAVLKV••SLRGYAEALTQAMVRFYLESQERFTPKIQP 

2801 
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3001 
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4001 
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43111 

HYVY S PRELTRWVRGVYEAI R PLETLSVEG LI RIWAHEALRLFQDR LVDEEERKWTDDAVRR IANEYF PTI DEHKALGG P I LFSNWLSKNYVpVDREQLR 

DFVKAR LKTFCEEEVDVPLI LFNDVLEHVLRI DRVFRQPQGHLI LI GV~BGKTTLS RFVAWMNGLKVFQI KVHGKYSAEDFDEDLREVLR RCGCKGEKI 

CF IMDESNVLDSGFLERMNTLLANAEV PGLFEGDDLAALMTACKEGAQR~ GLLLDSQEELYKWFTGQIVKNLHVVFTMNP PGEDGLSSKAATSPALFNRC 

VLNWFG DWEDQALFQVAHELTHSVDLDR PNNTAP DTI PVAYRGLNLPPSH REAVVNAMVY IHYS LQRFNAKLLKQQGKI TFLTPRHFLDFVAQYVKLYNE 

KR EDLEEQQRHLNVGLEKLR DTVDKVRDLRVTLSEKKAQLEQKDAEANEKLQRHVADQREAEQRKN I SLEIQAALEHQEAEVAS RKKVVLEDLARAEPAV 

EEAKASVS S I KRQH LTEVRSHPTP PSGVKLALESVCTL IGHKANDWKTIQG IVRRDDF IAS I VNFNNEKQMTKS LRVKMRNEFLANPEFTFEKVNRASKA 

CG PLVQNVEAQVNYAE I LDRVG PLREEVML LEEQALQTKAEAKAVEQTI STLENS I ARYKTEyAAL I SETQA I KAEMS RVQFKVDRSVKLLDSLSSERTR 

WEEGSRSFETQI STLVGDVLVAAAFLAY SG LYDQTFRKSMMEDWLHQLHLSGVQFKQHNPMTEY LSTADERLSWQENTLPVDDLCTENAI ILKRFNRY PL 

I I DPEGRATEFLN8 ESKDSK LTVTSFLDDSFTKVLESS LRFGN P I L IQDAEH LDPVLNHVLNKEYQKTGG RVLI QLGKQQ I DFS PAFKLY LSTR DPSATF 

Ap D I CS RTTFVNFTVTQSSLQTQS LNEV LKSE8 PDVDERR SNLI KLQGEFKVHLRQ LEKKLLQA LNES RGNI LDDDHV I ETLETLKTEAAEI SAKMSNTE 

GVMAEVEQ I TLQYNI I AR SC EAVFAVLEQLHY LNHFYRFS LQYF LD IFHSVLRGNPHLANETNHNVRR DI IVKDLFVATFKRTALGLLQKDR ITLAMLLA 

QASPYKMDKG LLDI I LDER I EGKDVS I DQNTREEAFARAKKI PALKNK I DAVPEADWEKFFTEELAEDFV PK IWNDETEPND RALMSLLLVKLFRLDRFV 

PAAE~ FVTLVFGS DLF D I VEDLKQTV DQVSA I LP IALVSS PGFDASYKVDGLVERMRVRCTN IAMGSAEAEGSADKAI ANAAQTGSWVLI KNVHLAPGWL 

(~3VEKKMETLNFNPEFR L~ LSMES S PKI PVNLLRAS 8VLMYEQPAGVRANMKDSMSS I STRS LKS PVERTRLYLLLSFLHAVVQER LRYA PNLGWKGFWE 

FNDADYECSAHVI DTWI DTAAHGRTNIAPSNI PWEMI RYLIVETYGGKI DDENDFKM LNQLVHTFLTPSAFD I GHKLVEVSHDAEDE{ IKDAATGGDLVVp 

'~!~TS LQEFMSWI QK L PER EP PTY LGL PANAEKLLLVGLGKS L I GNLKKVTDLLDEGEA I MAEASEAA* 

Figure 3. Deduced amino acid 
sequence of the N. crassa ro-1 
gene product. Four ATP- 
binding consensus  sequences  
are in bold and underlined. 
ro-1 is proposed to contain 
two introns: a 66-bp intron 
that interrupts codon 104; and 
a 72-bp intron that is located 
between codons 4205 and 
4206 (the respective amino 
acids are in bold). The introns 
were predicted by identifica- 
tion of 5' and 3' splice junction 
consensus sequences and 
comparison of the Rol se- 
quence with cytoplasmic 
dyneins of other species. The 
presence of the second intron 
was verified by DNA sequence 
analysis of a ro-1 cDNA 
clone. These sequence data 
are available from EMBL/ 
GenBank/DDBJ under acces- 
sion number L31504. 

with either N. crassa or A. nidulans. This indicates that cyto- 
plasmic dynein heavy chain of yeast has significantly di- 
verged from that of other organisms, including the filamen- 
tous fungi. 

The region of highest sequence identity among dynein 
heavy chains surrounds four P-loop motifs (GXXXXGKT/S), 
characteristic of many ATP-binding sequences (Walker et 
al., 1982; Fry et al., 1986), that are clustered in the middle 
third of the protein (Fig. 3). All four of these sites are con- 
served in both cytoplasmic and flagellar dynein heavy 
chains. The function(s) of these sites have not yet been deter- 
mined; however, the first site has been proposed to be the pri- 

mary site of ATP binding and hydrolysis (Gibbons et al., 
1991). Rol, as well as the respective polypeptides of A. n/du- 
lans and Saccharomyces cerevisiae, differ from other dynein 
heavy chains in that they lack a COOH-terminal ~280-  
residue segment that is present in both cytoplasmic and 
flagellar forms (Fig. 4, A and B). DNA sequence analysis 
of a ro-I eDNA indicated that the absence of this region is 
not due to a DNA rearrangement of ro-1 sequences during 
the cloning procedure (data not shown). In addition, South- 
ern analyses indicated that the restriction map of the ro- 
/-containing cosmid clone was identical with the corre- 
sponding region of the N. crassa genome (data not shown). 
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Figure 4. Dot plot matrix 
comparing the amino acid se- 

4000 quence of N. crassa cytoplas- 
mic dynein heavy chain with 
the amino acid sequences of 

zooo rat cytoplasmic dynein heavy 
chain (.4) and sea urchin 
flagellar dynein/3 heavy chain 

2000 (B). The plots were made 
using the UWGCG program 
COMPARE with a window 
size of 50 and a stringency of 

10o0 25. Note that the last ,o280 
residues of cytoplasmic and 
flagellar dynein heavy chains 

- 0 are not found in Rol (see up- 
Nourospora cytoplasmic dynein per right hand comer of each 

plot). 

It is possible that the absence of this conserved region (40 % 
identity between rat and Dictyostelium proteins) indicates a 
functional difference between cytoplasmic dynein of fungi 
and dynein heavy chains of other organisms. 

ro-4 Encodes a Member of the Arpl Family 
of Actin-related Proteins 

The DNA sequence and gene organization of ro-4 is shown 
in Fig. 5. The ro-4 structural gene is interrupted by three in- 
trons and encodes a 380-amino acid polypeptide that has a 
predicted mol wt of 42,382. Analysis of a ro-4 cDNA clone 
indicates that the 5' end of ro-4 mRNA is ,~,374 bases up- 
stream of the proposed translation initiation codon (Fig. 5). 
Within the unusually long 5' leader region are three open 
reading frames (ORFs) of 3, 3, and 13 codons, respectively. 
Curiously, upstream ORF1 (uORF1) overlaps uORF2, and 
uORF3 overlaps the proposed translation initiation codon of 
ro-4 (Fig. 5). The preferred sequence context of N. crassa 
translation initiation codons is 5'-CNNNCAMVAIGC~-3', 
where M = A or C and V = A or C or G (Bruehez et al., 
1993b). None of the four ATG initiator codons have flanking 
sequences that are ideal matches to the consensus sequence, 
although the context of the proposed ATG initiator codon for 
ro-4 has the best match. The presence of ORFs within the 
leader region of ro-4 may indicate that ro-4 gene expression 
is translationally regulated (Yoon and Donahue, 1992). 

The predicted amino acid sequence of Ro4 has similarity 
to aetin-related proteins and actin (Fig. 6). Two classes of 
actin-related proteins have been identified in vertebrates, 
centractin and Act2 (now referred to as the Arpl and Arp3 
families; Fyrberg et al., 1994). A comparison of Ro4 with 
centractin (Arpl), human cytoplasmic 7-aetin and the bo- 
vine, Drosophila and Schizosaccharomyces pombe Act2 pro- 
teins (members of the Arp3 family) shows that Ro4 is an ap- 
parent homologue of centractin. Ro4 and centraetin are 
identical at 42 positions where these proteins differ from 
both aetin and Arp3 proteins (Fig. 6). Ro4 is 65 % identical 
with eentraetin, 50-55 % identical with conventional actins, 
and ,~,38 % identical with members of the Arp3 family. In ad- 
dition, the Arp2 and Arp3 families differ from conventional 
actins in having insertions of amino acids at specific posi- 
tions while members of the Arpl family are nearly collinear 

with actin (Fyrberg et al., 1994). Based on this criteria and 
the sequence similarity between Ro4 and centractin, we con- 
elude that Ro4 is a member of the Arpl family (Fig. 6). As 
noted previously for centractin (Lees-Miller et al., 1992a), 
most residues that are required for aetin polymerization and 
binding of ATP and Ca z+ are conserved in Ro4 (Fig. 6), 
while residues thought to interact with the myosin head are 
not conserved. Centraetin has been identified as the major 
component of the Glued/dynactin complex, which is an acti- 
vator of cytoplasmic dynein-driven vesicle movement (Lees- 
Miller et al., 1992a). 

Discussion 

We showed previously that N. crassa cot-1 encodes a ser- 
ine/threonine protein kinase that is required for hyphal tips 
to elongate, but is not required for hyphal tips to form. In 
this study, we have shown that recessive mutations at eight 
different loci are able to partially suppress the effects of a 
cot-1 mutation and result in a ropy phenotype. The basis of 
this suppression is unknown, but it is unlikely that Cod ki- 
nase directly regulates cytoplasmic dynein activity because 
recessive mutations in multiple genes encoding subunits of 
cytoplasmic dynein or the Glued/dynactin complex can par- 
tially suppress a cot-1 defect. It is more likely that mutations 
resulting in decreased dynein activity partially bypass the 
need for Cod kinase. Microscopic analysis of a cot-1 mutant 
has led to the suggestion that cot-1 may be required for trans- 
port of precursors and enzymes, needed for cell wall synthe- 
sis, to hyphal tips (Steele and Trinci, 1977). If Coil kinase 
is a regulator of long-range transport of cell wall vesicles or 
a step in the secretory pathway, then it may be that a mutation 
affecting the endocytic pathway, as would be predicted for a 
cytoplasmic dynein mutant (Aniento et al., 1993), partially 
compensates for the loss of Cod kinase activity. Alterna- 
tively, a disruption in distribution of nuclei, as is seen in all 
of the ro mutants, may in some unknown way partially sup- 
press a cot-1 mutant. 

ro Mutants Define Genes Required for Cytoplasmic 
Dynein and Glued/Dynactin Complex Activity 

We have determined that ro-1 is a single-copy gene that en- 
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-525 ~CG~TCGAGGCCAGTCCGTCTGGATGTCGCGTCGTGTGCTACCAGAAAACATCCATCTCTGCGACCGGACGACTGACTGAC~TC~CGGCTATCCGATCTTG~GTCT~CGCAGAG 

-405 ACT~TC~CCTGTT~CCGAC~CCGTC~CCG~CCTGGA~CC~CC~ACGTCC~cA~AAAC~CCCAGCTGCTGGCAGAC~CCTCACAC~CACTCGATTTCcGCCTGGC~C 

-285 C~ACATCCT~ATTG~GACGATACACGATTGCAAACGACCACTACATA~CCCTTTCTG~TACT~AGGTCTTTGACCG~AC~CGGCCTACCACCG~GCCCACTCCCGCAG 

-165 AGACACG~GACCCTTGTCG~GCCTAGCCTTCACCCCGCCTCCGCGATTCTACGATAGCATCACCACCCACCGCTGGGACGGTTAGGTGGCAGCGACGGACAGCGGATAGCC~C~CA 

-45 ACC~ACATGTCCAC~TACGACCTACCC~TACATAC~C~C~T~CAGACTCT~GCAC~CGCGCCCA~GTGCTCGAC~TGGCTCGGGCACCATTCGCGCCGGCTTCGCGGGA 
M T D S L H N A P I V L D N G S G T I R A G F A G  

75 GACGACGTACCAAAATGCCACTTCCCCTCCTTCGTAGGGAGGCCAAAGCACCTACGAGTGCTGGCCGGCGCATTAGAAGGCGAGGTGTTTATCGGCCAAAAGGCGGCCTCAGAGTTGCGC 
D D V P K C H F P S F V G R P K H L R V L A G A L E G E V F I G Q K A A S E L R  

195 GGACTGCTC~GATCCGATATCCGCTGGAGCACGGCATCGTGACGGA~GGGACGATATGGAG~GA~TGGGCATATGTATACGATGAGGGG~G~GACGCTCAGTG~GAGG~CQT 
G L L K I R Y P L E H G I V T D W D D M E K I W A Y V Y D E G L K T L S E E  

315 TCTCCCATA~CTTTTGGTCAG~C~GA~~~CGGTA@~ACGGGTCC~CTGCTA~ATCCAGTCCTCCT~CCG~CCACCCCTC~CCCGCGCGCA 
H P V L L T E P P L N P R A  

435 ~CCGCGACACAGCCGCCCAGATCCTCTTCGAGACCTTC~CGTACC~CTCTCTACACCTCCATCC~GCCGTCCTGTCGCTCTACGCCTCGGGGCG~CGACAGGCGTGGTTCTCGAC 
N R D T A A Q I L F E T F N V P A L Y T S I Q A V L S L Y A S G R T T G V V L D  

555 TCGGGCGACGGTG~TCGCATGCCGTGCCCGTCTACCAGGGCTTCACCGTGCCC~CAGCATCCGGCGCATCGACGTCGCAGGGCGAGACGTGACCGAGTACCTGCAGACGCTGCTGCGC 
S G D G V S H A V P V Y Q G F T V P N S I R R I D V A G R D V T E Y L Q T L L R  

675 ~GAGCGGCTATGTG~CCATACGAGCGCTGAG~GGAGGTGGTCCGGCTGATCAAAGAGAGCGTCACGTACGTGGCGCACGATCCGCGCAAAGAGGAG~GGAGTGGGCGGCGGCC~G 
K S G Y V F H T S A E K E V V R L I K E S V T Y V A H D P R K E E K E W A A A K  

795 ATGGATCCGGCC~GATTGCCGAGTATGTCTTGCCGGATGGAAAC~GTTG~GGTA~GT~TATTCCTCTCCTGCCA~ACCAATGGCGTGAGGTTGGGAAAGAAAAAGAGACA 
M D P A K I A E Y V L P D G N K L K  

915 TCGATGCAGATAC~ACACCCACCAAA~TAGGAGCAGAGCGTTTCCGCGCCCCGGAAATCCTCTTCGACCCCGAGATTATCGGTCTCGAGTATCCCGGCGTGCACCAGATAGTGGTTGA 
I G A E R F R A P E I L F D P E I I G L E Y P G V H Q I V V D  

1035 CTCGATC~CCGGACAGACTTGGACCTGCGCAGGGAC~GTACTCCAACATTGTG~ATCCGGAGGCAGCACGCTCACA~GGGTTTCGGCGATCGCTTGCTCACGG~GTGCAG~GCT 
S I N R T D L D L R R D L Y S N I V L S G G S T L T K G F G D R L L T E V Q K L  

1155 CGCGGTT~GGACATGCGGATAAAGATTTTTGCGCCGCCGGAGAGG~GTACTCGACCTGGATCGGTGGTAGTAT~TGGCGGGTTTGAGCACATTTAG~AAGGTAT@~CTCACATTTG 
A V K D M R I K I F A P P E R K Y S T W I G G S I L A G L S T F R K  

1275 TCTCTGTGTTTGCGCGTGGACGAGAAGGAAACTTCGAAAAATGGGGCCATGATGTGTGCT~CAAATGTGTGACAATGAA~GATGTG~GTTAGCATTGACGACTGGCACGAG~TCCGG 
M W V S I D D W H E N P D  

1395 ATATCATCCATACG~G~TACATGATGATGATGATAACGAC~GACTTGGGGGAGCGAGCGAGCCGGAGAGC~G~ACACCGGTTGTCT~T~AC~ATCC~TTCACCGTACA 
I I H T K F T *  

Figu~ i ~ n o ~ c  DNA sequence ~ N cmssa m-4. The m-4 s ~ c m ~  ~ne is 380 e~ons 1o~ and is interrupt~ ~ three m~ns. 
+1 defines the A ~sidue ~ the p r e d i ~  ~s la f ion  ~ t i ~ o n  e~on ~r  ro-4. ~ e  5' and 3' ~ i ce  junctions and the m~rnal e o ~ e ~  
s~uenees ~r  each m ~ n  are m bold and it~ics ~ e h e z  ~ ~., 1~3~.  The 5' e ~  ~ ~ apparently ~l-length eDNA is indicted 
the arrow ~ e  the DNA ~ e n e e .  Three short open reading frames within the 374-bp 5' l~der region are mdi~t~. The ATG sequen~ 
imfia~g each uORF is undeflin~ and m bold, and the ~spective ~ansl~on ~rmination e~on ~r  each uORF is ~so m bold. Note ~ 
uORF1 ~ef l~s  uORF2 and uORF3 ~ef l~s  the p r e d i ~  ~ s l ~ o n  i~iafion e~on ~r  m-4. ~e se  sequence data are available from 
EMBL/~ank /DDBJ  u~er  accession number L31505. 

codes the heavy chain of cytoplasmic dynein and ro-4 en- 
codes an actin-related protein that is an apparent homologue 
of the vertebrate protein centractin, a member of the Arpl 
family. Recently, a centractin-like protein has been iden- 
tified in Pneumocystis carinii (GenBank accession number 
L21184). This protein is 75% identical to Ro4, 69% identi- 
cal to centractin, and has conserved 36 of the 42 residues that 
are specific to Ro4 and centractin. The high level of conser- 
vation between these three proteins relative to actin and other 
actin-related proteins suggests that they are homologues. 
Centractin has been determined to be the most abundant 
subunit of the Glued/dynactin complex, which is required 
for cytoplasmic dynein to efficiently transport vesicles along 
microtubules in vitro (Gill et al., 1991; Schroer and Sheetz, 
1991). The finding that recessive mutations affecting cyto- 
plasmic dynein or the Glued/dynactin complex exhibit the 
same phenotype provides the first genetic evidence that 
these two complexes are required for the same cellular pro- 
cess(es). 

All of the ro mutants are phenotypieally identical. We pro- 
pose that all genes encoding polypeptides that are non- 

redundant subunits of cytoplasmic dynein or the Glued/dy- 
nactin complex will give a ro phenotype when mutated. In 
addition, we also predict that regulatory genes that are re- 
quired specifically for expression of genes encoding dynein 
subunits, assembly of the cytoplasmic dynein and Glued/dy- 
nactin complexes, or regulation of dynein activity will also 
exhibit a ro phenotype when mutated. In support of this hy- 
pothesis, we have recently determined that the ro-3 gene en- 
codes an apparent homologue of p150 ~lu*~ which is the 
largest subunit of the Glued/dynactin complex (Plamann, 
M., P. F. Minke, J. H. Tinsley, and K. S. Bruno, unpublished 
observations). Therefore, the ability to isolate an unlimited 
number of ro mutants by the identification of partial suppres- 
sors of cot-1 should allow the genetic identification of all 
nonredundant genes that are specifically required for cyto- 
plasmic dynein or Glued/dynactin complex activity. How- 
ever, even if all genes that are specifically required for 
dynein activity give a ro phenotype when mutated, they may 
represent only a subset of all ro mutants. One of the most 
striking phenotypic effects of a ro mutation is the disruption 
of nuclear distribution. As stated above, if alteration of nu- 
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N.c. Ro4 ..M~LHNA 

Centractin MES~VIANQ 

Human-T ..MEEEI..A 
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81 
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aa 
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aaa 
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Figure 6. Comparison of the predicted amino acid sequence of Ro4 with human centractin, human cytoplasmic -y-actin, and the products 
of the act2 genes of bovine, Drosophila and S. pombe (Erba et al., 1986; Lees-Miller et al., 1992a,b; Tanaka et al., 1992; Fyrberg and 
Fyrberg, 1993). Alignments were made using the GCG program PILEUP. Dots that interrupt sequences indicate gaps that were introduced 
to maximize the alignment. Ro4 and centractin sequences that are boxed indicate specifically conserved residues. The residues in actin 
that interact with ATP and Ca +2 are indicated by the n's and ds below the sequence. The residues involved in actin-actin polymerization 
are indicated by the a's below the sequence (Holmes et al., 1990; Kabsch et al., 1990). 

clear distribution leads to partial suppression of cot-1 and the 
ro phenotype, then any mutation that alters nuclear distribu- 
tion will be identified as a ro mutant. One would expect that 
there exist genes that are required for nuclear distribution but 
are not required for cytoplasmic dynein activity. 

Nuclear Distribution and Hyphal Growth in N. crassa 
Cytoplasmic Dynein Mutants 

Cytoplasmic dynein has been proposed to be involved in 
retrograde transport of organelles in axons, the endocytic 
pathway, organiT~tjon of the Golgi and microtubule-depen- 

dent mitotic processes (Walker and Sheetz, 1993). Cytoplas- 
mic dynein mutants have now been constructed in S. 
cerevisiae and isolated in A. nidulans and N. crassa (Eshel 
et al., 1993; Li et al., 1993; Xiang et al., 1994). In S. 
cerevisiae, cytoplasmic dynein mutants are defective in 
orientation of the mitotic spindle, and in A. nidulans and N. 
crassa (filamentous fungi) cytoplasmic dynein mutants are 
defective in nuclear distribution. It is noteworthy that hyphal 
tips of N. crassa cytoplasmic dynein mutants are able to 
grow considerable distances (>200 #m) without nuclei. 
Transport of apical vesicles, containing precursors and en- 
zymes required for cell wall synthesis, to hyphai tips has 
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been proposed to be dependent on cytoplasmic microtubules 
(Gooday, 1983). We have determined that enudeate hyphae 
of ro mutants contain abundant cytoplasmic microtubules 
that extend from hyphal tips to the nearest clump of nuclei 
(Minke and Plamarm, unpublished observations). Therefore, 
the presence of cytoplasmic microtubules in enucleate 
hyphae and the absence or reduction of cytoplasmic dynein 
activity in ro mutants suggests that microtubule-dependent 
transport of apical vesicles does not require minus-end- 
directed cytoplasmic dynein activity. 

A Model for Establishment and Maintenance 
of  Nuclear Distribution in Filamentous Fungi 

In coenocytic fungi, nuclei are relatively evenly distributed 
(Fig. 2 A). The division of nuclei within each hypha is syn- 
chronized such that internuclear distances are at a minimum 
immediately after nuclear division and at a maximum just 
before nuclear division (Rosenberger and Kessel, 1967; 

O 0  ~ ^ ~ ~ ~ 0 0 ~  ,~. B J 

C ~ AVA~* 

D 

Figure 7. Model for the establishment and maintenance of nuclear 
distribution in coenocytic fungi. Cytoplasmic dyneins, represented 
by V-shaped structures, are proposed to cross-link antiparaUel cyto- 
plasmic microtubules that emanate from each SPB (MTOC). 
Minus-end directed motor activity of cytoplasmic dynein slides the 
microtubules across each other resulting in the generation of an at- 
tractive force between neighboring SPBs (see Discussion). Attrac- 
tive force between SPBs is indicated by arrows. SPBs are repre- 
sented by dark ovals associated with each nucleus (large open 
circles). For simplicity single cytoplasmic microtubules, repre- 
sented by lines with fast growing ends identified as (+), are shown 
extending out in each direction from each SPB. The base of each 
cytoplasmic dynein is anchored to one cytoplasmic microtubule 
while the motor heads contact an antiparallel cytoplasmic microtu- 
bule. A MTOC (dark oval) is proposed to be located at the tip of 
each hypha and serves to link the end SPB (nucleus) with the grow- 
ing tip (see Discussion). (A) As a hyphal tip extends, balanced 
force-generation between adjacent SPBs maintains equal inter- 
nuclear distances. (B) During mitosis, cytoplasmic microtubules 
break down. (C and D) After mitosis, cytoplasmic microtubules re- 
form and cytoplasmic dynein cross-links antiparallel microtubules. 
Note that nuclei that are close together have a smaller region of 
overlapping microtubules than nuclei that are far apart. Assuming 
an even distribution of cytoplasmic dynein per unit length of over- 
lapping cytoplasmic microtubule, there will be greater attractive 
force (larger arrows; C) between nuclei that are farther apart (see 
Discussion). Equilibrium is reached when nuclei are repositioned 
at approximately equal distances. 

Robinow and Caten, 1969; Morris, 1976). As a hyphal tip 
grows, nuclei migrate towards the tip while maintaining their 
position relative to each other. Nuclear migration has been 
zhown to be dependent upon microtubules (Oakley and 
Morris, 1980), and in this study we show that nuclear move- 
ment is also dependent upon cytoplasmic dynein (Fig. 2, B 
and C). We propose that nuclear distribution and movement 
could be maintained through the action of cytoplasmic 
dynein on cytoplasmic microtubules (Fig. 7). In our model, 
cytoplasmic microtubules radiate out from spindle pole bod- 
ies (SPB; a fungal microtubule-organizing center (MTOC) 
that is associated with each nucleus). For simplicity, we 
show a single microtubule extending in each direction from 
each SPB. Only cytoplasmic microtubules originating from 
adjacent SPBs (i.e., microtubules of opposite polarity) are 
cross-linked through the action of cytoplasmic dynein. Cyto- 
plasmic dynein anchors to one microtubule and the dynein 
motor heads exert force towards the minus-end of an an- 
tiparallel microtubule. Therefore, adjacent SPBs, and thus 
nuclei, will be pulled towards each other due to the motor 
activity of dynein. When nuclei enter mitosis (Fig. 7 B), cy- 
toplasmic microtubules disassemble (Gambino et al., 1984; 
Osmani et al., 1988, 1990; Salo et al., 1989), and after nu- 
clear division, cytoplasmic microtubules reform and nuclear 
positioning is re-established (Fig. 7, C and D). Assuming a 
uniform number of dynein motors per given length of over- 
lapping, antiparallel cytoplasmic microtubules, nuclei that 
are far apart will be more strongly pulled towards each other 
than nuclei that are close together, because they will have a 
larger region of overlapping cytoplasmic microtubules and 
hence more force-producing dynein motors drawing the two 
nuclei together. Equilibrium is achieved when internuclear 
distances are uniform. 

The generation of attractive force between adjacent nuclei 
requires that a string of nuclei be anchored at the hyphal tip 
and at the distal-end of the hypha. At the distal-end of a 
hypha, we propose a static tethering of the end nucleus to 
the cell membrane, a septum or a fixed component of the 
cytoskeleton. At the hyphal tip, we propose the existence of 
an anchored MTOC from which cytoplasmic microtubules 
originate. Cross-linking of these cytoplasmic microtubules 
by dynein with cytoplasmic microtubules originating from 
the SPB of the terminal nucleus would provide a means to 
link nuclear movement with tip extension and the distance 
between the tip of a hypha and a terminal nucleus would be 
maintained in the same manner described for adjacent 
nuclei. 

Our model for maintenance of nuclear distribution in 
filamentous fungi is based on a number of observations. The 
cross-linking function we are proposing for cytoplasmic 
dynein is analogous to the role of outer and inner arm dynein 
in the movement of flagella and cilia (Porter and Johnson, 
1989). In the axoneme, dyneins slide microtubules relative 
to each other by attaching to the A subfiber of one microtu- 
bule doublet and the respective motor heads "walk" along the 
B subfiber of an adjacent parallel microtubule in an ATP- 
dependent manner. We are proposing that in filamentous 
fungi, the attachment of cytoplasmic dynein to one microtu- 
bule restricts the motor heads to interact only with a 
microtubule of the opposite polarity, therefore, differing 
from axonemal dyneins. 

In the fungus Basidiobolus magnus, a single large nucleus 
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is present in each cell and the position of the nucleus relative 
to the hyphal tip is constant. Disruption of cytoplasmic 
microtubules with an ultraviolet light microbeam at any posi- 
tion anterior to the nucleus causes the nucleus to move back- 
wards, while disruption of cytoplasmic microtubules any- 
where posterior to the nucleus causes the nucleus to move 
forward (McKerracher and Heath, 1986). Analysis of cyto- 
plasmic microtubules surrounding the nucleus indicates that 
microtubules move with the nucleus as opposed to the nu- 
cleus moving with respect to microtubules or independently 
of microtubules. The conclusion of this study, that nuclear 
positioning is maintained by the action of opposing forces 
that are in equilibrium, is consistent with our model 
(McKerracher and Heath, 1986). 

As a part of our model, we propose that MTOCs are lo- 
cated at hyphal tips. In the fungus Uromyces phaseoli, 
repolymerization of cytoplasmic microtubules, following 
depolymerization with anti-tubulin agents, occurs first at the 
hyphal apex and not near the nuclei or SPBs, suggesting that 
a MTOC is located in the apical region of hyphae (Hoch and 
Staples, 1985). In the fission yeast S. pombe, examination 
of microtubule distribution during all phases of the cell cycle 
has led to the suggestion that non-SPB MTOCs are asso- 
ciated with the cell equator (Hagan and Hyams, 1988). The 
observation that y-tubulin (Oakley et al., 1990; Oakley, 
1992), a component of MTOCs, is also found to localize to 
the cell equator (Horio et al., 1991), in addition to the SPB, 
supports the hypothesis that non-SPB MTOCs are associated 
with the ends of fungal cells. 

While our model provides a possible mechanism for the 
maintenance of nuclear distribution during vegetative growth, 
fungal nuclei also exhibit directed movements during other 
phases of growth suggesting the requirement for other motor 
proteins. In S. cerevisiae, KAR3 encodes a kinesin-related 
protein required for nuclear fusion during mating (Meluh 
and Rose, 1990). A model has been proposed whereby Kar3 
cross-links antiparallel microtubules emanating from the 
SPBs of the two nuclei that will undergo karyogamy. Pre- 
dicted minus-end-directed motor activity of Kar3 is sug- 
gested to draw nuclei together through the sliding of anti- 
parallel microtubules in the same manner we have proposed 
for cytoplasmic dynein. 

Finally, the role of the Glued/dynactin complex in nuclear 
migration is unknown, ro-4 and ro-3 encode apparent homo- 
logues ofcentractin and Glued/dynactin (Plamann, M., P. E 
Minke, J. H. Tinsley, and K. S. Bruno, unpublished observa- 
tion), two subunits of the Glued/dynactin complex which has 
been proposed to stimulate the ability of cytoplasmic dynein 
to conduct microtubule-dependent organelle movement in 
vitro (Gill et al., 1991; Holzbaur et al., 1991; Lees-Miller 
et al., 1992a; Schroer and Sheetz, 1991). The observation 
that mutations affecting this complex have the same pheno- 
type as mutations affecting cytoplasmic dynein indicate that 
both complexes are required to maintain nuclear distribu- 
tion. We propose that cytoplasmic dynein is anchored to one 
microtubule and the dynein motor heads interact with an an- 
tiparallel microtubule. It is possible that the Glued/dynactin 
complex is required for either the establishment or main- 
tenance of the anchoring of dynein to one microtubule. In 
addition, if nuclear distribution is maintained as described, 
uniform spacing of dynein motors along microtubules may 
contribute to the efficiency of the process and it is possible 

that the Glued/dynactin complex could anchor cytoplasmic 
dynein to microtubules at discrete intervals. Analysis of ad- 
ditional ro genes and the interaction of their gene products 
will allow a better understanding of the cellular roles of cyto- 
plasmic dynein and the Glued/dynactin complex. 
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