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ABSTRACT
Multiple soluble factors including proteins (in particular chemokines), non-proteinaceous factors released
by dead cells, as well as receptors for such factors (in particular chemokine receptors, formyl peptide
receptors and purinergic receptors), influence the recruitment of distinct cell subsets into the tumor
microenvironment. We performed an extensive bioinformatic analysis on tumor specimens from 5953
cancer patients to correlate the mRNA expression levels of chemotactic factors/receptors with the density
of immune cell types infiltrating the malignant lesions. This meta-analysis, which included specimens from
breast, colorectal, lung, ovary and head and neck carcinomas as well as melanomas, revealed that a subset
of chemotactic factors/receptors exhibited a positive and reproducible correlation with several infiltrating
cell types across various solid cancers, revealing a universal pattern of association. Hence, this meta-
analysis distinguishes between homogeneous associations that occur across different cancer types and
heterogeneous correlations, that are specific of one organ. Importantly, in four out of five breast cancer
cohorts for which clinical data were available, the levels of expression of chemotactic factors/receptors
that exhibited universal (rather than organ-specific) positive correlations with the immune infiltrate had a
positive impact on the response to neoadjuvant chemotherapy. These results support the notion that
general (rather than organ-specific) rules governing the recruitment of immune cells into the tumor bed
are particularly important in determining local immunosurveillance and response to therapy.
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Introduction

Although cancer has been viewed for a long time as a cell-
autonomous, genetic and epigenetic disease, there is little
doubt that non-transformed cells, in particular leukocytes
have a major influence on the development, progression,
therapeutic response and fatal relapse of malignant disease.1–
4 In essence, the relationship between cancer pathogenesis and
leukocytes can be defined as ambiguous. On one hand,
chronic subclinical or manifest inflammation can contribute
to oncogenesis by favoring local generation of reactive oxygen
species, inducing genomic instability, by increasing the turn-
over of parenchymal or stromal cells, increasing the probabil-
ity of genetic and chromosomal aberrations, by disrupting
homeostatic regulation in the affected tissue, favoring the
emergence of more ‘competitive’ cells, and by inducing local
immunosuppression, hence subverting immunosurveillance.-
5,6 On the other hand, specific leukocyte subpopulations may

contribute to the recognition of premalignant and fully trans-
formed cells, causing their elimination (the best-case scenario)
or engaging in a precarious equilibrium state between malig-
nant cells and immune effectors. In most cases, it is only when
cancer cells manage to suppress the anticancer immune
response (or to hide from recognition) that the disease
becomes clinically detectable.2,4,7–11

The attraction of leukocytes into premalignant and malig-
nant lesions is dictated by multiple soluble factors including
so-called danger-associated molecular patterns (DAMPs) that
include extracellular nucleotides and nucleosides (with ATP
as a prominent chemotactic factor for myeloid cells), proteins
that are usually confined in intracellular compartments yet are
released from stressed, dying and dead cells (such as annexin-
1, ANXA1; calreticulin, CALR, F-actin, and high molecular
group protein-1, HMGB1)12–17 and proteins that are actively
secreted by cancer or stromal cells, in particular chemokines
(C-C motif chemokine ligand 1 to 9 and 11 to 28, CCL1-9,
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CCL11-28; X-C motif chemokine ligand 1 and 2, XCL1 and 2;
C-X-C motif chemokine ligand 1 to 17, CXCL1-17; C-X3-C
motif chemokine ligand 1, CX3CL1).18 These factors act on a
series of receptors, such as the adenosine receptor family
AdoR (ADOR A1, A2A, A2B and A3), metabotropic puriner-
gic receptors (P2RY1, 2, 4, 6, 8 and 10 to 14), ionotropic
purinergic receptors (P2RX1 to 7), formylpeptide receptors
(FPR1 to FPR3) and chemokine receptors (XCR1, CXCR1 to
7, CX2CR1, CCR1 to 10, CCRL1 and 2) to induce the che-
motaxis of different leukocyte subtypes into the tumor.18–21

The expression of such chemotactic factors and their recep-
tors determines the composition of the tumor immune infil-
trate and has a major impact on the therapeutic response and
prognosis of cancer.9,22–25

Most of the knowledge about the immune infiltrate that
can be retrieved from large data sets is based on microarray or
RNAseq data obtained on whole tumor specimens and biop-
sies, requiring bioinformatic deconvolution of the data.26

Methods for estimating the abundance of leukocyte subsets
in tumor, based on gene expression data (microarray or
RNAseq), have been developed.27–30

Here, we report a meta-analysis of the relationship between
the relative abundance of distinct leukocyte subsets and the
level of expression of individual chemotactic factors and their
receptors in a large set of human tumors.

Results and discussion

Datasets and expression variability

We first assembled a series of public microarray data into one
single database. Five different datasets were included for several
major cancer types, in particular breast carcinoma (TCGA
consortium),31–34 colorectal carcinoma (http://www.intgen.
org or TCGA consortium),35,36 non-small cell lung carcinoma
(TCGA consortium)37–40 and melanoma,41–45 to study the cor-
relation between the expression level of metagenes indicating
the presence of immune cell types and a variety of chemotactic
factors and receptors. An extra dataset concerning breast
carcinoma46 was used for studying expression variability and
treatment response. We also used two datasets for ovarian
(TCGA consortium)47 and head and neck carcinoma48,49

each. The total number of tumors analyzed in this study
amounts to 5953 (Table 1). We first examined the expression
variability of each of the metagenes relevant to tumor-infiltrat-
ing immune cell types (determined by using the MCP counter
method)27,30 and mRNAs encoding annexins (ANXA), chemo-
kines (CCL, CXCL, XCL), chemokine receptors (CCR, CXCR,
XCR, CCRL), formyl peptide receptors (FPR), purinergic
receptors (ADOR, P2RX, P2RY), compared to housekeeping
genes (ACTB, GADPH, TUB), as this is typically done when
protein expression is measured by immunoblot analysis.
However the variability in the expression of housekeeping
genes was not expected to be smaller than that of the genes of
interest (including immune metagenes) due to the normaliza-
tion methods of microarrays. Nevertheless, a systematic low
variance of genes of interest (including immune metagenes)
compared to housekeeping genes, might produce correlation
coefficients (computed below) that are overestimated.

Therefore, genes that have a systematic low variance should
be removed from the analysis. We analyzed the relative var-
iance of each gene of interest, expressed in a log10 scale for all
datasets (Figure 1). In addition, variance difference tests were
performed, between housekeeping genes and genes of interest
(Supplementary Figure 1). As a general tendency, the selected
genes and metagenes corresponding to distinct immune types
exhibited a normalized variance around 1 (i.e. 0 on a log10
scale), with no major difference between immune-relevant
and housekeeping genes. Nevertheless, some genes have a
smaller variance compared to housekeeping genes, especially
in the two breast cancer datasets (METABRIC and TCGA). As
a result, we decided to include these close-to-invariant genes in
the analyses, because the possible overestimation of correlation
coefficients is not systematic.

General correlation patterns across cancer types

We computed the Spearman correlation coefficients between
immune cell type-relevant metagenes and our selection of
chemotaxis-relevant genes. We used Fisher’s method (or
Fisher’s combined probability test, for multiple testing) to
identify reproducible correlations for five cancer types, namely
breast cancer (Figure 2), colorectal cancer (Figure 3a), non-
small cell lung cancer (Figure 3b) and melanoma (Figure 3c),
while performing a meta-analysis of five different data sets for
each cancer (Table 1). This procedure was not applicable to
ovarian and head & neck cancers because it was not possible to
collect 2 × 5 sufficiently large datasets. Correlations that were
reproducible across the five data sets were color-coded to
indicate positive (red) or negative (green) associations between
the expression levels of individual chemotactic factors/recep-
tors and leukocyte subset-specific metagenes, while the absence
of reproducible correlations were indicated by white boxes. As
to be expected, we detected a mostly positive correlation
between leukocyte subsets and chemotactic factors/receptors
in all four cancer types (Figures 2 and 3). The reproducibility of
correlations was less pronounced in melanoma (Figure 3C),
probably because the datasets available for this cancer type
were comparatively small (Table 1).

When all these figures were grouped together,
(Supplementary Figure 2), one could observe that the varia-
bility seemed larger among cancer types than among distinct
immune cell types. For this reason, we performed separate
analyses of distinct cancer types in different (sub-)figures and
then grouped immune cell types. We applied Fisher’s method
to identify correlations that were reproducible across the
aforementioned five cancer types (Figure 4). Unsupervised
hierarchical clustering of these results identified two types of
genes coding for chemotactic factors/receptors, namely (i)
genes that exhibit reproducible positive correlations with
most of the leukocyte subtypes (in the lower part of
Figure 4) and (ii) genes that have almost no reproducible
correlations with immune cell types (in the upper part of
Figure 4). The interpretation of this separation in two groups
is not obvious. The second group of chemotactic factors/
receptors could be interpreted as a cancer type-specific
immune system activation. To visualize this possibility, we
removed the reproducible correlations across cancer types
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Table 1. Overview on the cohorts included in this meta-analysis.

Cancer
type

Cohort
name

Number
of

samples Characteristics of the cohort Treatment & outcome Reference Platform

Melanoma Xu 83 Primary and metastatic tumors GSE8401 Affymetrix
Human
Genome
U133A Array

Melanoma Harlin 44 Metastatic tumors GSE12627 Affymetrix
Human
Genome
U133A Array

Melanoma Bogunovic 44 Metastatic tumors GSE19234 Affymetrix
Human
Genome U133
Plus 2.0 Array

Melanoma RikerMel 56 Primary and metastatic tumors GSE7553 Affymetrix
Human
Genome U133
Plus 2.0 Array

Melanoma Talantov 45 Primary tumors GSE3189 Affymetrix
Human
Genome
U133A Array

Colon BittColon 307 Various colon tumors GSE2109 Affymetrix
Human
Genome U95
Version 2
Array

Colorectal Smith 177 Various colorectal tumors GSE17536 Affymetrix
Human
Genome U133
Plus 2.0 Array

Colon Vilar1 155 Colon tumors GSE26682, 1st set Affymetrix
Human
Genome
U133A Array

Colon Vilar2 176 Colon tumors GSE26682, 2nd set Affymetrix
Human
Genome
U133A Array

Colon TCGA 174 Various colon tumors TCGA consortium Agilent 244K
Custom Gene
Expression
G4502A-07–3

Breast METABRIC 1781 Various breast tumors METABRIC Study Illumina HT-12
v3

Breast TCGA 522 Various breast tumors TCGA consortium Agilent 244K
Custom Gene
Expression
G4502A-07–1

Breast Bonnefoi 161 Locally advance or large operable
breast tumors, estrogen receptor
negative

FEC or ET treatment. Pathological complete
response (complete disappearance of the
tumour with no more than a few scattered
tumour cells) vs no pathological complete
response

GSE6861 Affymetrix
Human X3P
Array

Breast Hatzis 198 HER2 negative breast tumors Taxane-anthracycline chemotherapy pre-
operatively and endocrine therapy if ER-positive.
Pathological complete response (no invasive or
metastatic breast cancer identified) vs rapid
development

GSE25065 Affymetrix
Human
Genome
U133A Array

Breast Tabchy 178 Various type of breast tumors before
treatment

FEC or FAC neo-adjuvant chemotherapy.
Pathological complete response vs residual
disease (clinical or radiological progression)

GSE20271 Affymetrix
Human
Genome
U133A Array

Breast Korde 61 Various type of breast tumors, stage
2 or 3 breast cancer with tumor size
≥2cm at patients selection, prior to
AC treatment

4 cycles of TX, 4 cycles of adriamycin,
cyclophosphamide on day 1 and 21
(neoadjuvant) and AC (neo-adjuvant or
adjuvant). Response vs no response (change in
tumor size by clinical exam and pathological
response).

GSE18728 Affymetrix
Human
Genome U133
Plus 2.0 Array

Lung AdenoConsortium 462 Various type of
Adenocarcinomas

(Continued )

ONCOIMMUNOLOGY e1484980-3



(Figure 4) from each organ-specific correlation pattern
(Figures 2 and 3) with the scope of identifying cancer type-
specific correlation patterns (Supplementary Figure 3–6).
Again, this separation between fully reproducible and cancer
specific-reproducible correlations supported the idea that part
of the chemotaxis of different leukocyte subtypes may occur
in an organ-specific fashion. We tested the robustness of this
two-group separation of chemotactic factors/receptors, by
changing the p-value threshold used for reproducibility tests
from 0.05 to 0.01. Changing the threshold of the p-value did
not affect the final result (Supplementary Fig. 7B) as in
Figure 4.

Next, we investigated the reproducible correlation pattern
identified in Figure 4 on two other cancer types, namely,
ovarian cancer and head and neck carcinoma. Because the
number of large datasets for these two cancers types is rather
limited (two datasets for each of them, Table 1), it was not
possible to determine reproducible correlation patterns within
each of these two cancer types. For each dataset, we computed
the correlation matrix between immune cell types and the
selection of genes. Then, we removed the reproducible corre-
lations identified in Figure 4. The remaining “specific”

correlations are illustrated in Supplementary Fig. 8–11. The
number of such specific correlations was rather small, exhibit-
ing no obvious pattern and hence resembled those obtained
for breast, colorectal, non-small cell lung cancer and mela-
noma (Supplementary Figure 3–6). Therefore, ovarian cancer
and head and neck carcinoma exhibited a similar global
correlation pattern between chemotactic factors/receptors
and the density of the immune infiltrate, supporting the uni-
versal validity of the common correlation pattern (Figure 4)
across distinct malignancies.

One question that can be raised concerns the cancer
specificity of these reproducible correlations (fully repro-
ducible or organ-specific reproducible) compared to nor-
mal tissue. Although a full analysis, comparing normal
and cancer tissue is beyond the scope of this work, we
produced a similar Figure than Figure 2, using normal
breast samples available from the METABRIC dataset
(Supplementary Fig. 12). The global pattern is not strongly
different from Figure 2. Therefore, it seems that the
mechanism involving chemotactic factors/receptors in
immune infiltrate in cancer in not fundamentally different
from a normal immune activation.

Table 1. (Continued).

Cancer
type

Cohort
name

Number
of

samples Characteristics of the cohort Treatment & outcome Reference Platform
Director’s
Challenge
Lung
Study,
National
Cancer
Institute
(NHI)

Affymetrix Human Genome U133A
Array

Lung Lee 138 Adenocarcinoma and squamous cell
carcinoma

GSE8894 Affymetrix
Human
Genome U133
Plus 2.0 Array

Lung Okayama 226 Adenocarcinoma GSE31210 Affymetrix
Human
Genome U133
Plus 2.0 Array

Lung Raponi 130 Squamous cell carcinoma GSE4573 Affymetrix
Human
Genome
U133A Array

Lung TCGA 134 squamous cell carcinoma TCGA consortium Affymetrix
Human
Genome
U133A Array

Ovarian Yoshihara 43 Ovarian carcinomas GSE12470 Agilent-
012097
Human 1A
Microarray
(V2)

Ovarian TCGA 520 Ovarian carcinomas TCGA consortium Affymetrix
Human
Genome
U133A Array

Head &
Neck

Peng 57 Head and Neck carcinomas GSE25099 Affymetrix
Human Exon
1.0 ST Array

Head &
Neck

Rickman 81 Head and Neck carcinomas E-TABM-302 Affymetrix
Human
Genome U133
Plus 2.0 Array
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Figure 1. Heatmap representation of gene expression variances and immune cell type activity variances, in log10, for the different datasets. For each gene, in each
dataset, gene variance was normalized by the variance all gene expressions pooled together. For each immune cell type activities, in each dataset, immune cell type
activity variance is normalized by the variance all immune cell type activities pooled together. Housekeeping genes are highlighted.
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The reproducible correlation pattern across cancers
(Figure 4) has been established without any knowledge
about the abundance of the chemotactic factors/receptors
in different immune cell types or in distinct cancer types.

This information is not directly accessible from microar-
ray data, because of normalization methods. Nevertheless,
we explored the possibility that the abundance of chemo-
tactic factors/receptors that have a reproducible

Figure 2. Heatmap representation of reproducible Spearman’s correlation coefficients, in breast carcinomas.
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correlation with immune cell types might be higher or
lower than that of those failing to exhibit reproducible
correlations, while investigating absolute expression in
our microarray datasets and the mRNA expression data
from the Human Protein Atlas.50,51 Chemotactic factors/
receptors were removed from the analyses if their expres-
sion was systemically low in the microarray data or in the
spleen and lymph node (see Materials and Methods for the
exact procedure). Among the 66 chemotactic factors/
receptors that were classed as non-reproducible in their
correlation with immune metagenes (in Figure 4), 12
exhibited a low expression. Among the remaining 39 che-
motactic factors/receptors reproducibly correlating with
immune metagenes (in Figure 4), only one exhibited a
low expression. Hence, correlation reproducibility is anti-
correlated with low expression (p-value = 0.029, exact
Fisher’s test). Indeed, lowly expressed genes should not
yield reproducible correlations with immune cell infil-
trates. Because the choice for filtering thresholds was
quite arbitrary (see Material and Methods), we applied
the same procedure by a) doubling threshold on our
mRNA datasets, b) doubling threshold on mRNA data
from Human Protein Atlas. We still observed the same
tendency; in the case a) Fishers’s p-value = 0.155 (filtering
2 genes from the reproducible list and 14 from the non-
reproducible one), in case b), Fishers’s p-value = 0.028
(filtering 2 genes from the reproducible list and 14 from
the non-reproducible one).

Figure 4 reveals 13 chemotactic receptors and chemo-
kines that positively correlated with all identified cell

subsets (irrespective of their stromal and leukocytic nature)
contained in the tumor environment, regardless of the can-
cer type. This applies to CCR1,2,5; CXCR4; FPR1; ADOR
A2A; P2RY6,13,14; CCL18,19,21; and CXCL12. In other
words, these factors appear intrinsically linked to the neo-
plastic process. Accordingly, CXCL12 and its receptor
CXCR4 have been involved in promoting cancer prolifera-
tion, survival, invasion, metastasis, stemness and
angiogenesis.52–57 CCR1 and its ligand CCL5 have been
associated with cancer cell invasion and metastasis.58–60

Similar observations have been reported for the CCR2-
CCL2, CCR5-CCL2,3,4,5, CCR7-CCL19,21 and CCR8-
CCL18 axes.61–69 The role of FPR1 in tumor progression
remains controversial as it has been associated with tumor
invasion in colorectal cancer but with tumor suppression in
gastric cancer.70,71 As far as P2RY6 is concerned, Placet
et al. recently suggested its role in cancer cell survival.72

Overall, these 13 chemotactic receptors and chemokines
may constitute universal targets for cancer therapy.
Further consolidating the relevance of our results, addi-
tional correlations between tumor-infiltrating immune cell
subtypes and chemokine/receptors across cancer types pre-
viously described in separate preclinical/clinical studies were
found (Figure 4). Among these, we can mention the asso-
ciation between the infiltration of T cells and the require-
ment of the receptor ADORA273 or the role of CXCR3 and
its ligands CXCL9 to 11 in the recruitment of CD8+ T cells,
Th1 cells and NK cells.18 However, Figure 4 also revealed
original interactions between immune cell subtypes. For
instance, neutrophil infiltrates appeared negatively

Figure 3. Heatmap representation of reproducible Spearman’s correlation coefficients, in colorectal carcinomas (A), in non-small cell lung cancers (B) and in
melanomas (C).
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correlated with the chemokines CXCL9-11. Based on these
results, the recruitment of T lymphocytes and neutrophils
into the tumor microenvironment could be mutually

exclusive. Indeed, a recent work demonstrating an inhibi-
tory activity of CXCL9 peptides on neutrophil migration in
murine models supporting such a hypothesis.74

Figure 4. Heatmap representation of reproducible Spearman’s correlation coefficients, across different cancer types, integrating the results shown in Figure 2 to
Fig. 5 on breast, colorectal, non-small cell lung cancer and melanoma.
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Impact of chemotactic factors and receptors on breast
cancer prognosis

It is well established that breast cancer is under immunosur-
veillance and that neoadjuvant chemotherapy is particularly
successful if the cancer is massively infiltrated by immune
effectors including T lymphocytes.75–80 Driven by the dichot-
omy between mRNAs coding for chemotactic factors/recep-
tors that either (i) positively correlated with leukocyte
infiltration across distinct cancer types or (ii) lacked a clear
pattern of correlation (Figure 4), we investigated the impact of
these two groups of genes on the survival of breast cancer
patients. We subdivided the second group into two subgroups
(see Supplementary Table 1): a) genes that positively correlate
with leukocyte infiltration in breast cancer (but fail to do so
across the entire spectrum of cancers analyzed in this study),
b) remaining chemotactic factors/receptors (that fail to corre-
late with immune metagenes in breast cancer). We also con-
sidered the group of chemotactic factors/receptors that
positively correlated with leukocyte infiltration across distinct
cancer types, without the single genes that are characterized
by low expression (see Supplementary Table 1).

We explored the link between chemotactic factors/recep-
tors and response to treatment in the four out of the five
Breast Carcinoma datasets for which the treatment response
was annotated (as pathological complete response or simple
response, see Table 2) after neo-adjuvant chemotherapy:
Bonnefoi,32 Hatzis,33 Tabchy,34 and Korde.46 We also
included the METABRIC dataset81 in this analysis, because
we had access to the information whether patients were alive
or deceased, a status that is related to disease prognosis and
treatment response. In four out of these five datasets (all
except the Korde cohort, probably due to its small size),
expression of chemotactic factors/receptors that positively
correlated with leukocyte infiltration across distinct cancer
types (as defined in Figure 4) was positively associated with
treatment response (Bonnefoi, Hatzis and Tabchy datasets) or
overall survival (METABRIC dataset) (Table 2). METABRIC
results differed for non-reproducible chemotactic factors/
receptors, probably because treatment response is measured
indirectly. In contrast, no correlation was observed between
the remaining chemotactic factors/receptors and prognostic

features (Table 2). This is also illustrated by the Volcano Plots
of different groups of chemotactic factors/receptors
(Supplementary Figure 13). Because METABRIC dataset has
the clinical information about survival, we attempted to build
simple biomarkers (see Material and Methods) from the dif-
ferent groups of chemotactic factors/receptors
(Supplementary Figure 14). Only the group of chemotactic
factors/receptors reproducibly detected across different cancer
types tended to separate the cohort into two groups based on
the expression level of the biomarkers, with a difference
between survival outcomes that happened to be almost sig-
nificant (p = 0.081). Altogether, these data support the idea
that chemotactic factors and receptors that positively and
reproducibly correlate with the immune infiltrate of different
cancer types play a positive role in local immunosurveillance,
hence improving the probability of complete therapeutic
responses in the context of neoadjuvant chemotherapy. The
global function of this group of reproducible chemotactic
factors/receptors is not well established, and therefore this
group cannot be considered as a single metagene, like for
immune cell types. Nevertheless it may be interesting to
compare the differential abundance of these chemotactic fac-
tors/receptors with the differential expression of the immune
cell metagenes (in Supplementary Table 2, one sided t-tests of
differential expression of treatment response). Although the
combined t-tests produce significant differential expression of
immune cell metagenes, only one cohort (Bonnefoi) has sig-
nificant p-values on its own (thresholds 0.05), which appears
less significant than the tests for chemotactic factors/receptors
of Table 2. It is always difficult to interpret such variation
between cohorts. The main reason could reside in the treat-
ment regimens and in the clinical definition of treatment
response that were not the same for all cohorts.

Concluding remarks

The present bioinformatic study has been conducted with the
explicit aim of identifying universal (rather than organ-specific)
correlations between the expression level of mRNAs coding for
chemotactic factors and receptors, and metagene signatures
reflecting distinct leukocyte subtypes infiltrating a variety of
cancer types. The specific strategy that we have chosen for this

Table 2. Combined p-values are obtained by applying Fisher’s method.

Breast
cancer
dataset

Criterion of
positive
prognosis

P-value of exact Fisher test, for
positively correlated, reproducible

mRNAs coding for chemotactic factors/
receptors

P-value of exact Fisher test, for
positively correlated, reproducible

mRNAs coding for chemotactic factors/
receptors,

with no low expression

P-value of exact Fisher test, for
positively correlated, breast
cancer-specific mRNAs coding

for chemotactic factors/
receptors

P-value of exact
Fisher test, for other
chemotactic factors/

receptors

Bonnefoi Pathological
complete
response

5.65e-16 3.95e-5 0.0258 1

Hatzis Pathological
complete
response

0.00118 0.00104 0.443 1

Tabchy Pathological
complete
response

1.24e-6 1.08e-6 0.0200 1

Korde Treatment
response

1 1 1 0.227

METABRIC Alive 0.0141 0.0137 1 0.00183
Combined 6.56e-21 3.61e-21 0.0797 0.247
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meta-analysis addresses important aspects with respect to the
homogeneity and heterogeneity of patient cohorts.
Undoubtedly, there are major interindividual variations in the
density, composition, architecture and functional state of the
tumor infiltrate.9,11,82,83 Notwithstanding this fact, the variations
in metagene expression across different cancer types were not
higher than those observed for a well known ‘house-keeping’
gene (ACTB, GAPDH, TUB), suggesting that the heterogeneity
of the immune infiltrate is not substantially higher than that of
the expression ofmRNAs coding for essential components of the
cytoskeleton (ACTB) or glycolytic metabolism (GAPDH).

A second notion that emerges from this meta-analysis con-
cerns the regulation of the immune infiltrate by chemotactic
factors and receptors occurring in a universal (homogeneous)
pattern across distinct cancer types, irrespective of their locali-
zation in the body, versus organ-specific (heterogeneous) pat-
terns. Surprisingly, it appears that most of the (positive)
correlations between the chemotactic factors and receptors
analyzed herein and different infiltrating leukocyte subtypes
are highly reproducible across different cancer types, while few
of them are organ-specific. This points to the importance of
common rules dictating the recruitment and permanence of
immune cells into the tumor bed, irrespective of the precise
cancer type that is concerned. Such universal rules appear to
supersede in importance those that may influence organ-spe-
cific circuitries. Because this analysis is based on correlation,
the causal interpretation is not obvious (are chemotactic fac-
tors/receptors attracted by cell types, or is it the contrary?). A
better understanding of these circuitries would include a
description/modeling of signaling networks at the microenvir-
onment level, which is beyond the scope of the present work.

Most importantly, it appears that the mRNAs coding for
chemotactic factors and receptors that reproducibly and posi-
tively correlate with the local presence of distinct immune cell
types seem to have a positive impact on breast cancer prog-
nosis. This contrasts with chemotactic factors and receptors
that exhibit heterogeneous and organ-specific patterns of cor-
relation with the immune infiltrate that have no such prog-
nostic impact. On a positive note, this implies that, at least in
the realm of chemotaxis, insights that have been gained in one
cancer type can be extrapolated to other malignancies, irre-
spective of their cell of origin.

Material and methods

Datasets and immune infiltrate estimation

We explored public datasets of transcriptome microarrays.
The complete list of these datasets is shown in Table 1.
We use data that were already normalized, as provided
from the different repository websites. The
MCPcounter27 R-package was used for estimating immune
cell type activities. This method uses groups of genes to
construct metagenes, whose expressions measure indirectly
immune cell abundances. The identification of gene
groups have been done in a strongly reproducible manner,
learned from datasets where immune cell type abundances
are known.

Test of variance difference

One sided F-test was used, to test if variance of genes of
interest (including immune metagenes) is smaller than var-
iance of housekeeping genes.

Patterns of reproducible correlation

For each dataset, we computed the correlation coefficients
between immune cell activities and expression of individual
mRNAs coding for chemotactic factors/receptors. We decided
to use the Spearman’s correlation method, because the normal
hypothesis necessary for using Pearson’s approach is not
guaranteed for immune activities estimated by MCP counter
method. For each cancer type, we used the Fisher’s method in
the following way. We computed one-sided Spearman corre-
lation test for both cases (H1: positive correlation and H1:
negative correlation). For each case (H1 positive and H1
negative), we combined the p-value by using Fisher’s method
(Chi-square test on sum of p-value logarithms). If both
p-values were higher than 0.05, the correlation was considered
as non-reproducible. In any other case, we considered that the
correlation was reproducible. We then used the coefficient
that has the smallest p-value and whose sign is compatible
with the hypothesis H1 that had a significant combined
p-value. These correlation coefficients are illustrated in
Figure 2–3.

For the fully reproducible correlation coefficients listed in
Figure 6, we applied the same procedure as above. Thus, we
considered the correlations coefficients of Figure 2–3 and
their associated p-values, as computed above (combined
one-sided correlation tests by Fisher’s method). These
p-values were one-sided ones, related to the sign of the asso-
ciated correlation coefficient. We computed the p-values asso-
ciated to one-sided correlation test of opposite sign (‘one
sided p-value’ → (1-‘one sided p-value’). Therefore, we
could apply Fisher’s method for both H1 hypothesis (positive
and negative correlation) to a common set of cancer types.
Again, if both p-values were higher than 0.05, the correlation
was interpreted as non-reproducible. In the other case, we
considered that correlation was reproducible; we then used
the coefficient that has the smallest p-value and whose sign is
compatible with the hypothesis H1 that has a significant
combined p-value. These correlation coefficients are shown
in Figure 4. Suppl. Fig 7 is produced by using the same
analysis, replacing the p-value threshold of 0.05 (Figure 4)
by 0.01 (Suppl. Fig. 7).

Filtering for low expression
The first filter is based on microarray expression among the
five cancer types. For each dataset, we computed the average
(among different patients) of the expression rank, for each
chemotactic factors/receptors. Because no obvious threshold
emerged from these mean rank expressions, we choose it
arbitrarily (value = 0.2) to filter out a reasonable amount of
these chemotactic factors/receptors that are expressed at a low
level.

The second filter is based on mRNA expression from the
Human Protein Atlas 50,51,84 from the three methods (HPA,
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GTEx, FANTOM5), in the spleen and lymph node. Again, no
obvious threshold emerged from these data. Therefore we
arbitrarily considered that a gene has a low expression if its
mRNA abundance is lower than (TPM/RPKM = 1), as deter-
mined by all three methods (HPA, GTEx, FANTOM5) and in
both spleen and lymph node.

We applied these two filters to the list of chemotactic
factors/receptors. We also considered a threshold of 2 for
(TPM/RKM), applying the same analysis.

Fisher’s exact test for treatment response
We considered genes that were overexpressed in responsive
tumors (or alive patients in METABRIC dataset), using a
p-value threshold of 5%, a logFC threshold of log2(1.2) for the
METABRIC, Bonnefoi and Korde datasets, a logFC threshold of
log2(1.5) for Hatzis’ and Tabchy’s datasets (these thresholds
varied in order to obtain non-empty intersections with the
reproducible correlation gene list of Figure 4), using limma
R-package.85 For each dataset, we computed the contingency
tables regarding overexpressed genes and reproducible correla-
tion gene list of Figure 4 and applied Fisher’s exact tests.
Significant results are shown in Table 2.
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