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Abstract: Leaf senescence is the final stage of leaf development. It is accompanied by the remobilization
of nutrients from senescent leaves to developing organs. The occurrence of senescence is the
consequence of integrating intrinsic and environmental signals. DNA damage triggered by stresses
has been regarded as one of the reasons for senescence. To prevent DNA damage, cells have
evolved elaborate DNA repair machinery. The ataxia telangiectasia mutated (ATM) functions as
the chief transducer of the double-strand breaks (DSBs) signal. Our previous study suggests that
ATM functions in lifespan regulation in Arabidopsis. However, ATM regulatory mechanism on plant
longevity remains unclear. Here, we performed chemical mutagenesis to identify the components
involved in ATM-mediated longevity and obtained three dominant mutants satmf1~3, suppressor of
atm in fertility, displaying delayed senescence and restored fertility in comparison with atm mutant.
Molecular cloning and functional analysis of SATMF (suppressor of atm in fertility) will help to
understand the underlying regulatory mechanism of ATM in plants, and shed light on developing
new treatments for the disease Ataxia-telangiectasia.
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1. Introduction

Leaves are the primary photosynthetic organs that use the photosynthetic system to fix CO2 to
produce carbohydrates, thus providing energy for plant growth and development [1]. Leaf senescence
is an inevitable physiological process, accompanied by the nutrient remobilization from senescent
leaves to young leaves or other developmental organs [2–4]. Although leaf senescence is a genetically
controlled process, it can be induced by various endogenous and environmental stresses [4–10].

Cells have evolved elaborate DNA repair machinery to prevent DNA damage. A growing
body of evidence indicates that the loss of DNA damage repair induces premature senescence in
animals and plants [11,12]. Paradoxically, DNA repair can itself be subject to age-related changes
and deterioration [13]. DNA damage repair efficiency also changes during aging, which influences
mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER), and double-strand
break (DSB) repair. Most of the evidence supporting DNA damage-induced senescence comes from
the fact that mutations in genes involved in DNA repair lead to multiple premature aging symptoms,
supporting the idea that the balance between DNA damage and repair determines the rate of aging [13].
For example, WRN protein, mutated in Werner syndrome (WS) characterized by premature aging in
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young adults, is involved in both homologous recombination (HR) and non-homologous end joining
(NHEJ) pathways [14]. Mutation in Lamin A causes Hutchinson Gilford progeria syndrome (HGPS)
and also impairs HR [15]. Loss-of-function of the ATM (ataxia telangiectasia mutated) shortens lifespan
due to cancer and ischemic heart disease [16,17], and ATM has been reported to be a potential target for
alleviating senescence through regulating lysosomal acidification [18]. In eukaryotes, the initial stages
of the response to DNA damage are governed by two closely related protein kinases, ATM and ATR
(ATM- and RAD3-related) [16]. ATM is activated by auto/transphosphorylation in response to DSBs
and leads to the activation of cell cycle checkpoints, DNA repair or apoptosis, while ATR is generally
activated by persisting single-stranded DNA breaks (SSBs) [16,19].

Like other eukaryotes, plants have the orthologs of ATM/ATR [20,21]. Functional analyses of ATM
or ATR by using knockout mutants reveal that they display overlapping and distinct roles in regulating
plant development and in response to DNA damage. Compared with atr mutants, the atm mutants in
Arabidopsis are supersensitive to DSB-inducing agents such as methyl methane sulphonate (MMS) or
γ-irradiation [22]. Reverse genetic screening revealed that loss of ATM function by T-DNA insertion or
application of a specific kinase inhibitor promotes DSBs-induced and age-dependent leaf senescence,
suggesting that ATM is functionally conserved in animals and plants [12]. Moreover, DSBs-regulated
genes were overlapped with age-regulated genes, indicating that DSBs induce similar changes on
transcript profile with the natural senescence process [12], further supporting the regulatory role of
DSBs in aging [11,23].

Our previous work revealed that DSBs increase and DNA repair efficiency decreases as a leaf is
aging, and DSBs alone could induce premature senescence, demonstrating the correlation between
DSBs and leaf senescence. The PI3K-like protein kinase ATM is involved in repairing age-dependent
DNA damage, and the deficiency in ATM resulted in early senescence [12]. Nevertheless, how ATM
regulates leaf senescence is still unclear. In this study, we generated transgenic plants overexpressing
ATM, which suppressed the early senescence phenotypes of atm mutant. To identify the components
involved in ATM-mediated longevity, we performed chemical mutagenesis by treating atm seeds with
ethyl methanesulfonate (EMS) [24], and obtained three suppressor lines (samtf1~3, suppressor of atm
in fertility), which displayed delayed senescence phenotypes upon treatment with bleomycin (BLM),
an inducer of DSBs. Molecular cloning and functional analysis of SATMF (suppressor of atm in fertility)
will contribute to understanding the underlying mechanism of ATM in leaf senescence.

2. Results and Discussion

2.1. Overexpression of ATM Delays Leaf Senescence

Our previous study showed that ATM expression levels decrease as leaf aging and loss-of-function
of ATM accelerates leaf senescence process [12]. To further assess whether the expression of ATM
mRNA is due to transcriptional regulation, we generated transgenic Arabidopsis plants expressing
a GUS (β-glucuronidase) gene driven by the ATM promoter containing a 3 kb fragment upstream
of the start codon (pATM:GUS/Col-0). GUS staining of 8-, 16- and 48-d-old pATM:GUS/Col-0 plants
showed higher GUS staining in young leaves than in mature or old leaves (Supplementary Figure S1),
indicating that ATM transcription declines during plant leaf aging.

We next tested whether constitutive overexpression of ATM could delay leaf senescence.
Towards this end, we generated a transgenic line overexpressing ATM under the control of the
35S promoter in Col-0 and atm backgrounds, respectively. Interestingly, we found that overexpression
of ATM in wild-type Col-0 background (35S:ATM/Col-0) caused gene co-suppression (~75%), leading
to atm-like senescence phenotypes, which is not observed in 35S:ATM/atm plants. We examined the
senescence phenotypes of the atm and 35S:ATM/atm at different developmental stages. Overexpression
of ATM restored multiple abnormal phenotypes of atm mutants, such as small leaves (Figure 1A),
slightly early flowering (Figure 1B), and premature leaf senescence (Figure 1C). Compared with Col-0,
rosette leaves of the 40-d-old atm mutant exhibited severe yellowing, whereas 35S:ATM/atm leaves
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remained green, suggesting further that ATM is a negative regulator of leaf senescence [12]. We next
performed a detailed examination of senescence phenotypes in the third and fourth leaves of wild-type
Col-0, atm and 35S:ATM/atm plants. Photochemical efficiency of photosystem II (PSII, Fv/Fm) and
chlorophyll contents in atm leaves were significantly less than that in Col-0 and 35S:ATM/atm leaves
(Figure 1D,E). In contrast, expression of senescence-associated gene 12 (SAG12), a senescence marker
gene, in the atm mutant was more dramatically induced in comparison with Col-0 and 35S:ATM/atm
(Figure 1F). Together, these results suggest that overexpression of ATM delays leaf senescence.

Figure 1. Overexpression of ATM (ataxia telangiectasia mutated) suppresses the early senescence
phenotypes of atm mutant. (A) Rosette leaves of 18-day-old plants of Col-0, atm-2 and 35S-ATM/atm-2.
(B) Overexpression of ATM suppresses the early flowering phenotype of atm-2 mutant under long-day
conditions (18 L/6 D). (C) Senescence phenotypes of 40-day-old plants of Col-0, atm-2 and 35S-ATM/atm-2.
(D–F) Photochemical efficiency of PSII (Fv/Fm) (D), chlorophyll contents (E), and qRT-PCR analysis
of SAG12 expression (F) in the third and fourth leaves of 35-day-old plants of Col-0, atm-2 and
35S-ATM/atm-2. Three biological replicates were performed. Error bars represent standard deviation
(SD, n = 24 for D and E; n = 3 for F). Student’s t test, * p < 0.05, ** p < 0.01 and *** p < 0.001.

2.2. A Genetic Screen of atm Mutant Suppressors

The above data demonstrate that ATM functions as a negative regulator of leaf senescence.
However, how ATM regulates leaf senescence is still unknown. To identify the components involved in
ATM-mediated plant longevity, we performed forward genetic screens to identify the suppressors of atm
mutant. Loss of ATM function causes multiple phenotypes, including early flowering, early senescence,
decreased fertility, and increased plant height (Supplementary Figure S2A). Given that numerous
environmental stresses such as shade or drought accelerate leaf senescence [4], while the fertility
phenotype is relatively stable and easy to observe, we sought to identify the suppressors with
restored fertility but not restored senescence phenotypes, termed as suppressor of atm in fertility (satmf ).
We assumed that the premature leaf senescence phenotypes of atm were suppressed along with the
restoration of fertility. To this end, we carried out chemical mutagenesis by treating the seeds of
wild-type Arabidopsis Col-0 and atm mutant with EMS [24]. Given that atm mutant is more sensitive to
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DNA-damage reagents such as EMS than wild-type Col-0 [20], seeds of Col-0 and atm-2 were treated
with serial concentrations of EMS (0.2% for 15 h, 0.3% for 12 h, and 0.4% 10 h) to seek for the optimal
mutagenesis conditions (Supplementary Figure S2B). We found that mutagenesis with 0.3% EMS for
12 h was suitable for atm seeds, which slightly affected seed germination (Supplementary Figure S2C),
but produced various traits.

The model plant Arabidopsis has been widely used for forward genetic screening due to its short
lifecycle, relatively little genome and abundant genetic resources [25–27]. In Arabidopsis, the genetic
screening of mutants is first to mutate seeds through chemical (EMS), physical (fast neutron) or
T-DNA insertional (activation tagging) mutagenesis, and then identify the mutants with expected
phenotypes in M1/T1 or M2/T2 generation [28]. Plants with dominant mutation display phenotypes
in M1 generation, and recessive mutations in M2 generation. However, most of the mutations cause
no evident phenotypic changes due to genetic redundancy or inappropriate screening conditions [9].
Here, we found three fertility restored lines in the M1 generation, named satmf1, satmf2 and satmf3
(Figure 2A and Supplementary Figure S3A), suggesting that these mutants are caused by dominant
mutations. To rule out the possibility of seed contamination, we firstly performed the genotyping
analysis by using atm specific primers (Supplementary Table S1), and found that satmf1~3 are in atm
mutant background (Supplementary Figure S3B). In order to further confirm their genetic backgrounds,
the PCR products were mixed and used for sequencing, and we found, indeed, that satmf1~3 are in an
atm background (Supplementary Figure S3C,D). Therefore, the homozygous mutants of satmf1~3 were
used for the subsequent phenotypic analysis.

Figure 2. SATMF suppresses the early senescence phenotypes of atm mutant and improves its fertility.
(A) Rosette leaves of 22-day-old plants of Col-0, atm-2, satmf1, satmf2 and satmf3. (B) Fertility of Col-0,
atm-2, satmf1, satmf2 and satmf3 plants. Silique length (C), Number of seeds per silique (D), Senescence
phenotypes (E) of 40-day-old plants of Col-0, atm-2, satmf1, satmf2 and satmf3. (F) Photochemical
efficiency of PSII (Fv/Fm) and chlorophyll contents (G) in the third and fourth leaves of 35-day-old
plants of indicated genetic backgrounds. Different letters represent significant differences (two-way
ANOVA and post-hoc Tukey test, p < 0.05).
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2.3. SATMF Suppresses the Early Senescence Phenotypes of atm Mutant and Improves Its Fertility

To evaluate the effects of SATMF on restoring atm fertility and leaf senescence, we analyzed
silique length, number of seeds per silique, the size of seeds, and rosette leaves of atm and satmf1~3.
Gain-of-function of SATMF suppressed the early flowering phenotype of atm mutant (Figure 2A),
and satmf1~3 plants had longer siliques (Col-0, 10.46 ± 1.33 mm; atm, 7.05 ± 1.09 mm; satmf1,
10.44 ± 0.93 mm; satmf2, 10.23 ± 1.68 mm; satmf3, 10.56 ± 1.62 mm) (Figure 2B,C), and more seeds per
silique (Col-0, 42.68 ± 6.32; atm, 7.83 ± 4.8; satmf1, 41.46 ± 9.13; satmf2, 42.23 ± 5.58; satmf3, 42.54 ± 8.45)
(Figure 2D), indicative of the restored fertility. As expected, the premature leaf senescence of the atm
mutant was repressed in satmf1~3 (Figure 2E) with higher levels of PSII Photochemical efficiency
(Fv/Fm) and chlorophyll contents (Figure 2F,G). The above data suggest that the gain of function of
SATMF effectively restores the abnormal traits of atm mutant.

Although Arabidopsis is traditionally regarded as a key model organism for plant biology, it is
increasingly clear that Arabidopsis is an important tool for us to understand the molecular mechanisms
underlying human diseases [25,29]. A comparison of the annotated Arabidopsis and human genome
sequences shows that there is also a high proportion of genes related to human diseases in Arabidopsis [25],
including ATM (Supplementary Table S2). Although Arabidopsis and humans diverged 1.6 billion years
ago, relatively recent studies have shown that protein functions and cellular processes are unexpectedly
conserved between these distant species [30]. The use of Arabidopsis has elucidated many discoveries
directly related to human health and disease [29]. In particular, Arabidopsis has been used to dissect
cellular processes related to neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s
disease, and Friedrich ataxia [29]. The molecular cloning and functional analysis of SATMF will help
to understand the potential regulatory mechanism of ATM in plants, and may also provide a reference
for developing new treatments for the disease Ataxia-telangiectasia (A-T).

2.4. Gain-of-Function of SATMF1~3 Restores the DSB Repair Efficiency in atm Background and Delays
DSBs-Induced Leaf Senescence

The above-reported data demonstrate dominant mutations of SATMF1~3 significantly improve
the fertility compared with atm mutant, which prompted us to examine whether SATMF1~3 restored
the DNA repair capacity in atm background. To this end, a comet assay was performed in 8-d-old third
and fourth leaves of Col-0, atm and satmf1~3 plants before and after treatment with bleomycin (BLM)
(Figure 3A), an inducer of DSBs [31]. A time-course analysis of DNA repair kinetics revealed that BLM
treatment led to a sharp increase in DSBs that were efficiently repaired in 8-d-old leaves of Col-0 and
satmf1-3 but not in atm mutant (Figure 3B), suggesting that DNA repair capacity for DSBs was efficiently
restored by the gain of SATMF1~3 function. To confirm this observation, we detected the DSBs levels
in 20-d-old leaves of Col-0 and satmf1~3 mutants. Accumulation of DSBs was evidently increased as
leaves aged compared with 8-d-old leaves in Col-0 (p < 0.05). Higher levels of DSBs were found in
20-d-old leaves of atm in comparison with that in the leaves of Col-0 and satmf1~3 (p < 0.05), while no
significant difference was observed between Col-0 and satmf1~3 mutant (Figure 3C), suggesting that
SATMF1~3 efficiently suppress age-induced accumulation of damaged DNA.

To investigate the roles of SATMF1~3 in DSB-induced leaf senescence, the detached leaves of
Col-0, atm and satmf1~3 were treated with 1 µg/mL BLM. The decline in the photochemical efficiency
of PSII (Fv/Fm) upon treatment with BLM in atm leaves was more pronounced than that in Col-0 and
satmf1 leaves (Figure 3D). A slightly but non-significantly higher level of Fv/Fm was observed in satmf1
compared to Col-0 at the same time points. These data suggest that SATMF1 plays an important role in
suppressing DSB-induced leaf senescence.
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Figure 3. SATMF restores the DSB repair efficiency in atm-2 background and delays DSBs-induced leaf
senescence. (A) Experimental schematic of evaluation of DNA repair ability in satmf1~3 by comet assay.
The 8-d-old third and fourth leaves of Col-0, atm-2 and satmf1~3 upon treatment with 10 µg/mL BLM for
1 h were allowed to repair for 0, 20, 40, or 60 min, respectively, and used for comet assay. (B) Comet assay
of the repair kinetics of the DSBs caused by BLM in the leaves in (A). Mean percentage of DNA in the
tail at various recovery times after treatment was examined by comet assay. Three biological replicates
were performed (mean ± S.D.). Different letters represent significant differences (two-way ANOVA
and post-hoc Tukey test, p < 0.05). (C) Comet assay of DSBs levels in the third and fourth leaves of
20-d-old Col-0, atm-2 and satmf1~3 plants, evaluated as the mean percentage of DNA in the comet
tail. Values shown represent the mean of three independent trials ± S.D. Student’s t-test, * p < 0.05
(D) Photochemical efficiency of PSII (Fv/Fm) in the leaves of Col-0, atm-2, satmf1 plants upon treatment
with 1 µg/mL BLM for up to 5 d. Values shown represent the mean of three independent trials ± S.D.
Student’s t-test: * p < 0.05; *** p < 0.001.

2.5. The ATM Loss-of-Function Mutant is Useful for Functional Genomics Research in Arabidopsis

During the process of screening suppressors, we not only obtained the fertility-restored suppressors
of atm mutant, but also found that the M1 plants derived from mutagenized atm seeds displayed
more abundant phenotypes than that of Col-0. One of the mutants displayed longer petiole and
hypocotyl than atm, reminiscent of Arabidopsis phytochrome (phy)-related mutants (Figure 4A,B).
Sequencing analysis of genotyping PCR product revealed that a point mutation occurred in PHYA gene
(Supplementary Figure S4), leading to a dominant negative (DN) phenotype (Figure 4A,B). We used
these seeds to screen for ethylene-insensitive mutants and showed that more mutants were obtained in
atm-2 background.

Given that ATM is an important component in DNA repair, DNA damage caused by alkylating
agents such as EMS will cause more mutation in ATM loss of function mutant [32]. Damaged DNA can
be repaired through multiple pathways, including direct repair by methylguanine methyl transferase
(MGMT) and BER, or MMR (Figure 4C). If unrepaired, the methylguanine (MeG) preferably mispairs
with T during DNA replication leading to transitions from G:C to A:T (Figure 4C) [32]. Phosphorylation
of ATM activates MeG-dependent DNA damage response. MeG lesions induce sister chromatid
exchanges (SCE) and chromosomal aberrations via MMR-dependent pathway in the second cell
cycle [32]. The gaps and nicks are generated during this phase and can form DSB that are handled by
ATM-mediated homologous repair. While loss of ATM function, cells become “methylation-tolerant”
accumulating mutations and escape cell death in the presence of unrepaired MeG, leading to generation
of seeds with more mutated sites (Figure 4C). Collectively, our data suggest that atm mutant is a
valuable tool for functional genomics research.
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Figure 4. ATM loss-of-function mutants can be used to produce genetic materials in Arabidopsis.
(A) Identification of a dominant negative (DN) mutant phyA-DN in EMS-treated atm mutant.
After sowing, the petri dish with the seeds is placed at 4 ◦C for 3 days, and cultivated in a greenhouse
at 22 ◦C for 5 days (18 L/6 D). (B) Measurement of hypocotyl length of the indicated seedlings.
Different letters represent significant differences (two-way ANOVA and post-hoc Tukey test, p < 0.05).
(C) Schematic representation of usage of atm for generating genetic materials.

3. Materials and Methods

3.1. Plant Materials and Growth Conditions

All the Arabidopsis plant materials used in this study were in the Col-0 background. Plants were
grown in an environmentally controlled growth room under long-day conditions (16 L/8 D) at 22 ◦C
and 65% relative humidity.

3.2. Plasmid Construction and Generation of Transgenic Plants

To generate 35S:GFP-ATM/Col-0, the full-length ATM CDS sequence was amplified and then
inserted into pEGAD vector [33]. To construct ProATM:GUS/Col-0, a 3 kb genomic promoter sequence
was amplified and inserted into pBI101 vector [34]. The amplified fragments were inserted into
respective vectors by using the in-fusion enzyme (TAKARA, Shiga, Japan). All constructs were
transformed into Agrobacterium tumefaciens cells (strain GV3101) which was used to transform Col-0
plants by the floral dip method [35]. All primer sequences used here are listed in Supplementary
Table S1.

3.3. Assays of Age-Dependent and Bleomycin-Induced Leaf Senescence

To assess age-dependent leaf senescence, third and fourth rosette leaves were harvested from
40-d-old plants. For bleomycin (BLM)-induced leaf senescence, 8-d-old third and fourth rosette leaves
were detached and floated on 3 mM MES buffer (pH 5.7) supplemented with or without 1 µg/mL
BLM for up to 5 d under long-day conditions. Photochemical efficiency of photosystem II (Fv/Fm)
was measured using a MultispeQ (East Lansing, MI, USA) instrument, and chlorophyll contents were
measured using a chlorophyll meter SPAD502 Plus (Konica Minolta, Hino-shi, Tokyo, Japan).
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3.4. EMS Mutagenesis of Arabidopsis Seeds

Ethyl methanesulfonate (EMS) mutagenesis of atm seeds was performed in the laboratory of Prof.
Hong Gil Nam (DGIST, Korea) according to protocols as described previously [24]. Given that atm
mutant is more sensitive to EMS than wild-type Col-0 (Supplementary Figure S2C), seeds of Col-0
and atm were treated with EMS with a final concentration of 0.2% (1.5 g, ~75,000 seeds), 0.3% (2 g,
~100,000 seeds) and 0.4% (1 g, ~50,000 seeds) for 15 h, 12 h and 10 h respectively. M1 seeds were sown
in soil uniformly with the use of a squeeze bottle and used for direct screening for dominant mutants,
and M2 seeds were subjected to screen for recessive mutants.

3.5. Comet Assay of DSBs

DSB levels were determined using a comet assay with a neutral protocol, measuring the amount of
DNA in the tail, as described previously [36]. Images of comets were captured at 20-fold magnification
using a monochrome CCD camera. Images were analyzed with the Image J software plugin OpenComt
(http://www.cometbio.org/) [37]. Each experimental point is represented by the mean value from three
replicates of electrophoresis gels.

3.6. RNA Isolation and Real-Time PCR

Total RNA was isolated using plant RNA kits (ER301; TransGen Biotech, Beijing, China),
and complementary DNA was produced with cDNA Synthesis kit (AT341; TransGen Biotech) according
to the manufacturers’ protocols. Transcript levels were assessed by qPCR kit (AQ111; TransGen Biotech)
using Applied Biosystems 7500 Real-Time PCR System (Thermo Scientific, Waltham, MA, USA).
The primers used in this study are listed in Supplementary Table S1.

4. Conclusions

Previous results demonstrated that ATM functions as a negative regulator of plant aging through
controlling age-induced DSBs accumulation, which has significant implications for the conservation
of aging mechanisms in animals and plants [12]. We obtained three suppressors of atm mutant with
delayed senescence and restored fertility. Functional analysis of SATMF will help to understand the
underlying regulatory mechanism of ATM in plants, and may also provide a reference for developing
new treatments for the disease Ataxia-telangiectasia (A-T). A-T is a neurodegenerative disease [38],
and no curative medication is found to effectively treat this disease [39]. Although Arabidopsis is
traditionally viewed as the key model organism for plant biology, it is becoming gradually clear that
Arabidopsis represents an invaluable tool for understanding molecular mechanisms underlying human
diseases [29]. Additionally, our data also show that atm mutant might be a valuable tool for functional
genomics research in Arabidopsis.
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8120/s1.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L., Y.Z. and H.-L.W.; investigation, Y.Z. and
H.-L.W.; writing—original draft preparation, Z.L. and Y.Z.; writing—review and editing, Z.L., Y.Z. and Y.G.;
supervision, H.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (31970196 to
Z.L.; 31570286 to H.G.; 31900173 to H.-L.W.), Chinese Postdoctoral Science Foundation (2019M650514
to Y.Z.; 2019M650516 to H.-L.W.; 2020M670544 to Y.G.), Shenzhen Science and Technology Program
(No. KQTD20190929173906742 to H.G.) and the National Key Research and Development Program of China
(No. 2019YFA0903904 to H.G.), and the startup funding for plant aging research from Beijing Advanced Innovation
Center for Tree Breeding by Molecular Design, Beijing Forestry University.

Acknowledgments: We thank Hong Gil Nam (Center for Plant Aging Research, IBS, Korea) and Hye Ryun Woo
(DGIST, Korea) for valuable advice and discussions.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.cometbio.org/
http://www.mdpi.com/1422-0067/21/21/8120/s1
http://www.mdpi.com/1422-0067/21/21/8120/s1


Int. J. Mol. Sci. 2020, 21, 8120 9 of 10

Abbreviations

ATM Ataxia Telangiectasia Mutated
ATR ATM- and RAD3-related
DSB Double-strand Break
SATMF Suppressor of atm in Fertility
BER Base Excision Repair
HR Homologous Recombination
NHEJ Non-Homologous End Joining
EMS Ethyl MethaneSulfonate
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