
 

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

Any comments on the article can be found at
the end of the article.

REVIEW

New insights emerge as antibody repertoire diversification
 meets chromosome conformation [version 1; peer review: 3

approved]
Amy L. Kenter , Ann J. Feeney2

Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA

Abstract
Vast repertoires of unique antigen receptors are created in developing
lymphocytes. The antigen receptor loci contain many variable (V), diversity (D),
and joining (J) gene segments that are arrayed across very large genomic
expanses and are joined to form variable-region exons. This process creates
the potential for an organism to respond to large numbers of different
pathogens. Here, we consider the underlying molecular mechanisms that favor
some V genes for recombination prior to selection of the final antigen receptor
repertoire. We discuss chromatin structures that form in antigen receptor loci to
permit spatial proximity among the V, D, and J gene segments and how these
relate to the generation of antigen receptor diversity.
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Introduction
In vertebrates, the adaptive immune response is capable of rec-
ognizing pathogens using antigen-specific receptors expressed on 
B and T lymphocytes. The B-cell receptor (BCR) is composed 
of two identical immunoglobulin (Ig) heavy chains (IgH) and 
two identical light chains (Igκ or Igλ). There are two lineages 
of T cells that are distinguished by the type of T-cell receptor  
(TCR) expressed. TCRαβ is encoded by the Tcra and Tcrb loci, 
whereas TCRγδ is encoded by the Tcrg and Tcrd loci. Antigen 

receptors are composed of variable (V) and constant (C) regions. 
The organization of the Igh and Igκ loci are schematically 
depicted (Figure 1A and Figure 2A). Igh variable-region exons 
are produced by the joining of one each of the many variable  
(V), diversity (D), and joining (J) gene segments, whereas Igκ 
and Igλ are created by joining one each of the V and J gene 
segments, all by V(D)J recombination during lymphocyte  
development (Figure 1B). V(D)J recombination is a step-
wise process during which D

H
-to-J

H
 recombination occurs first  

Figure 1. Overview of the Igh locus. The Igh locus spans 2.9 Mb and contains about 100 VH gene segments. (A) (Upper panel) Schematic 
diagram of the Igh locus showing the VHs, Ds, JHs, and CH exons and regulatory elements (not to scale). The VH7183 and VHQ52 families—blue 
and red bars, respectively (lower panel)—are located at the DHJH-proximal end of the locus. Each DHJH-proximal VH gene segment is paired 
with a recombination signal sequence (not shown) and a CTCF-binding element (CBE) (purple triangles). The CBE associated with the VH5-1 
segment is non-functional (gray triangle). CBE orientation is indicated by the direction of the triangle. VH gene segment names indicate their 
position along the locus. VH81X (VH5-2) is the original name of the second gene segment relative to intergenic control region 1 (IGCR1) and 
is used because it is well known by this nomenclature. The intermediate VH segments include the VHS107 family along with nine smaller VH 
families. At the 5′ end of the locus, the interspersed distal VH segments are composed of the VHJ558 and VH3609 families. Regulatory elements 
include intronic Eμ and 3′Eα super-enhancers and IGCR1, which is composed of two divergent CBEs. A cluster of at least nine CBEs is 
located at the 3′ boundary of the Igh locus and is adjacent to 3′Eα. The 3′CBEs and 3′Eα are referred to as the 3′ regulatory region (3′RR). 
Sites I, II, and III (red circles) engage in exceptionally long-range looping interactions and may mediate locus compaction. Sub-topologically 
associating domain (Sub-TADs) A, B, and C are indicated. (B) Diagram of the stepwise process of V(D)J recombination. D-J rearrangement 
precedes V-DJ recombination. (C) A schematic of the Igh TAD in pro-B cells that is subdivided into three sub-TADs A, B, and C. Looping 
interactions between Eμ:3′Eα and Eμ:IGCR1 (black arcs), Sites I and II, Sites II and III, Sites I to III (red arcs), Site I-FrOStIa, and Site II-FrOStIb 
(blue arcs) were detected and are not described here in detail1.
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followed by V
H
-to-D

H
J

H
 rearrangement. This process depends on  

the lymphocyte-specific V(D)J recombinase, RAG1/2, which  
recognizes recombination signal sequences (RSSs) that flank all  
V, D, and J gene segments3. During V(D)J recombination, two 
RSSs adjacent to V, D, or J gene segments partner such that  
cleavage and rejoining occur. RAG1 contains endonuclease 
activity and targets the RSS, and RAG2 is recruited to the epi-
genetically modified histone 3 when it is trimethylated on  
lysine 43. Within each antigen receptor locus, the RAG recom-
binase concentrates in the recombination center (RC) that is 
focused to the J segment–containing domain. Double-strand 
DNA breaks are generated at RSSs by RAG1/2, and the V, D, 
and J exons are joined together through non-homologous end  
joining4.

Antigen receptor gene rearrangement is tightly regulated dur-
ing lymphocyte development; in turn, lymphocyte development 
is strictly dependent on V(D)J recombination5,6. The compo-
sition and complexity of antigen receptor repertoires depend  
on the number of V, D, and J gene segments and the degree to 
which those segments are available for rearrangement. However, V 
gene usage in the pre-selected Igh repertoire is only quasi-random 
since it has been shown that V genes rearrange at very different 
intrinsic frequencies7–14. No one factor, or combination of factors,  
could fully account for unequal V gene usage in studies  
considering V germline transcript levels, transcription factor 

(TF) binding, RSS quality, and the distribution of a variety of  
epigenetic marks7–9,11,15. Hence, the mechanisms underlying V gene  
rearrangement frequencies remain to be determined.

Antigen receptor loci are quite large spanning 0.67 Mb- 3.0 
Mb and containing up to 100 functional V genes. Chromatin  
conformational changes in antigen receptor loci are important 
determinants for long-distance V(D)J recombination events6.  
Developmental stage-specific contraction of Ig and TCR loci 
promotes proximity of J-distal V genes with (D-)J segments and  
generally is thought to facilitate recombination but this has not 
been formally proven16–19. Two currently unresolved questions in 
the formation of the antigen receptor repertoires are (1) what is 
the molecular basis for locus contraction that is hypothesized to  
support V->DJ recombination over exceptionally long genomic 
distances and (2) what underlies the unequal rearrangement 
potential of individual V genes? Here, we focus on the murine 
Igh and Igκ loci to address these questions. The molecular prin-
ciples resulting from these studies may be generally applicable  
to all antigen receptor loci.

Locus contraction is a feature of antigen receptor 
loci
Developmental activation of the Igh locus is a stepwise proc-
ess that features acquisition of epigenetic modifications, DNase 
I hypersensitive sites, and the onset of sense and anti-sense  

Figure 2. Three-dimensional conformation of the Igκ locus. The Igκ locus spans 3.2-Mb topologically associating domain (TAD) and 
contains about 120 functional Vκ gene segments. (A) Schematic diagram of the Igκ locus showing the Vs, Js, and C exons and regulatory 
elements (not to scale). Regulatory elements include intronic Eκ (iEκ), 3′Eκ, Ed, and E88 elements. Contracting element for recombination 
(Cer) and silencer in the intervening sequence (Sis) are located between the V and J domains and are composed of CTCF-binding elements 
(CBEs) (purple triangles). The orientation of each CBE is indicated. The Igκ locus is subdivided into five sub-TADs (A–E) as indicated. 
(B) Sub-TAD structure of the Igκ locus as determined by Hi-C2. Each loop represents a sub-TAD that is labeled A–E. The regulatory 
region containing the Jκ genes, the three distal enhancers, and the constant region are in gray. (C) Deletion of E88 results in untethering  
of sub-TADs C and D from the regulatory region.
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transcription16,20–23. Additionally, the Igh locus undergoes  
large-scale locus contraction during development that is detected 
by using three-dimensional (3D) DNA fluorescence in situ  
hybridization (FISH) methods24,25.

The early observations by Kosak revealed two fundamental find-
ings regarding the disposition of the Igh locus in the nucleus24. 
First, the Igh locus is located at the nuclear periphery in  
non-B cells and relocates to the nuclear center at the pro-B cell  
stage24 through a process that requires active dislocation from 
the nuclear lamina26. Second, the Igh locus is in an extended  
conformation in non-B cells and lymphoid progenitors, whereas 
both Igh alleles are contracted in pro-B cells, a developmental 
stage coincident with V(D)J recombination24,25. These pioneering  
studies have led to the recognition that all of the large antigen 
receptor loci undergo developmentally regulated conformational  
changes before rearrangement at that locus24,25,27–30. The con-
tracted Igh locus in pro-B cells undergoes decontraction at the  
pre-B cell stage of development to prevent a second round  
of V

H
-D

H
J

H
 rearrangement on the second Igh allele, presum-

ably aiding allelic exclusion28. Degrees of locus compaction 
have been inferred from the relationship of inter-probe nuclear  
distances derived from 3D DNA FISH versus genomic distances 
and these measurements have limited resolution (100–1000 nm). 
Consequently, it has been difficult to identify DNA elements that 
mediate locus contraction.

Igh locus contraction depends on the TFs Pax5, Ikaros, and 
YY125,31,32. Loss of Igh locus compaction is correlated with 
preferential usage of the most D

H
-proximal V

H
 genes25,31,33,  

indicating that spatial access to the more distally positioned V
H
 

gene segments has been lost. Although depletion of any of these 
TFs reduces distal V

H
 rearrangement, chromatin accessibility  

remains unchanged25,31,33. Low-level transcription over V
H
 

genes and intergenic regions occurs as the locus is preparing to 
undergo rearrangement34–37. The highest level of non-coding RNA  
(ncRNA) in the Igh locus is found at elements called Pax5- 
activated intergenic repeats (PAIRs) and these ncRNAs are 
dependent upon the presence of Pax5 and YY137,38. Although the 
function of TFs in locus contraction remains speculative, PAIR 
elements have been suggested to induce long-range chromatin  
looping by relocating to transcription factories where they  
associate with the 3′ proximal Eμ-J

H
-D

H
 domain37. However, the 

molecular mechanism that mediates locus contraction remains  
unclear.

The Igh locus is conformationally distinct in pro-B 
cells
Eukaryotic chromosomes are organized into higher-order  
spatial configurations of multiple-length scales as determined by 
using high-resolution chromosome conformation capture (3C)-
based approaches and microscopy-based methods, including 3D 
DNA FISH and live cell imaging39–47. For example, insulators 
and enhancers often engage in physical interactions with their  
target promoters48–51, indicating that regulatory elements can  
control distant gene expression through direct long-range 
molecular contact. However, not all long-range chromatin  
interactions are directed toward regulating gene expression. For 

example, intra-chromosomal interactions are required to regu-
late V(D)J recombination and Ig class-switch recombination  
(CSR)6,16,17,52. In CSR, the constant (C

H
)-region exons encod-

ing IgM are substituted with a downstream C
H
 gene such that 

IgM is no longer produced and instead IgG, IgE, or IgA is 
made in conjunction with the original recombined variable- 
region exons. CSR is dependent on 3D chromatin architec-
ture mediated by long-range intra-chromosomal interactions 
between distantly located transcriptional elements53–56. During 
V(D)J recombination, antigen receptor genes undergo ordered 
rearrangement with D

H
-to-J

H
 joining preceding V

H
-to-D

H
J

H
  

recombination4. To produce a fully representative Ig repertoire, 
it is essential that the distal V

H
 genes achieve spatial proximity 

with the RC and D
H
J

H
 domain. Murre and colleagues have shown 

that Igh locus topology is best described as a series of three large 
chromatin loops joined by linkers in pre-pro-B cells but that these 
loops have intermingled and provide equal access of the D

H
-distal 

and -proximal V
H
 gene segments with rearranged 3′ D

H
J

H
 in pro-

B cells57. The time interval for D
H
J

H
 to gain proximity with a  

V
H
 gene segment is on the order of minutes, and spatial  

confinement of topological domains largely regulates first- 
passage times for chromatin interactions in vivo58. Although it is  
clear that Igh locus conformation is structured, the DNA  
elements that anchor chromatin looping in support of V(D)J  
recombination remain largely undefined.

The Igh and Igκ loci are configured as topologically 
associating domains
Topologically associating domains (TADs) are megabase sized 
and represent regions of high-frequency self-interacting chroma-
tin contacts as defined in 3C-based studies59,60. The organization 
of interphase chromatin is largely conserved between cell types, 
especially with regard to TAD boundaries44,50,61. Strikingly,  
the Igh locus is contained within a 2.9-Mb TAD in pro-B cells1.

The murine Igh TAD is partitioned into two highly struc-
tured sub-TADs A and C—corresponding to the D

H
-proximal 

and D
H
-distal V

H
 gene families, respectively—and flank a less 

structured sub-TAD B that includes the intermediate V
H
 gene  

segments1 (Figure 1C). Sub-TADs are zones within a TAD in 
which chromatin contacts are more frequent than with sites out-
side the sub-domain, and contacts can be tissue-specific and can  
contribute to the overall architectural structure of the TAD49,62,63.

V genes can be subdivided into V families based on sequence 
relatedness and this reflects gene duplication and divergence of  
primordial V genes. The correspondence of sub-TAD struc-
ture with the murine V

H
 gene family distribution profile is  

striking (Figure 1C). In the murine Igh locus, V
H
 families tend to 

be clustered, but in most other antigen receptor loci and in other 
species, the members of individual V

H
 families generally are  

interspersed.

The Igκ locus is also contained within a 3.5-Mb TAD which 
is subdivided into five sub-domains2 (Figure 2A, B). However, 
because Vκ gene families are interspersed across the locus, 
there is no correspondence between Vκ families and sub-TAD  
structure. One unique feature of the Igκ locus is that about one 
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third of Vκ genes are present in the reverse orientation such 
that they rearrange to Jκ genes by inversion as opposed to the 
predominant deletional rearrangement found at other antigen  
receptor loci. However, there is no correlation between sub-
TAD structure and the inversional or deletional orientation of  
Vκ genes. The conservation of Igκ TAD and sub-TAD structure  
has not been examined in different cell types.

Igh TAD conformation is sculpted by developmentally 
specific chromatin looping
TADs can be thought of as scaffolds for constitutive architec-
tural interactions. Nevertheless, interactions within TADs may 
vary significantly between cell types or developmental stages and 
for private enhancer–promoter contacts44,50,64–68. Igh sub-TADs 
A, B, and C become juxtaposed in pro-B cells via megabase- 
scale chromatin looping but these contacts are absent in  
non-B cells1. The loop anchors located in sub-TAD A and C 
are termed sites I, II, and III (Figure 1C). Our FISH studies  
indicated that sites I, II, and III participate in three-way physi-
cal contacts in about 32% of pro-B cells and in less than 5% of 
non-B cells and may functionally create proximity between the 
distal V

H
 domain with the RC/D

H
/J

H
 region to facilitate efficient  

access of all V
H
 gene segments for recombination1.

The structure of sub-TAD A is worthy of additional considera-
tion as it contains the Eμ and 3′Eα enhancers, the RC located in 
the J

H
-D

H
 domain, intergenic control region 1 (IGCR1) (an 

insulator which will be discussed in detail in sections below), 
and the proximal V

H
 genes (Figure 1A). Sub-TAD A becomes  

modified in pro-B as compared with non-B cells. In non-B cells,  
Igh sub-TAD A encompasses the proximal V

H
 genes spanning 

from site I to Eμ (Figure 1C). In pro-B cells, sub-TAD A becomes 
subsumed within a larger topological fold that extends from site 
I to the 3′Eα enhancer (Figure 1C). The higher-order chroma-
tin structure in pro-B cells may have significant implications  
for D

H
-proximal V

H
 gene usage during V(D)J recombination.

Several earlier observations have shown that D
H
-proximal V

H
 

genes are regulated differently from the rest of the V
H
 genes. 

Although distal V
H
 gene recombination is reduced in Pax5-, 

YY1-, and Ezh2-deficient pro-B cells, D
H
-proximal V

H
 genes 

recombine normally25,31–33. Thus, the localization of the  
D

H
-proximal V

H
 genes within the same conformational sub-TAD as 

the RC/D
H
/J

H
 region distinguishes them from distal V

H
 genes that 

lie within sub-TADs B and C.

Pax5 organizes sub-TAD C that spans the distal V
H
J558 gene 

family. Site III within sub-TAD C fails to associate with sites I 
and II in Pax5-deficient pro-B cells, thus providing a possible  
explanation for reduced V

H
J558 rearrangements in Pax5- 

deficient pro-B cells1. Notably, 14 PAIR elements that were pro-
posed to mediate locus compaction via Pax5 are all situated 
within sub-TAD C, and PAIR motifs 10 and 11 overlap with  
site III1,38. PAIR elements are bound by the TFs Pax5, E2A, 
and CTCF (CCCTC-binding factor) in pro-B cells38. It is 
not known whether transcriptional activity at PAIR elements  
regulates chromatin looping. Our studies provide a potential  
molecular definition of locus contraction by identifying loop  
anchor sites that are key mediators of this process.

CTCF mediates insulator function at TAD boundaries
TAD boundaries are frequently enriched for CTCF binding and 
CTCF-binding elements (CBEs)45,59,60,62,63. CTCF is a ubiqui-
tously expressed zinc-finger protein that binds DNA, functions 
as an insulator in vertebrates69, and plays a key role in  
chromatin looping45,63,70,71. There is an observed inward or conver-
gent orientation of CBEs flanking TADs45,70,72,73. Insulators were 
originally defined as genomic elements that act as a barrier to  
position effects caused by the spreading of chromatin marks and 
they block enhancer activity74,75. Although loci situated within 
TADs are relatively insulated from loci outside the domain, 
these same elements readily interact with other loci within 
the same domain. CRISPR/Cas9-mediated rearrangements of 
TAD boundaries and regulatory elements facilitate or prevent  
looping interactions with distal regulatory elements76–78. Acute  
depletion of CTCF leads to loss of loop domains and impaired  
regulation of nearby genes through loss of enhancer insulation79.

High-resolution in situ Hi-C studies demonstrated that mam-
malian genomes are partitioned into contact domains45. Contact 
domains with end points that anchor a loop are referred to as loop  
domains45,70. TADs are most frequently loop domains but not 
all loop domains are TADs. In the context of V(D)J recombi-
nation, RAG recombinase activity was shown to be confined 
to loop domains that are defined by convergent CTCF-bound  
elements. RAG primarily initiates double-stranded breaks 
(DSBs) at RSSs within the antigen receptor loci. However, RAG 
can also initiate low-frequency DSBs at off-target sites that 
have sequence similarity to RSSs and cause chromosomal rear-
rangements and translocations52,80–82. Notably, when RAG was  
experimentally directed to chromosomal domains outside of  
antigen receptor loci, off-target DSBs were confined within loop 
domains and deletion of convergent CBEs extended the range of  
RAG activity83.

CTCF partners with cohesin to mediate chromatin 
looping
CTCF-based long-range looping interactions are dependent on 
co-binding with cohesin84,85. The cohesin complex is thought 
to form a ring around two CTCF proteins bound to DNA85,86.  
Different combinations of architectural proteins may mediate 
context-specific genomic organization63,87. Promoter–enhancer 
interactions are disrupted in embryonic stem cells88 and in  
thymocytes89 when cohesin is depleted. There is a rich CTCF-
cohesin landscape in the Igh locus. One hundred thirty-two sites 
are bound by CTCF and cohesin and the majority of these are 
located at a distance of 1 to 32 kb from V

H
 gene segments in the 

Igh locus90,91. Strikingly, all of the rearranging D
H
-proximal V

H
 

genes are closely paired with CBEs that are located within 68 
base pairs (bp) of the RSS (Figure 1A)90. However, CBEs in the  
non-rearranging D

H
-proximal V

H
 genes are located more than 

1 kb from the RSS in the two most D
H
-proximal V

H
 gene  

families. As described below, close proximity to the adjacent CBE 
has functional consequences for these V

H
 genes7,91,92. In addi-

tion, a cluster of nine CBEs marks the 3′ boundary of the Igh 
TAD92, and two CBEs located within IGCR1 mark the bound-
ary between the D

H
J

H
 domain and the D

H
-proximal V

H
 genes  

(Figure 1B)20,93,94. Similarly, the Tcrb and Tcrd loci have CBEs 
located between the V and J gene segments30,95,96. In the Igκ 
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locus, CBEs, termed contracting element for recombination 
(Cer) and silencer in the intervening sequence (Sis), are located 
between the V and J gene segments, and many CBEs are found  
throughout the Vκ domain (Figure 2A)91,97,98.

In the Igh and TCRβ loci, all bound CTCF sites in the V exon 
domains upstream of the D-J-C-regions are oriented toward 
them, and the CBEs in D-J-C regions of those loci are oriented 
toward the V exons. In contrast, the other two large antigen 
receptor loci (TCRα/δ and Igκ) have more complex patterns 
with the bound CTCF sites in the V gene portion of each locus  
found in both orientations91. A role for the CTCF-cohesin 
complex in Igh locus looping has been suggested by shRNA 
knockdown studies in pro-B cells demonstrating that the Igh  
locus is less contracted after CTCF is knocked down99.

A convergence of loop extrusion and directional RAG 
tracking?
TADs and loop domains have been implicated in regulating 
gene expression in mammalian cells40,86, with convergent CBEs 
in a large subset of cases72,73,100,101. It has been proposed that 
TADs can be formed by the loop extrusion activity of cohesin  
(Figure 3A)100,102. When cohesin is bound to chromatin, it forms 
a progressively larger loop until it encounters an obstacle 
formed by another cohesin or boundary protein including CTCF  
(Figure 3B). The association of CTCF with widely separated 
convergent CBEs may involve cohesin that is halted upon  
arriving at convergent CTCF-bound loop anchors40,100,102,103. 
It has been proposed that loop extrusion may also facilitate 
close-range contacts between regulatory elements, includ-
ing promoters and enhancers, by bringing them into molecular  
contact40 (Figure 3C). Promoter–enhancer interactions may  

preferentially occur within chromatin domains that are insulated  
by extrusion blocking factors.

In a situation strikingly analogous to convergent CBE-mediated 
loop formation, RAG-dependent recombination involves inter-
actions between distant convergent RSSs with the exception of 
inverted RSSs in some antigen receptor loci. The Alt group has 
shown that RAG off-target activity within CTCF loop domains 
spanning 2 Mb depends on orientation-specific RSSs83. It  
was inferred from DNA sequencing data that RAG can travel  
directionally from a physiological or ectopically introduced 
RC within a convergent CBE-based loop domain of mega-
base size83. Long-range directional exploration by RAG can be 
blocked by an encounter with cohesin-bound convergent CBE 
pairs and possibly by other impediments that create chromatin 
sub-domains within TADs83,104. Alt and colleagues proposed that  
RAG complexes bind one RSS and then track along the chro-
matin fiber in a linear fashion to the next convergent RSS82,104.  
Several different topological machine models have been pos-
tulated to explain directional cis-guided long-range looping  
interactions40. It remains unclear whether RAG tracking occurs  
via loop extrusion or by a mechanistically different activity.

IGCR1 is an insulator that partitions the DHJH domain 
from VH genes
CTCF has been implicated as a mediator of transcriptional insu-
lation through its ability to participate in chromatin looping71. 
The striking number and organization of CBEs across anti-
gen receptor loci have led to the proposal for a role of CBE 
in V(D)J recombination93,99. The Igh sub-TAD A contains  
several important looping contacts, including Eμ-IGCR looping  
interactions in pro-B cells (Figure 1C)93,105. IGCR1 contains a 

Figure 3. Loop extrusion as a topologically associating domain generating machine. (A) The chromatin fiber extrudes over time through 
an extruding factor (possibly cohesin; yellow cylinders). (B) A boundary element (possibly CTCF, green cube) can block loop extrusion when 
the CTCF-binding element is in the proper orientation. It has been proposed that CTCF can block extrusion by one of the cohesin extruding 
motors while the second motor will be unobstructed and continue to extrude the loop102. (C) Regulatory elements may come into close 
molecular contact by the process of loop extrusion. These interactions will occur only within a topologically associating domain and in the 
presence of extrusion blocking elements.
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pair of divergent CBEs that demarcate the boundary of the RC/
D

H
J

H
 domain and function as an insulator that prevents D

H
-to-V

H
  

joining prior to D
H
J

H
 rearrangements93,94. However, the rela-

tionship of CTCF-anchored chromatin looping for V
H
:IGCR1  

and antigen receptor rearrangement frequency remains unclear.

V
H
 CBEs are convergently oriented with respect to the upstream 

IGCR1 CBE, and 3′ CBEs are convergently oriented relative 
to the downstream IGCR1 CBE93 (Figure 1A). Although CBE-
dependent Eμ:IGCR1 looping is prominent in pro-B cells, it 
is striking that Eμ:V

H
81X contacts are largely undetectable in 

the wild-type context, indicating that the RC located between 
Eμ and IGCR1 is sequestered away from all V

H
 genes106,107.  

The functional D
H
-proximal V

H
 genes are very closely paired 

with CBEs90. For example, V
H
81X is the first functional proximal 

V
H
 gene located about 100 kb from IGCR1 and it is immediately 

adjacent to a CBE (Figure 1A). Two new studies have shown 
that when the IGCR1 CBEs are deleted, Eμ-V

H
81X contacts are 

newly observed, indicating that IGCR1 CBEs prevent looping  
interactions between the Eμ-RC/D

H
J

H
 domain and the proximal V

H
 

genes106,107. Strikingly, IGCR1:V
H
81X interactions are dependent 

on the V
H
81X CBE, as shown by deletion of the V

H
81X-flanking 

CBE.

Interestingly, the Igκ locus contains the Cer/Sis CBEs in  
the V-J intervening region (Figure 2A). Deletion or inversion 
of Cer leads to preferential usage of Jκ-proximal Vκ genes97,108,  
highlighting the importance of convergent CTCF-mediated 
long-range interactions that facilitate spatial proximity of the  
distal Vκ with the J segments. Cer/Sis and IGCR1 are similarly  
located between the V genes and the (D)J genes, and both are 
involved in mediating chromatin looping. Cer also functions as a 
transcriptional insulator108.

Proximal VH gene rearrangement frequencies are 
determined by CTCF looping
To begin, one might expect that the V

H
5-1 gene segment would 

be highly used in V
H
-to-D

H
J

H
 rearrangements since it is most 

proximal to the RC/D
H
J

H
 domain (Figure 1A). However, despite 

being paired with a highly conserved RSS, V
H
5-1 is not used in 

V(D)J recombination. In contrast, V
H
81X (V

H
5-2), the next V

H
 

gene segment along the genome, is the most frequently used in 
V(D)J recombination. The question of why V

H
81X and not V

H
5-1 

is used is long-standing. Two groups have explored the relation-
ship between CTCF-mediated chromatin looping and proximal V

H
  

gene usage during V(D)J recombination106,107.

CBEs adjacent to the functional D
H
-proximal V

H
 genes are 

found within 68 bp downstream of the RSSs90. Mutagenesis 
analyses have revealed that proximal V

H
 CBEs dramatically 

influence the frequency of V(D)J rearrangement of that V
H
 

gene106,107. Mutation of the CBE associated with V
H
81X (V

H
5-2) 

(Figure 1A) greatly reduced both looping with IGCR1 and its  
rearrangement frequency and boosted the rearrangement fre-
quency of the next most upstream V

H
 gene, V

H
2-2106. Genomic 

editing of the non-functional V
H
5-1 CBE into a functional motif 

turns this non-rearranging V
H
 gene into the most frequently  

rearranging gene106 (Figure 1A). Thus, as discussed below, 
CBE quality and chromatin looping between IGCR1 and 
the D

H
-proximal VH gene segments are significant factors  

determining V
H
 gene usage in V(D)J recombination.

The antigen receptor loci have a much higher density of CTCF 
sites than the genome overall, making CTCF/cohesin a can-
didate for forming multiple long-range loops within these  
loci90,91. Although it is clear that TAD boundaries are usu-
ally formed between convergent CBEs45,72, relatively little is 
known regarding the CBE orientation dependence in anchoring  
chromosome loops within the V domains of Ig loci. All of 
the bound CBEs in the V

H
 domain are oriented toward the 

3′ regulatory region (3′RR) and a single CBE within IGCR1  
(Figure 1A). If CTCF-mediated looping occurs only between 
convergent CBE, one would predict that the orientation of motifs  
adjacent to proximal V

H
 genes will be critically required for  

looping and V(D)J rearrangement. However, when the V
H
81X  

CBE was inverted, usage of V
H
81X in V(D)J rearrangement 

was only modestly decreased106, indicating that the orientation  
specificity inside the V

H
 sub-TADs is not strictly required.

Together, these studies demonstrate that the proximal V
H
 gene 

CBE’s quality determines looping efficiency with IGCR1 
and determines that V

H
 gene’s recombination efficiency. It is 

noteworthy that most V
H
 and all Vκ genes do not have any 

CTCF sites in close proximity, in contrast with the location of 
CBEs for the proximal V

H
 genes90,91. Thus, for the majority of  

V genes, CBE-mediated looping with IGCR1 may have a less 
straightforward impact on V

H
 gene rearrangement frequency.

Vκ rearrangement frequency is determined by 
enhancer E88
In addition to long-range loops mediated by CTCF, other 
long-range loops can be enhancer-mediated. The Igκ locus is 
encompassed within a TAD that is subdivided into at least five  
sub-TADs A–E based on Hi-C studies (Figure 2A)2. We identi-
fied a novel enhancer element, E88, which is located close to  
the boundary separating sub-TADs C and D and which becomes 
active at the pro-B cell stage prior to V-J rearrangement  
(Figure 2A)2. E88 is the major site of interaction with iEκ as 
detected by 4C analyses in pro-B cells. In pre-B cells, the stage 
at which V-J recombination occurs, E88 continues to interact 
strongly with iEκ and also contacts many more sites through-
out the locus (Figure 2B). Strikingly, deletion of E88 results 
in significant changes in long-range looping interactions and 
in reduction in rearrangement levels of adjacent Vκ genes  
(Figure 2C). Its deletion also results in a modest but consist-
ent reduction of rearrangement of almost all Vκ genes in a 1.5 
Mb region surrounding E88 that corresponds to sub-TADs C 
and D (Figure 2C). Most Vκ genes that are upstream and down-
stream of sub-TADs C and D—located in sub-TADs A and B  
and sub-TADs E, respectively—were modestly increased in  
relative rearrangement frequency2. Thus, our studies revealed the 
novel concept that Vκ rearrangement is regulated in a domain- 
specific manner and suggest that sub-TAD structure has functional 
ramifications.
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Future questions
Chromatin conformation is now recognized as an important  
feature regulating gene expression and recombination. Although 
locus contraction has been a recognized feature of antigen receptor 
loci for more than 15 years, its underlying molecular mechanism  
remains largely undefined. Recent studies have provided new 
insights regarding the convergence of chromatin conformation, 
TAD and sub-TAD structure, and CTCF-cohesin-mediated loop-
ing with V(D)J recombination. These studies revealed that the 
conformational organization of the Igh, Igκ, and TCRα/δ loci 
has significant implications for locus contraction and likely 
influences skewed V gene usage that together affects the com-
position of the pre-selected repertoires. Going forward, studies 
focused on the relationship of CTCF- and promoter-enhancer- 
mediated chromatin looping with locus contraction are likely to 
provide new insights. Studies designed to clarify the relationship 
of CTCF-dependent looping and D

H
-distal V gene rearrangement 

will be important. It is likely that new enhancers, similar to Igκ 
E88, will be characterized. The influence of individual enhanc-
ers on the frequency of individual V gene usage during initial  
repertoire formation will be important. The emergence of 
extremely high-resolution DNA FISH is likely to provide  
additional insights into locus conformation. Finally, studies 
that determine the extent to which the pre-selected repertoire 

determines the shape of the peripheral repertoire will yield new  
insights.
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