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Abstract

Background: Classification algorithms assign observations to groups based on patterns in data. The machine-learning
community have developed myriad classification algorithms, which are used in diverse life science research domains.
Algorithm choice can affect classification accuracy dramatically, so it is crucial that researchers optimize the choice of
which algorithm(s) to apply in a given research domain on the basis of empirical evidence. In benchmark studies, multiple
algorithms are applied to multiple datasets, and the researcher examines overall trends. In addition, the researcher may
evaluate multiple hyperparameter combinations for each algorithm and use feature selection to reduce data
dimensionality. Although software implementations of classification algorithms are widely available, robust benchmark
comparisons are difficult to perform when researchers wish to compare algorithms that span multiple software packages.
Programming interfaces, data formats, and evaluation procedures differ across software packages; and dependency
conflicts may arise during installation. Findings: To address these challenges, we created ShinyLearner, an open-source
project for integrating machine-learning packages into software containers. ShinyLearner provides a uniform interface for
performing classification, irrespective of the library that implements each algorithm, thus facilitating benchmark
comparisons. In addition, ShinyLearner enables researchers to optimize hyperparameters and select features via nested
cross-validation; it tracks all nested operations and generates output files that make these steps transparent. ShinyLearner
includes a Web interface to help users more easily construct the commands necessary to perform benchmark comparisons.
ShinyLearner is freely available at https://github.com/srp33/ShinyLearner. Conclusions: This software is a resource to
researchers who wish to benchmark multiple classification or feature-selection algorithms on a given dataset. We hope it
will serve as example of combining the benefits of software containerization with a user-friendly approach.
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algorithm optimization; model selection

Background

Classification falls under the category of supervised learning,
a branch of machine learning. When performing classification,
researchers seek to assign observations to distinct groups. For
example, medical researchers use classification algorithms to
identify patterns that predict whether patients have a particu-
lar disease, will respond positively to a particular treatment, or
will survive a relatively long period after diagnosis [1–11]. Appli-
cations in molecular biology include annotating DNA sequenc-

ing elements, identifying gene structures, and predicting protein
secondary structures [12].

Typically, a classification algorithm is “trained” on a dataset
that contains samples (observations) from 2 or more groups, and
the algorithm identifies patterns that differ among the groups. If
these patterns are reliable indicators of group membership, the
algorithm will be able to accurately assign new samples to these
groups and thus may be suitable for broader application. Dif-
ferent research applications require different levels of accuracy
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before classification algorithms are suitable for broader applica-
tion. However, even small improvements in accuracy can pro-
vide large benefits. For example, if an algorithm predicts drug
treatment responses for 1,000 patients and attains accuracy lev-
els that are 2% higher than a baseline method, this algorithm
would benefit 20 additional patients. Accordingly, a key focus of
classification research in the life sciences is to identify general-
izable ways to optimize prediction accuracy.

The machine-learning community have developed hundreds
of classification algorithms and have incorporated many of
these implementations into open-source software packages [13–
18]. Each algorithm has different properties, which affect its
suitability for particular applications. In addition, most algo-
rithms require hyperparameters, which alter the algorithms’ be-
havior and can affect the algorithms’ accuracy dramatically. In
addition, feature selection (or feature-ranking) algorithms can
be used in complement to classification algorithms, helping to
identify combinations of variables that are most predictive of
group membership and aiding in data interpretation [19, 20].
With this abundance of options to consider, researchers face
the challenge of identifying which algorithm(s), hyperparameter
combinations, and features are optimal for a particular dataset.

To improve the odds of making successful predictions, re-
searchers should choose algorithms, hyperparameters, and fea-
tures based on empirical evidence rather than hearsay or anec-
dotal experience. Prior studies can provide insight into algo-
rithm performance, but few studies evaluate algorithms com-
prehensively, and performance may vary widely for different
types of data. One way to select these options empirically is via
nested cross-validation [21]. With this approach, a researcher di-
vides a single dataset into training and validation sets. Within
each training set, the researcher divides the data further into
training and validation subsets and then evaluates various op-
tions using these subsets. The top-performing option(s) are then
used when making predictions on the outer validation set. Al-
ternatively, a researcher might perform a benchmark study, ap-
plying (non-nested) cross-validation to multiple datasets from a
given research domain. After testing multiple algorithms, hyper-
parameters, and/or feature subsets, the researcher can examine
overall trends and identify options that tend to perform well [22,
23]. With either approach, it is ideal to evaluate a comprehen-
sive set of options. However, several challenges make it difficult
to perform such evaluations effectively:

� Researchers may wish to compare algorithms that have
been implemented in different software packages. Although
many machine-learning packages allow users to execute al-
gorithms programmatically, APIs are not standardized, and
they are implemented in diverse programming languages.

� Different software implementations use different techniques
for evaluating algorithm performance, so it is difficult to en-
sure that comparisons are consistent.

� Input and output formats differ by software implementation,
thus requiring custom efforts to prepare data and interpret
results.

� When installing the software, researchers typically must in-
stall a series of software dependencies. Installation require-
ments often differ by operating system, and versioning con-
flicts can arise [24].

To reduce these barriers, we created ShinyLearner. For this
open-source project, we have integrated existing machine-
learning packages into containers, which provide a consistent
interface for performing benchmark comparisons of classifica-
tion algorithms. ShinyLearner can be installed on Linux, Mac,

or Windows operating systems, with no need to install soft-
ware dependencies other than the Docker containerization soft-
ware. ShinyLearner currently supports 53 classification algo-
rithms and ≥1,300 hyperparameter combinations across these
algorithms; users can perform automatic hyperparameter tun-
ing via nested cross-validation. In addition, ShinyLearner sup-
ports 16 feature selection algorithms, enabling researchers to
reduce data dimensionality before performing classification (via
nested cross-validation). New algorithms can be integrated in an
extensible manner.

ShinyLearner is designed to be friendly to non-
computational scientists—no programming is required. We
provide a Web-based tool [25] to guide users through the pro-
cess of creating the Docker commands necessary to execute the
software. ShinyLearner supports a variety of input formats and
produces output files in “tidy data” format [26], thus making it
easy to import results into external tools. Even though other
machine-learning packages support nested cross-validation,
these evaluations may occur in a “black box.” ShinyLearner
tracks all nested operations and generates output files that
make this process transparent.

Below we describe ShinyLearner in more detail and illustrate
its use via benchmark evaluations. We evaluate 10 classification
algorithms and 10 feature selection algorithms on 10 biomedi-
cal datasets. In addition, we assess the effects of hyperparame-
ter optimization on predictive performance, provide insights on
model interpretability, and consider practical elements of per-
forming benchmark comparisons.

Methods

ShinyLearner (ShinyLearner, RRID:SCR 017608) encapsulates
open-source, machine-learning packages into Docker images
[27], which are available on Docker Hub [28]. Currently,
ShinyLearner supports algorithms from scikit-learn, Weka, mlr,
h2o, and Keras (with a TensorFlow backend) [13–15, 29–31]. To
facilitate user interaction, to harmonize execution across the
tools, and to evaluate predictive performance, ShinyLearner
uses shell scripts, Python scripts, R scripts, and Java code [32–34];
these are included in the Docker images. To perform an analysis,
the user executes a shell command, specifying arguments to in-
dicate the location(s) of the input files, which algorithms to use,
whether to perform Monte Carlo or k-fold cross-validation, etc.
The analysis is executed within a container, and output files are
saved to a directory that the user specifies. TensorFlow provides
support for execution on graphical processing units, which re-
quires a slightly different software configuration, so we provide a
separate Docker image that enables this feature [35]. All changes
to the ShinyLearner code are tested via continuous integration
[36]; build status can be viewed at [37].

Fig. 1 shows an example ShinyLearner command that a user
might execute. For convenience, and to help users who have lim-
ited experience with Docker or the command line, we created
a Web-based user interface where users can specify local data
paths, choose algorithms from a list, and select other settings
[25]. After the user has made these selections, the Web inter-
face generates a Docker command, which the user can copy and
paste; Windows command line, Mac terminal, and Linux termi-
nal commands are generated. We used the R Shiny (R Shiny,
RRID:CR 001626) framework to build this web application [38],
hence the name ”ShinyLearner.”

ShinyLearner interfaces with each third-party machine-
learning package via shell scripts that wrap around the soft-
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Figure 1: Example ShinyLearner command for performing a benchmark comparison. In this example, the user wishes to place output files in a directory located
at/home/user/OutputData. To avoid problems with file permissions, this directory should be created before Docker is executed. The Docker run command builds a
container and maps input and output directories from the host operating system to locations within the container (separated by colons). The –user directive indicates

that the container should execute using the executing user’s permissions. The name of the Docker image and tag name are specified (srp33/shinylearner: version511) as
well as the name of a ShinyLearner script that performs nested, Monte Carlo cross-validation (/UserScripts/nestedclassification montecarlo). The remaining arguments
indicate the name of the input data file, a description of the analysis, the number of Monte Carlo iterations, the classification algorithms, etc. ShinyLearner provides
documentation on each of these arguments as well as a Web application for building such commands dynamically.

ware’s API. For each algorithm, 1 shell script specifies the algo-
rithm’s default hyperparameters. In most cases, additional shell
scripts specify alternative hyperparameters. The classification
algorithms in ShinyLearner span methodological categories, in-
cluding linear models, kernel-based techniques, tree-based ap-
proaches, Bayesian models, distance-based methods, ensem-
ble approaches, and neural networks. In selecting algorithms
to include, we focused primarily on implementations that can
handle discrete and continuous data values, support multiple
classes, and produce probabilistic predictions. For each algo-
rithm, we reviewed documentation for the third-party software
and identified a representative variety of hyperparameter op-
tions. Admittedly, these selections are somewhat arbitrary and
inexhaustive. However, they can be extended with additional op-
tions. We excluded some algorithm implementations and hy-
perparameter combinations because errors occurred when we
attempted to execute them or because they failed to achieve rea-
sonable levels of classification accuracy on simulated data.

Additional algorithms (and hyperparameter combinations)
can be incorporated into ShinyLearner. The sole requirements
are that they have been implemented as free and open-source
software and provide an API (that can be executed via Linux
command line scripts). Users who wish to extend ShinyLearner
must:

1. Identify any software dependencies that the new algo-
rithm requires. If those dependencies are not currently in-
cluded in the ShinyLearner image, the user must modify the
ShinyLearner Dockerfiles accordingly.

2. Create bash script(s) that accept specific arguments and in-
voke the new algorithm.

3. Request that these changes be included in ShinyLearner via
a GitHub pull request.

ShinyLearner supports the following input data formats:
tab-separated value (.tsv), comma-separated value (.csv), and
attribute-relation file format (.arff). When tab-separated or
comma-separated files are used, column names and row names
must be specified; by default, rows must represent samples (ob-
servations) and columns must represent features (variables).
However, transposed versions of these formats can be used (fea-
tures as rows and samples as columns); in these cases, the user
should use “.ttsv” or “.tcsv” as the file extension. ShinyLearner
accepts files that have been compressed with the gzip algorithm
(using “.gz” as the file extension). Users may specify >1 data file
as input, after which ShinyLearner will identify sample identi-
fiers that overlap among the files and merge on those identi-
fiers. If the user specifies, ShinyLearner will scale numeric val-
ues, one-hot encode categorical variables [39], and impute miss-
ing values.

ShinyLearner supports 2 schemes for evaluating predictive
performance: Monte Carlo cross-validation and k-fold cross-
validation [40, 41]. In Monte Carlo cross-validation, the data are
split randomly into a training and validation set; the algorithm
is allowed to access the class labels for the training data only.
Later the algorithm makes predictions for the validation sam-
ples, and the accuracy of those predictions is evaluated using
various metrics. Typically, this process is repeated many times
to derive confidence intervals for the accuracy metrics. In k-fold
cross-validation, the process is similar, except that the data are
partitioned into evenly sized groups and each group is used as
a validation set through rounds of training and testing. When
multiple algorithms or hyperparameter combinations are used,
ShinyLearner evaluates nested training and validation sets, with
the goal of identifying the optimal combination for each algo-
rithm. Then it uses these selections when making predictions
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on the outer validation set. Nested cross-validation is also used
for feature selection; a feature selection algorithm ranks the
features within each nested training set, and different quanti-
ties of top-ranked features are used to train the classification
algorithm. The feature subsets that perform best are used in
making the outer validation set predictions. Hyperparameter
optimization and feature selection may be combined; however,
such analyses are highly computationally intensive for large
benchmarks.

All outputs are stored in tab-delimited files, thus enabling
users to import results directly into external analysis tools.
ShinyLearner produces output files that contain the following
information for each combination of algorithm, hyperparame-
ters, and cross-validation iteration: (i) predictions for each sam-
ple, (ii) classification metrics, (iii) execution times, and (iv) stan-
dard output, including a log that indicates the arguments that
were used, thus supporting reproducibility. When nested cross-
validation is performed, ShinyLearner produces output for every
hyperparameter combination that was tested in the nested folds
and indicates which combination performed best for each algo-
rithm.

ShinyLearner supports the following classification metrics:

� AUROC (area under the receiver operating characteristic
curve) [42]

� Accuracy (proportion of samples whose discrete prediction
was correct)

� Balanced accuracy (to account for class imbalance)
� Brier score [43]
� F1 score [44]
� False discovery rate
� False-negative rate
� False-positive rate
� Matthews correlation coefficient [45]
� Mean misclassification error
� Negative predictive value
� Positive predictive value
� Recall (sensitivity)
� True-negative rate (specificity)
� True-positive rate (sensitivity)

To calculate these metrics and to perform other data-
processing tasks, ShinyLearner uses the AUC [46], mlr [15],
dplyr [47], data.table [48], and readr [49] packages. For multi-
class problems, ShinyLearner allows the underlying machine-
learning packages to use whatever strategy they have imple-
mented for classifying with multiple classes. ShinyLearner then
calculates performance metrics in a one-versus-rest manner
and averages results across the class options.

When feature selection is performed, each algorithm pro-
duces a ranked list of features for each nested training set. To
aid the user in understanding which features are most informa-
tive, ShinyLearner aggregates these ranked lists using the ”Borda
count” method [50]. These aggregate rankings are stored in tab-
delimited output files.

The steps of preparing the data and executing ShinyLearner
for the results described in this article are in a Jupyter notebook
(see [51]). We used the ggplot2 and cowplot packages [52, 53] to
create figures.

Analyses

ShinyLearner enables researchers to perform classification
benchmark studies. To illustrate this functionality, we per-

formed 3 types of benchmark: (i) basic classification with default
hyperparameters, (ii) classification with hyperparameter opti-
mization, and (iii) classification with feature selection. For each
analysis, we used 10 classification algorithms:

� keras/dnn—Deep neural networks (implemented in
Keras/TensorFlow) [29, 31, 54]

� mlr/h2o.randomForest—Random forests (implemented in
mlr, h2o) [15,30]

� mlr/mlp—Multilayer perceptron (mlr) [55]
� mlr/xgboost—xgboost (mlr) [56]
� sklearn/decision tree—Decision tree (implemented in

scikit-learn) [13, 57]
� sklearn/logistic regression—Logistic regression with the

LIBLINEAR solver (scikit-learn) [58]
� sklearn/svm—Support vector machines (scikit-learn) [59]
� weka/HoeffdingTree—Hoeffding tree (implemented in

Weka) [14, 60]
� weka/MultilayerPerceptron—Multilayer perceptron (Weka)
� weka/SimpleLogistic—Simple logistic regression (Weka)

[61]

In the third analysis, we used 10 feature selection
algorithms:

� mlr/kruskal.test—Kruskal-Wallis rank sum test (mlr) [62]
� mlr/randomForestSRC.rfsrc—Permuted random forests

(mlr) [63]
� sklearn/mutual info—Mutual information (scikit-learn) [64]
� sklearn/random forest rfe—Random forests—recursive

feature elimination (scikit-learn) [65, 66]
� sklearn/svm rfe—Support vector machines—recursive fea-

ture elimination (scikit-learn) [66]
� weka/Correlation—Pearson correlation (Weka) [67]
� weka/GainRatio—Information gain ratio (Weka) [57]
� weka/OneR—OneR (Weka) [68]
� weka/ReliefF (Weka) [69]
� weka/SymmetricalUncertainty—Symmetrical uncertainty

(Weka) [70]

In each analysis, we used 5 rounds of Monte Carlo cross-
validation. For the second and third analyses, we used 3 rounds
of nested Monte Carlo cross-validation for each outer round of
cross-validation. In the third analysis, we evaluated the top-
ranked 1, 3, 5, 10, 15, 20, 50, and 200 features and identified the
best of these options via nested cross-validation. In evaluating
the results, we focused on AUROC because this metric can be
applied to probabilistic predictions and accounts for class im-
balance.

As an initial test, we generated a “null” dataset using numpy
[71]. We used this dataset to verify that ShinyLearner pro-
duces classification results in line with random-chance ex-
pectations when no signal is present. This dataset consisted
of 20 numeric variables (mean = 0, standard deviation = 1)
and 10 categorical variables across 500 simulated samples. AU-
ROC values for all classification algorithms were near 0.5, as
expected by random chance, irrespective of whether hyper-
parameter optimization or feature selection was performed
(Fig. S1).

Next, we collected 10 biomedical datasets from the Penn Ma-
chine Learning Benchmarks repository [72]:

� Acquired Immune Deficiency Syndrome (AIDS) categorical
data [73]

� Thyroid disease [57]
� Breast cancer [74]
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Figure 2: Classification performance per dataset (default hyperparameters). We evaluated the predictive performance of 10 classification algorithms on 10 biomedical
datasets. These results were generated using default hyperparameters for each algorithm. We measured predictive performance using area under the receiver operating
characteristic curve (AUROC) and calculated the median across 5 Monte Carlo iterations. Predictive performance differed considerably across and within the datasets.

� Dermatology [75]
� Diabetes
� Hepatitis [76]
� Iris [77]
� Liver disorder [78]
� Molecular biology (promoter gene sequences) [79]
� Yeast [80]

These datasets vary by number of samples (minimum =
51; maximum = 7,201) and number of features (minimum =
5; maximum = 172). For all datasets, we converted categor-
ical variables to multiple binary variables using one-hot en-
coding. When executing ShinyLearner, we scaled numeric val-
ues using scikit-learn’s RobustScaler, which subtracts the me-
dian and scales the data based on the interquartile range [81];
accordingly, this method is robust to outliers. In addition, we
used ShinyLearner to impute missing values; this method uses
the median for numeric variables and the mode for categorical
variables.

Classification analysis with default hyperparameters

Initially, we applied 10 classification algorithms to 10 biomed-
ical datasets using default hyperparameters. Most algorithms
made near-perfect predictions for the Thyroid, Dermatology,
and Iris datasets, whereas predictions were less accurate over-
all for the remaining datasets (Fig. 2). The weka/HoeffdingTree

and sklearn/decision tree algorithms often underperformed
relative to the other algorithms (Fig. S2). Indeed, for half
of the datasets, weka/HoeffdingTree performed as poorly or
worse than would be expected by random chance. The re-
maining 8 classification algorithms performed relatively well,
but predictive performance varied considerably across the
datasets (Fig. S3). For example, the AUROC for mlr/mlp and
sklearn/logistic regression was 0.07 higher than the median
on the AIDS dataset; the AUROC for sklearn/svm was 0.14 lower
than the median.

Across the Monte Carlo iterations for each dataset,
the predictive performance of sklearn/decision tree
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and weka/MultilayerPerceptron varied most, whereas
weka/HoeffdingTree varied least (in part because AU-
ROC was frequently 0.5) (Fig. S4). The keras/dnn and
mlr/h2o.randomForest algorithms took longest to execute,
whereas sklearn/svm and sklearn/logistic regression were
among the fastest (and most accurate) algorithms (Fig. S5).
Two pairs of classification algorithms use similar theoretical
approaches but were implemented in different machine-
learning libraries; multilayer perceptron was implemented in
Weka and mlr; logistic regression was implemented in Weka
and scikit-learn. The AUROC values were strongly—but not
perfectly—correlated between these pairs of implementations
(Figs S6 and S7). For both of these algorithms, the available
hyperparameters as well as options that users can select
are considerably different between the underlying machine-
learning libraries.

With the exception of sklearn/decision tree, all classifi-
cation algorithms produced sample-wise, probabilistic predic-
tions. We examined these predictions for the Diabetes dataset
and found that the range and shape of these predictions differed
widely across the algorithms (Fig. 3). Although many classifica-
tion metrics, including AUROC, can cope with distributional dif-
ferences, these differences must be considered in multiple clas-
sifier systems [82].

Classification analysis with hyperparameter
optimization

In the second analysis, we applied the same classification
algorithms to the same datasets but allowed ShinyLearner
to perform hyperparameter optimization via nested cross-
validation. As few as 2 (mlr/xgboost) and as many as 95
(sklearn/decision tree and weka/MultilayerPerceptron) hy-
perparameter combinations were available for each algorithm.
In nearly every example, classification performance improved
after hyperparameter optimization (Fig. 4), sometimes dramati-
cally. The performance improvements were most drastic for the
weka/HoeffdingTree and sklearn/decision tree algorithms,
which often performed poorly with default parameters.

ShinyLearner supports 53 hyperparameter combinations for
the keras/dnn algorithm. Each of these combinations altered
the algorithm’s performance at least to a small degree on ev-
ery dataset (Fig. S8). The Thyroid dataset varied least across the
hyperparameter combinations, perhaps because the number of
instances (n = 7,200) was nearly 10 times larger than any other
dataset. Generally, this algorithm performed better with a wider
architecture containing only 2 layers. Having a wider structure
greatly increases the parameter space of the network and allows
it to learn more complex relationships among features, while
limiting the network to only 2 layers prevents overfitting, a com-
mon problem when applying neural networks to datasets with
a limited number of instances. In addition, adding dropout and
L2 regularization also helps to prevent the network from overfit-
ting. In tuning these hyperparameters, we found that a smaller
dropout rate, more training epochs, and a smaller regulariza-
tion rate resulted in higher AUROC values (Fig. S9). Fig. S10 il-
lustrates for the Diabetes dataset that diagnosis predictions can
differ considerably, depending on which hyperparameter com-
bination is used.

Classification analysis with feature selection

In any dataset, some features are likely to be more informa-
tive than other features. We used ShinyLearner to perform fea-

ture selection (via nested cross-validation) before classification.
In total, we evaluated 100 unique combinations of feature se-
lection algorithm and classification algorithm (with default hy-
perparameters). In 44% of cases, feature selection increased
the median AUROC, whereas it decreased AUROC in 39% of
cases (Fig. 5). Feature selection sometimes improved the per-
formance of weka/HoeffdingTree and sklearn/decision tree,
which were the lowest performers without feature selection.

Fig. 6 illustrates the relative predictive ability of each com-
bination of feature selection and classification algorithms. The
mlr/randomForestSRC.rfsrc and sklearn/random forest rfe

algorithms performed best on average; both approaches use the
random forests algorithm to evaluate feature relevance. The
weka/OneR algorithm, which evaluates a single feature at a time
in isolation, performed worst. Across the datasets, the combi-
nation of mlr/randomForestSRC.rfsrc (feature selection) and
mlr/xgboost (classification) performed best. Perhaps surpris-
ingly, the combination of sklearn/svm rfe (feature selection)
and sklearn/svm (classification), which are both based on Sup-
port Vector Machines, was ranked in the bottom quartile.

In seeking to identify the most informative features,
ShinyLearner evaluated various quantities of top-ranked fea-
tures via nested cross-validation. Fig. 7 illustrates the relative
performance of each of these quantities on each dataset. In all
cases but 1, using 1 feature performed worst. Generally, a larger
number of features resulted in higher AUROC values. However,
more features sometimes decreased performance. For example,
on the Breast Cancer dataset, the highest AUROC values were
attained using 3 of 14 features.

ShinyLearner can inform users about which features are
most informative for classification. In the Dermatology dataset,
these feature ranks were highly consistent across the feature se-
lection algorithms (Fig. S11). The goal of this classification prob-
lem was to predict a patient’s type of erythematosquamous dis-
ease. Elongation and clubbing of the rete ridges, as well as thin-
ning of the suprapapillary epidermis, were most highly informa-
tive of disease type, whereas features such as the patient’s age
were less informative.

Discussion

The machine-learning community has developed an abundance
of algorithms and software implementations of those algo-
rithms. Life scientists use these resources for many research ap-
plications. But they face the challenge of identifying which algo-
rithms and hyperparameters will be most accurate and which
features are most informative for a given dataset. Many re-
searchers limit classification analyses to a single algorithm, per-
haps one that is familiar to them or that has been reported in
the literature for a similar study. Others may try a large num-
ber of algorithms; however, performing benchmark comparisons
in an ad hoc manner requires a considerable coding effort and
can introduce biases if done improperly. Alternatively, some re-
searchers may develop new algorithms without providing evi-
dence that these algorithms outperform existing ones. We de-
veloped ShinyLearner as a way to simplify the process of per-
forming classification benchmark studies.

ShinyLearner does not implement any classification or fea-
ture selection algorithm; rather, it serves as a wrapper around
existing software implementations. Currently, algorithms from
Weka, scikit-learn, mlr, h2o, and Keras are supported in
ShinyLearner. In aggregate, these algorithms represent a di-
verse range of methodological approaches and thus can support
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Figure 3: Sample-level predictions for each algorithm on the Diabetes dataset (default hyperparameters). The Diabetes dataset includes a class variable indicating
whether patients received a positive diagnosis. Each panel of this figure shows positive-diagnosis predictions for each classification algorithm. All algorithms except

sklearn/decision tree produced probabilistic predictions. The range and distribution of these predictions differed greatly across the algorithms.

comprehensive benchmark evaluations. On their own, each of
the third-party tools encapsulated within ShinyLearner provides
a way to optimize hyperparameters programmatically and per-
form feature selection. In addition, tools such as caret [17], KN-
IME [18], and Orange [83] provide these options. Thus, in situa-
tions where a researcher has programming expertise and is sat-
isfied with the algorithms and tuning functionality available in
one of those tools, the researcher might prefer to use these tools
directly rather than use ShinyLearner. ShinyLearner is most use-
ful when a researcher:

1. wishes to compare algorithms that have been implemented
in multiple machine-learning packages,

2. does not have programming expertise,
3. desires to perform complex operations via nested cross-

validation, such as evaluating different sizes of feature sub-
sets,

4. wishes to analyze algorithm performance using a tool or
programming language that is different than was used to
perform classification,

5. wishes to gain deeper insight into decisions made during
nested cross-validation, and/or

6. seeks to evaluate the tradeoff between predictive accuracy
and time of execution.

Although many of these tasks could be performed by a re-
searcher who has programming expertise, care must be taken
to ensure that the steps are performed in a robust manner (e.g.,
not mixing training and test sets in nested validation). In addi-
tion, we hope ShinyLearner will increase the efficiency of such
benchmark studies by reducing duplicate efforts.

ShinyLearner is limited to datasets that fit into computer
memory. For larger datasets, frameworks such as Apache Sys-
temML support distributed algorithm execution [84]; however,
the number of algorithms implemented in these frameworks is
still relatively small.

The current release of ShinyLearner supports diverse clas-
sification algorithms and hyperparameter combinations; how-
ever, this collection is far from exhaustive. Using ShinyLearner’s
extensible architecture, the research community can integrate
additional algorithms and hyperparameter combinations. In ad-
dition, algorithm designers can use our framework to compare
their algorithms against competing methods and disseminate
their algorithms to the research community.

Containers provide many advantages for software deploy-
ment. Tool installation and computational reproducibility are
easier because all software components are encapsulated within
the container, and container images can be archived and ver-
sioned [85]. One other benefit may be less apparent: container-
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Figure 4: Classification performance when optimizing vs not optimizing hyperparameters. We tested 10 classification algorithms on 10 biomedical datasets and used
nested cross-validation to select hyperparameters. To evaluate for change in predictive performance, we calculated the percent change in the median AUROC values

when using optimized vs default hyperparameters. Most algorithms demonstrated improved classification performance with optimized hyperparameters.

ization facilitates the use of diverse programming languages.
Distinct components of ShinyLearner are implemented in 4 dif-
ferent programming languages. We chose this approach because
we determined that each language was suited to specific types
of tasks. We posit that the future of bioinformatics development
will increasingly follow this pattern. Furthermore, we advocate
for the approach of providing a graphical user interface, such
as the Web-based tool we provided for ShinyLearner. Such tools
make it easier for users—especially those who have limited com-
mand line experience—to formulate Docker commands.

Our analysis of 10 biomedical datasets, 10 classification al-
gorithms, and 10 feature selection algorithms confirmed that
the choice of algorithm and hyperparameters has a consider-
able effect on classification performance and selected features.
Although some algorithms typically performed better than oth-
ers, no single algorithm consistently outperformed any other.
This finding supports the “No Free Lunch” theorem [86] and con-
firms that multiple classifier systems hold promise for aggregat-
ing evidence across algorithms [87]. Also importantly, algorithm

performance is likely to differ according to data characteristics.
Algorithms that perform well on “wide” datasets (many features,
few samples) may not perform as well on “tall” datasets. Algo-
rithms that perform well with numeric data may not perform as
well on categorical or mixed data. These differences highlight
the importance of domain-specific benchmark comparisons.

Finally, we offer recommendations regarding benchmark
comparisons. When performing benchmarks across multiple al-
gorithms and/or hyperparameters, it is important to exercise
caution in interpreting those results. Below are recommenda-
tions on performing benchmarks and interpreting such results:

� If you apply multiple algorithms or hyperparameter combi-
nations, you should always report those (e.g., in the Methods
section of a journal article). It is poor form to report only the
best results.

� After you have identified the best-performing algorithm
and/or hyperparameters, it is usually best to test those find-
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Figure 5: Classification performance when performing feature selection vs not performing feature selection. In combination with classification, we performed feature
selection via nested cross-validation on 10 biomedical datasets. For each algorithm, we used default hyperparameters. These plots show the percent change in the

median AUROC when using vs not using feature selection. Although the effects of feature selection varied across the algorithms, median AUROCs increased in many
cases.

ings on a completely independent dataset that was not used
in the benchmark comparison.

� Merely because an algorithm (or parameter) appears to work
well in one setting doesn’t necessarily mean that the same
will be true in alternate settings.

Availability of Source Code and Requirements
� Project name: ShinyLearner
� Project home page: https://github.com/srp33/ShinyLearner
� Operating system(s): Any operating system on which Docker

can be installed
� Programming languages: Java, Python, R, bash
� Other requirements: Docker (https://docker.com)
� License: MIT
� DOIs of Zenodo archives of GitHub repositories: 10.5281/zen-

odo.3543724, 10.5281/zenodo.3543726, 10.5281/zen-
odo.3543728, 10.5281/zenodo.3543730

The code for creating the figures in this article can be found
and re-executed in a Code Ocean capsule [88].

This tool has been registered at bio.tools (https://bio.tools/Sh
inyLearner) and at SciCrunch.org (ShinyLearner, RRID:SCR 01760
8).

Availability of Supporting Data and Materials

Archives of the GitHub repositories are available in Zenodo [89–
92]. Snapshots of all of the archives are also available in the Gi-
gaScience GigaDB repository [93].

Editor’s Note

A CODECHECK certificate for this paper is available confirming
that the figures in the paper could be independently reproduced
[94].

https://github.com/srp33/ShinyLearner
https://docker.com
https://bio.tools/ShinyLearner
https://scicrunch.org/resolver/RRID:SCR_017608
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Figure 6: Performance for each combination of classification and feature selection algorithm. This figure shows classification results for the nested cross-validation
folds across each combination of feature selection algorithm and classification algorithm. Averaged across all datasets and classification algorithms, we ranked the
feature selection algorithms based on AUROC values attained for nested validation sets. For simplicity and consistency across the datasets, this figure shows only the

results when the top 5 features were used. Higher average ranks indicate better classification performance.

Additional Files

Figure S1: Classification performance on the “null” dataset. To
verify ShinyLearner’s functionality, we randomly generated a
“null” dataset and applied 3 types of analysis to the data. In the
Basic analysis, default hyperparameters were used for each algo-
rithm. In the second analysis, we used the same algorithms but
used nested cross-validation to select hyperparameters. In the
third analysis, we performed feature selection via nested cross-
validation. For each analysis, area under the receiver operating
characteristic curve (AUROC) was consistently close to 0.5, as ex-
pected by random chance. The vertical, dotted lines on the left
represents an AUROC of 0.5; the dotted lines on the right repre-
sent an AUROC of 1.0 (perfect predictions).
Figure S2: Classification performance per algorithm relative to
other classification algorithms (default hyperparameters). We
evaluated the predictive performance of 10 classification algo-
rithms on 10 biomedical datasets. These results were gener-
ated using default hyperparameters for each algorithm. For each
dataset, we calculated the AUROC for each algorithm relative
to the median across all algorithms. The weka/HoeffdingTree
and sklearn/decision tree algorithms underperformed in com-
parison to the other algorithms.
Figure S3: Consistency of results across datasets for each algo-
rithm (default hyperparameters). We evaluated the consistency
of area under the receiver operating characteristic curve (AU-
ROC) values for each algorithm across the datasets. After calcu-
lating the median AUROC across Monte Carlo iterations, we cal-

culated the coefficient of variation (expressed as percentages)
across the datasets. The weka/HoeffdingTree algorithm varied
most across the datasets, while sklearn/logistic regression var-
ied least.
Figure S4: Consistency of results across Monte Carlo iterations
for each algorithm (default hyperparameters). We evaluated the
consistency of area under the receiver operating characteristic
curve (AUROC) values across Monte Carlo iterations within each
dataset and then calculated the median across the datasets for
each algorithm. These values are coefficients of variation (ex-
pressed as percentages). The weka/HoeffdingTree algorithm var-
ied least, while sklearn/decision tree varied most.
Figure S5: Relationship between execution time and predictive
performance per classification algorithm. Across 10 biomedi-
cal datasets, execution time and area under the receiver oper-
ating characteristic curve (AUROC) differed considerably. Each
point represents the median value across all datasets for a sin-
gle Monte Carlo iteration. We observed little to no association
between execution time and predictive performance. Some of
the best-performing algorithms were also quite fast.
Figure S6: Comparison of classification performance between
2 implementations of the multilayer perceptron algorithm (de-
fault hyperparameters). We evaluated the predictive perfor-
mance (area under the receiver operating characteristic curve)
for 2 implementations of the multilayer perceptron classifica-
tion algorithm. We compared implementations from the weka
and mlr software packages. Predictive performance was highly
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Figure 7: Median classification performance of feature selection algorithms by number of features. We applied feature selection to each dataset, in combination with
each of the 10 classification algorithms. For each algorithm, we selected the top x number of features and averaged across each combination of feature selection and
classification algorithm. This figure shows which values of x resulted in the highest AUROC values for each dataset. Different datasets had different quantities of

features; this graph only shows results for x values relevant to each dataset. Accordingly, we scaled the AUROC values in each column between 0 and 1 to ensure that
the comparisons were consistent across all datasets. Higher values indicate better classification performance. Generally, a larger number of features resulted in better
classification performance, but this varied across the datasets.

consistent but not identical. We used the Pearson method to cal-
culate the correlation coefficient.
Figure S7: Comparison of classification performance between
2 implementations of the logistic regression algorithm (default
hyperparameters). We evaluated the predictive performance
(area under the receiver operating characteristic curve) for 2 im-
plementations of the logistic regression classification algorithm.
We compared implementations from the weka and scikit-learn
(sklearn) software packages. Predictive performance was highly
consistent but not identical. We used the Pearson method to cal-
culate the correlation coefficient.
Figure S8: Performance of different hyperparameter combina-
tions for the keras/dnn classification algorithm. We evaluated
predictive performance for the keras/dnn algorithm using 53
different hyperparameter combinations. Each dataset was af-
fected by the combinations to some degree. The Thyroid dataset
demonstrated the least variability, possibly due to its large num-
ber of instances. Relatively cool colors indicate hyperparameter
combinations that result in relatively worse performance rela-
tive to default hyperparameters, whereas warmer colors indi-
cate the opposite.
Figure S9: Effect of changing different hyperparameters on per-
formance of the keras/dnn algorithm. We evaluated predictive
performance for the keras/dnn algorithm using 53 different hy-
perparameter combinations. The level of performance varied
depending on the hyperparameter combination used. Generally,
AUROC values increased when using a smaller dropout rate,
more training epochs, a wider layer structure, and a smaller reg-
ularization rate.

Figure S10: Probabilistic predictions of positive diagnosis for pa-
tients in the Diabetes dataset for different hyperparameter com-
binations. The Diabetes dataset includes a class variable indi-
cating whether patients received a positive diagnosis. This fig-
ure shows probabilistic predictions of a positive diagnosis for
3 patients with diabetes; the predictions were made using the
keras/dnn algorithm. Each line represents prediction probabil-
ities across different hyperparameter combinations for each of
the 3 patients with diabetes.
Figure S11: Rankings of each feature in the Dermatology dataset
for each feature selection algorithm. In this example, 10 fea-
ture selection algorithms were applied to the Dermatology
dataset. Each cell represents the average rank of each feature
across nested cross-validation folds. Lower average ranks in-
dicate greater relevance of the feature to the class variable
(the patient’s type of erythematosquamous disease). The aver-
age ranks were largely consistent across the feature selection
algorithms.
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