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Abstract

With the growing concerns about research reproducibility and replicability, the assessment

of scientific results’ fragility (or robustness) has been of increasing interest. The fragility

index was proposed to quantify the robustness of statistical significance of clinical studies

with binary outcomes. It is defined as the minimal event status modifications that can alter

statistical significance. It helps clinicians evaluate the reliability of the conclusions. Many fac-

tors may affect the fragility index, including the treatment groups in which event status is

modified, the statistical methods used for testing for the association between treatments

and outcomes, and the pre-specified significance level. In addition to assessing the fragility

of individual studies, the fragility index was recently extended to both conventional pairwise

meta-analyses and network meta-analyses of multiple treatment comparisons. It is not

straightforward for clinicians to calculate these measures and visualize the results. We have

developed an R package called “fragility” to offer user-friendly functions for such purposes.

This article provides an overview of methods for assessing and visualizing the fragility of

individual studies as well as pairwise and network meta-analyses, introduces the usage of

the “fragility” package, and illustrates the implementations with several worked examples.

Introduction

Research reproducibility and replicability have been major concerns in many areas of scientific

research [1–6]. Such issues may be largely owing to the misuse of p values [7, 8], which are

often misinterpreted as a measure of treatment effects in clinical studies [9, 10]. Consequently,

studies with smaller p values (i.e., statistically more significant effects) are more likely to be

published; this phenomenon is often referred to as publication and selective reporting bias or

small-study effects [11–18]. This bias may distort clinical conclusions toward an artificially

favorable direction and thus greatly threaten their reliability. Due to these concerns, communi-

ties across many scientific fields have recently called for more careful interpretations of p val-

ues and statistical significance [19–22]. In an effect to reduce publication bias, it has been
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recommended to pre-register clinical trials or publish their protocols before obtaining the final

results [23].

To supplement the use of p values and 95% confidence intervals (CIs) for assessing treat-

ment effects in clinical studies with binary outcomes, Walsh et al. [24] proposed the fragility

index (FI) to quantify their fragility (or robustness). The FI is defined as the minimal event sta-

tus modifications that can alter a study result’s statistical significance. For example, if an origi-

nally significant treatment effect estimate becomes non-significant by modifying only a single

patient’s event status (e.g., from no disease to disease), then the clinical study’s conclusion is

highly fragile. In this case, clinicians may need to carefully borrow real-world evidence to

assess the likelihood of that patient developing the disease and appraise the reliability of the

evidence about treatment effects from this study. Similar concepts have also been considered

in the earlier literature [25, 26]. With the growing concerns about research reproducibility and

replicability, the FI has regained much attention in recent years. It has been applied to assess

the fragility of randomized controlled trials in several clinical areas, such as anticancer medi-

cine, critical care, surgery medicine, and obstetrics [27–33].

The concerns of research reproducibility and replicability also arise in systematic reviews

and meta-analyses (MAs). Publications of MAs have been rapidly increasing in the past few

decades, because they offer a powerful tool for synthesizing and contrasting existing findings

and producing more precise effect estimates [34, 35]. However, sometimes different MAs

focusing on the same topic can have inconsistent conclusions [36–38]. Similar to pre-register-

ing clinical trials, pre-registered prospective MAs have been recommended [39, 40]. Recently,

the FI was extended to assess the fragility of conventional pairwise MAs as well as network

meta-analyses (NMAs) of multiple treatment comparisons [41, 42]. The FI of an MA is defined

similarly to that in a clinical trial; however, its estimation is more complicated, because the

modifications of event status may occur in different studies within the MA. Therefore, it is

computationally challenging for applied scientists to calculate and interpret the FI of an MA.

It may not be sufficient to rely completely on the numerical value of the FI derived at a spe-

cific significance level (e.g., commonly used 0.05) for properly interpreting the fragility. For

example, the FI may be highly associated with the p value under certain settings [43]. In such

cases, the FI may not provide much more information in addition to the p value. Nevertheless,

the correlation between the FI and p value is generally expected, because the FI is derived

based on p value (or CI); however, as long as the correlation coefficient is not nearly ±1, the FI

can still serve as a useful supplement. Its interpretation of “the number of events modified for

altering significance” is intuitive for clinicians. This is similar to the common practice of

reporting point estimates of treatment effects, their standard errors (SEs), p values, and CIs;

each of them provides important information for assessing treatment comparisons, although

they are associated with one another. Moreover, no widely-accepted guidelines are available to

evaluate the extent of fragility based on the FI value [44]. Clinicians’ opinions (e.g., about the

clinical importance of an effect) may be incorporated when assessing the fragility [45, 46]. For

example, it is likely that a non-event may be changed to be an event for common diseases, but

it is less likely for rare diseases. In addition, the FI may not be very suitable for analyses of

time-to-event data, in which the timing of events, rather than the occurrence of events, is of

primary interest [47–49]. In summary, as a relatively new measure, more comprehensive eval-

uations, including visualizations of the whole process that alters the significance, should be

taken into account when interpreting the FI in clinical practice.

To the best of our knowledge, very limited software packages are available for assessing the

fragility of clinical results, and no package has been developed yet for visualizing the fragility.

An online calculator (https://clincalc.com/Stats/FragilityIndex.aspx) offers a simple tool to cal-

culate the FI of individual studies; users only need to input the event counts and sample sizes

PLOS ONE Assessing and visualizing fragility of clinical results with binary outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0268754 June 1, 2022 2 / 38

Institute of Mental Health grant R03 MH128727,

National Institutes of Health/National Library of

Medicine grant R01 LM012982 (LL and HC), and

National Institutes of Health/National Center for

Advancing Translational Sciences grant UL1

TR001427 (LL). The content is solely the

responsibility of the authors and does not

necessarily represent the official views of the

National Institutes of Health. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://clincalc.com/Stats/FragilityIndex.aspx
https://doi.org/10.1371/journal.pone.0268754


in the two treatment groups in a clinical study. However, it does not provide options for speci-

fying the statistical significance level, statistical method used for deriving the significance, etc.

The significance level is fixed at 0.05, and Fisher’s exact test is the only option to derive the FI.

An R package “fragilityindex” [50] is also available to calculate the FI of individual studies; it

additionally extends the FI to logistic regression analyses and survival data analyses. Neverthe-

less, it only permits users to specify the significance level; many other important factors (such

as treatment groups in which event status is modified) that may impact the FI cannot be

changed. Atal et al. [41] provide a web interface to calculate the FI of a pairwise MA (https://

clinicalepidemio.fr/fragility_ma/); the Stata module “metafrag” [51] can also be used for this

purpose.

We have developed an R package “fragility” [52] that provides many additional options for

assessing and visualizing the fragility of individual trials, pairwise MAs, and NMAs. This arti-

cle gives an overview of these options and introduces the usage of the “fragility” package in

detail with several worked examples. The remaining content is organized as follows. First, we

review methods for assessing the fragility in various clinical settings. Second, we introduce the

structures of different types of datasets and the usage of various functions provided by the “fra-

gility” package. Third, we present several worked examples and display their results to illus-

trate the usage of these functions. Finally, we provide a brief discussion about future

improvements.

Materials and methods

Assessing and visualizing the fragility

Fragility of an individual clinical study. Suppose that a clinical study compares two

treatments, denoted by 0 and 1, with a binary outcome. The results are typically reported in a

2×2 table (Table 1). Let n0 and n1 be the sample sizes in treatment groups 0 and 1, respectively,

and e0 and e1 be the event counts. These counts are non-negative integers, and e0� n0 and e1

� n1.

By modifying some events’ status, the impact on the study result can be used to calculate

the FI. The uncertainties in event status are common in practice; for example, if the follow-up

periods for some participants are not sufficient, their disease outcomes may occur after the

end of study. [24] originally proposed to assess the fragility of a study by modifying event sta-

tus only in a single treatment group; such a group is chosen as the one with the fewest events.

Nevertheless, this restriction may not guarantee that the modifications of event status for alter-

ing statistical significance or non-significance are minimal. In general, we may consider event

status modifications in both treatment groups, as in Table 1. Specifically, let f0 and f1 be the

numbers of non-events changed to events in groups 0 and 1, respectively. They may take any

integer values between −ek and nk − ek (k = 0, 1). Negative values of f0 or f1 indicate decreasing

Table 1. Illustration of a 2×2 table and event status modifications.

Treatment Event Non-event Sample size

2×2 table of the original study:

Group 0 e0 n0 − e0 n0

Group 1 e1 n1 − e1 n1

2×2 table with event status modifications:

Group 0 e0 + f0 n0 − e0 − f0 n0

Group 1 e1 + f1 n1 − e1 − f1 n1

https://doi.org/10.1371/journal.pone.0268754.t001
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event counts in the corresponding group, while positive values indicate increasing event

counts; setting f0 or f1 to 0 implies no event status modification.

Many statistical methods can be used to assess the association between a treatment and an

outcome in a 2 × 2 table [53]. Fisher’s exact test is commonly used for this purpose; its p value

is calculated based on a hypergeometric distribution under the null hypothesis. This test is par-

ticularly useful for small sample sizes, because many alternative methods use large-sample

asymptotic properties and may not perform well for small sample sizes. The chi-squared test is

another popular method, and its p value is based on the asymptotic chi-squared distribution

under the null hypothesis; thus, this test generally requires sufficiently large sample sizes.

Clinicians also frequently use certain measures to quantify treatment effects for binary out-

comes, e.g., the odds ratio (OR), relative risk (RR), and risk difference (RD); p values may be

produced based on these effect sizes. Without loss of generality, these effect sizes are calculated

for the comparison of group 1 vs. group 0 throughout this article. The OR and RR are conven-

tionally analyzed on a logarithmic scale for a better approximation to the normal distribution.

Specifically, the log OR is estimated as

yðf0; f1Þ ¼ log
ðe1 þ f1Þ=ðn1 � e1 � f1Þ
ðe0 þ f0Þ=ðn0 � e0 � f0Þ

with SE

sðf0; f1Þ ¼
1

e0 þ f0
þ

1

n0 � e0 � f0
þ

1

e1 þ f1
þ

1

n1 � e1 � f1

!1=2

:

0

@

The log RR is estimated as

yðf0; f1Þ ¼ log
ðe1 þ f1Þ=n1

ðe0 þ f0Þ=n0

with SE

sðf0; f1Þ ¼
1

e0 þ f0
þ

1

e1 þ f1
�

1

n0

�
1

n1

!1=2

:

0

@

The RD is estimated as

yðf0; f1Þ ¼
e1 þ f1
n1

�
e0 þ f0
n0

with SE

sðf0; f1Þ ¼
ðe0 þ f0Þðn0 � e0 � f0Þ

n3
0

þ
ðe1 þ f1Þðn1 � e1 � f1Þ

n3
1

#1=2

:

2

4

In the presence of zero counts, a continuity correction (often 0.5) needs to be applied to all

data cells in the 2×2 table for producing these estimates [54].

Consequently, a certain set of event status modifications f0 and f1 leads to a p value based on

each of the above five methods for assessing the association between the treatment and out-

come, denoted by p(f0, f1). The p value of the original study with no event status modification

is p(0, 0) with f0 = f1 = 0. For the chi-squared test, OR, RR, and RD, their p values may not be

accurate when some data cells are small, because they all use large-sample asymptotic null
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distributions to calculate p values. The estimated log OR, log RR, and RD are assumed to

approximately follow the normal distribution, so their p values are calculated as pðf0; f1Þ ¼

2F �
jyðf0 ;f1Þj
sðf0 ;f1Þ

� �
(two-sided) or pðf0; f1Þ ¼ F �

jyðf0 ;f1Þj
sðf0 ;f1Þ

� �
(one-sided), where F(�) denotes the

cumulative distribution function of the standard normal distribution. The OR, RR, and RD

can indicate the direction of treatment effects; thus, the alternative hypothesis could be two- or

one-sided. Fisher’s exact test and the chi-squared test evaluate the association with no specific

direction; therefore, their p values are two-sided.

For each method, the p values p(f0, f1) based on all considered event status modifications

can be visualized as a matrix of points; each point represents a p value, with the x- and y-axes

representing its corresponding event status modifications, and its color distinguishes the mag-

nitude of the p value [55]. When event status modifications are restricted to a single treatment

group, the p values p(f0, 0) or p(0, f1) can be presented against f0 or f1 in a scatterplot for visual-

izing the change of p values as event status modifications vary. These plots will be illustrated in

our worked examples later.

Assume the statistical significance level is pre-specified at α. Formally, if the original study

result is statistically significant with p(0, 0) < α, then the FI is defined as

FI ¼ min
pðf0 ;f1Þ�a

fjf0j þ jf1jg;

if the original study result is non-significant with p(0, 0)� α, then the FI is

FI ¼ min
pðf0 ;f1Þ<a

fjf0j þ jf1jg:

A smaller value of FI indicates a more fragile result. The above minimization problems are

subject to −ek� fk� nk − ek (k = 0, 1). These ranges could be adjusted to accommodate with

clinicians’ needs. For example, if it is more likely that some events are not observed, then one

may restrict the ranges to be non-negative for yielding more events. One may also restrict

event status modifications to a single group, as in Walsh et al. [24]. When the modifications

are restricted to group 0, the resulting FI is

FI0 ¼

(minpðf0 ;0Þ�a
jf0j if pð0; 0Þ < a;

minpðf0 ;0Þ<a
jf0j if pð0; 0Þ � a:

Similarly, when the modifications are restricted to group 1, the resulting FI is

FI1 ¼

(minpð0;f1Þ�a
jf1j if pð0; 0Þ < a;

minpð0;f1Þ<a
jf1j if pð0; 0Þ � a:

Clearly, 1� FI�min{FI0, FI1}. It is possible that the significance or non-significance cannot

be altered based on given ranges of event status modifications; in such cases, we define FI as

not available (NA). This may happen when sample sizes are small, as they only permit a nar-

row range of modifications.

Of note, this article discusses multiple methods for testing the association between treat-

ment and outcome and thus deriving the FI. We hope that they offer flexibility for users when

assessing clinical studies’ fragility based on different tools. We do not suggest that users should

try all methods because this practice could lead to “fragility-hacking.” Users are recommended

to use the statistical method specified in the study protocol for deriving the FI.
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Although the significance level is conventionally set at α = 0.05, this choice is arguably arbi-

trary, and the resulting false positive rate may be considered high in some fields of science.

Many researchers propose to lower this standard to α = 0.005 for improving research repro-

ducibility and replicability [56, 57]. As the FI is derived based on a specific significance level,

the significance level should always be reported alongside the associated level. Instead of rely-

ing on the FI at a single significance level, clinicians might also be interested in the trend of the

FI as the significance level varies (e.g., from 0.005 to 0.05), which can be visualized in a scatter-

plot [55]. Theoretically, the FI is a function of the significance level, denoted by FI(α). This is a

step function because the FI must take positive integer values. Suppose the FI is evaluated from

α = αL (say, 0.005) to α = αU (say, 0.05). We may consider the average of the area under the

function to quantify the overall fragility among the range of significance levels [αL, αU]. The

idea is similar to the area under the receiver operating characteristic curve (AUC) used in diag-

nostic decision-making. The average FI is FIavg ¼ 1

aU � aL

R aU
aL

FIðaÞda. In practice, this quantity

can be approximated by the average of FIs at B (say, 100) equally-spaced values between αL

and αU, denoted by αb for b = 1, 2, . . ., B with α1 = αL and αB = αU. Because
R aU
aL

FIðaÞda �
aU � aL

B

PB
b¼1

FIðabÞ for a sufficient large B, the average FI is FIavg � B� 1
PB

b¼1
FIðabÞ, i.e., the

arithmetic mean of the values of FI(αb).

Multiple clinical studies may be conducted on the same topic; they compare the same treat-

ment groups and investigate the same outcome. Clinicians may want to compare the fragility

across the multiple studies. As the FI of an individual study depends on the sample size, it

might not be sensible to directly compare the FIs of the multiple studies. Alternatively, one

may use the relative measure, fragility quotient (FQ), to compare the multiple studies’ fragility

[58]. Specifically, FQ ¼ FI
n0þn1
� 100%, where n0 + n1 is the total sample size of the study. Thus,

the FQ represents the minimal percentage change of event status among all participants that

can alter the significance (or non-significance), and it ranges within 0%–100%.

Fragility of a meta-analysis. An MA aims at synthesizing and contrasting findings from

multiple independent studies on the same topic. Consider an MA with a binary outcome that

contains N studies. Each study compares the same two treatment groups (denoted by 0 and 1)

and reports its 2×2 table with event counts ei0 and ei1 and sample sizes ni0 and ni1 in the two

groups (i = 1, . . ., N). The effect measure can be the (log) OR, (log) RR, or RD. Let yi and si be

the estimated effect size and its SE, respectively, in study i. The continuity correction is applied

to studies with zero data cells. The estimated effect sizes are conventionally assumed to approx-

imately follow the normal distributions yi � Nðyi; s2
i Þ within studies, where θi denotes the

underlying true effect size of study i.
Here, the within-study SEs si are assumed to be fixed, known values. Alternative exact

methods (without the approximation to the normal distributions) are available via generalized

linear mixed models or Bayesian hierarchical models; they can avoid the continuity correction

in the presence of zero data cells and may have better performance than the conventional

method for sparse data [59–63]. However, to assess the fragility of the MA, this article focuses

on the conventional method instead of the alternatives, because many iterations may be

needed to derive the FI, and it may be computationally demanding to repeat the exact methods

many times. Also, as most MA applications have used the conventional method so far, the FI

derived from this method may better reflect the current practice.

The underlying true effect sizes are further assumed to follow the normal distribution θi�
N(θ, τ2), where τ2 is the between-study variance owing to heterogeneity. A special case is that

τ2 = 0, which implies θi = θ for all studies; this case is referred to as the fixed-effect or com-

mon-effect setting, and θ represents the common effect size shared by all studies. On the other
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hand, τ2 > 0 yields the random-effects setting, where θ is interpreted as the overall effect size

across studies. In both settings, θ is of primary interest, and the MA aims at estimating this

parameter and its CI. One may refer to Borenstein et al. [64], Riley et al. [65], and many other

articles for extensive discussions about the interpretation and selection of the fixed-effect and

random-effects settings.

The between-study variance τ2 plays a critical role in the random-effects MA because it

greatly impacts the CI of the treatment effect estimate and thus the statistical significance. It

can be estimated via several approaches. The DerSimonian–Laird (DL) estimator by [66] is the

most popular one; nevertheless, several better alternatives, e.g., the restricted maximum likeli-

hood (REML) estimator, have been shown to perform better in general [67, 68]. Let t̂2 be the

estimated between-study variance; under the fixed-effect setting, set t̂2 ¼ 0. Each study in the

MA is assigned with a weight wi ¼ 1=ðs2
i þ t̂

2Þ. The overall effect size is estimated as

ŷ ¼

PN
i¼1

wiyi
PN

i¼1
wi

:

It approximately follows the normal distribution, and its (1 − α) × 100% CI is conventionally

constructed as

ŷ � z1� a=2 �

�
XN

i¼1

wi

�� 1=2

;

where z1−α/2 denotes the 1 − α/2 quantile of the standard normal distribution. Alternatively,

[69, 70] refined the CI by accounting for the variation in t̂2. The Hartung–Knapp–Sidik–Jonk-

man (HKSJ) method constructs the CI as

ŷ � tN� 1;1� a=2 �

PN
i¼1

wiðyi � ŷÞ
2

ðN � 1Þ
PN

i¼1
wi

)1=2

;

8
<

:

where tN−1,1−α/2 denotes the 1 − α/2 quantile of the t distribution with N − 1 degrees of free-

dom. It has been shown to have a better coverage probability than the CI based on the normal

distribution, especially when the number of studies N is small [71].

To assess the fragility of an MA, an ideal approach is to exhaustively enumerate all possible

event status modifications step by step; however, this procedure may be impractical from the

computational perspective if many steps are needed to alter the significance or non-signifi-

cance. Suppose that the overall effect size is significant and is above the null value. At each step

of modifying event status, we may need to consider decreasing one event count in group 1 or

increasing one event count in group 0 in a single study; thus, assuming that the event counts

have not achieved the bounds (i.e., 0 or sample size), there are 2N possible cases for this step.

Such iterations will terminate only after the significance is altered, so we need to perform up to

(2N)FI MAs during this process. This is not practical in many real-world applications; for

example, even for a relatively small MA with N = 10 studies, if the FI is 5, then this exhaustive

search needs to perform over 3 million different MAs with modified event status.

Instead of enumerating all possible event status modifications, Atal et al. [41] proposed a

heuristic iterative process based on the CI of the overall effect size estimate to derive the FI.

Specifically, suppose that the original MA yields a significant overall effect size estimate, and it

is larger than the null value. We initiate the iterative process from the original MA (step 0). In

order to move the CI toward the null value, event status is modified to decrease event counts

(down to 0) in group 1 or increase those in group 0 (up to the corresponding sample size). At

each step, one event is changed to a non-event in group 1, or one non-event is changed to an
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event in group 0 in a certain study; separate MAs are performed based on the data with each of

the above modifications to produce the CIs of the overall effect size estimate. The modification

that leads to the smallest lower bound of the CI (i.e., the one closest to the null value if the CI

still does not cover it) is selected as the optimal one for facilitating the process of altering the

significance. Based on the optimal modifications identified in the previous steps, the iterations

continue until the CI covers the null value. Because each step contains up to 2N modifications,

the above algorithm only needs to perform up to 2N × FI MAs to derive the FI, making the

process computationally feasible. This number is much smaller than (2N)FI in the exhaustive

search, especially when N or the FI value is large. For visualizations of the iterative steps for

deriving the FI of the MA, readers may refer to Fig 2 in Atal et al. [41]. We will also provide a

worked example later to demonstrate the process.

On the other hand, suppose that the original MA has a non-significant overall effect size

estimate. Unlike the case of a significant overall effect size estimate where the CI is moved

toward only one specific direction, now the CI covers the null value, and we may move it

toward either the left or right direction for achieving significance. For each direction, a sepa-

rate FI can be derived via an algorithm similar to the one described above; the final FI is the

minimum value of these two FIs.

In cases that significance or non-significance cannot be altered, the FI is defined as NA.

The FQ can be similarly calculated for the MA; it is the FI divided by the total sample size

across all studies. To visualize the process of the iterative algorithm for deriving the FI, one

may present the changes in event counts in the two treatment groups along with the studies

involved in the corresponding modifications against the iterations; we will provide worked

examples to illustrate the visualizations.

Fragility of a network meta-analysis. NMA is an extension of the conventional pairwise

MA that compares only a pair of treatments at one time; it aims at comparing multiple treat-

ments simultaneously by synthesizing both direct and indirect evidence about treatment com-

parisons [72, 73]. Suppose a trial compares treatments A and C and another trial compares B

and C; these two trials provide indirect evidence for A vs. B via the common comparator C.

NMA has been increasingly used in recent years, because many treatments may be available

for a specific disease outcome. It is particularly useful when some treatments of interest (e.g.,

new drugs) have been seldom compared directly, but many trials have compared them with

some common treatments (e.g., placebo). It may produce more precise treatment effect esti-

mates than separate pairwise MAs and provide a coherent treatment ranking for decision mak-

ing [74–77].

Various methods have been developed to perform NMA under both the frequentist and

Bayesian frameworks [78–87]. To assess the fragility of an NMA, similar iterative procedures

for a pairwise MA can be used [42]. We focus on the frequentist method by Rücker [79] to pro-

duce the CIs of treatment comparisons in the NMA. Although in theory any method can be

used to derive the FI, the Bayesian methods could be very time-consuming even for analyzing

a single NMA, so it may not be practical to iteratively apply them to many NMAs with modi-

fied event status.

Specifically, unlike the case of a pairwise MA that involves a single treatment comparison,

the NMA contains multiple comparisons, each yielding a separate effect size estimate. Let K be

the number of treatments in the NMA; a total of K(K − 1)/2 comparisons are estimated. There-

fore, the FI is not defined for the whole NMA as in individual studies or pairwise MAs; it is

defined for each treatment comparison. Consequently, for a specific pair of treatments, say A

and B, we consider event status modifications based on the significance of their comparison B

vs. A. Modifying any event status, even for those not in groups A and B, may change the results

of all treatment comparisons; thus, in theory, the event status modifications are possible for
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each study’s each treatment group. However, this would dramatically increase the computa-

tion time. Also, it is intuitive to modify event status directly in groups A and B, and such modi-

fications are expected to have a larger impact on the estimated effect size of B vs. A and can

alter the significance or non-significance faster. Therefore, during each iteration for deriving

the FI for B vs. A, this article only considers event status modifications in these two groups.

For example, if the effect size of B vs. A is significantly larger than the null value in the original

NMA, then in each iteration, we consider decreasing event counts in group B or increasing

those in group A in certain studies until the significance is altered.

Similar to assessing the fragility of an individual study and a pairwise MA, the FI of an

NMA is defined as NA if the significance or non-significance cannot be altered. Of note, as

mentioned above, the calculation of the NMA’s FI for comparison B vs. A is based only on

modifying event status in groups A and B. It is possible that the change of significance cannot

be achieved by any event status modification in groups A and B, but it could be achieved by

modifications in other groups. Therefore, users should interpret an FI value of NA in the con-

texts of the event status modifications in the relevant two groups A and B only.

The process of deriving the FI can also be visualized for each treatment comparison using a

similar approach for a pairwise MA. The relative measure FQ can be calculated as the FI

divided by the sample size, but it may have two versions in the NMA. It seems straightforward

to use the total sample size nNMA across all studies and all treatment groups in the whole NMA

as the denominator for calculating the FQ. However, the FQ derived in this way has an upper

bound
nAB
nNMA
� 100%, where nAB denotes the sample size in groups A and B across all studies,

because the algorithm only modifies event status in the associated two treatments for a specific

comparison. This upper bound differs for different pairs of treatments, implying a methodo-

logical limitation. Alternatively, for the comparison B vs. A, we may calculate the FQ as the FI

divided by nAB, so that this FQ still ranges within 0%–100% and could be fairly compared

across treatment pairs.

Using the R package “fragility”

The source file of the R package “fragility” and its manual are available on the Comprehensive

R Archive Network (CRAN) at https://cran.r-project.org/package=fragility. Users can directly

install the package by typing install.packages(“fragility”) in R. Once the pack-

age is installed, users can begin to use the package by loading it:

> library(“fragility”)
The package imports functions from “metafor” [88] for performing pairwise MAs and “net-

meta” [89] for performing NMAs. We first introduce example datasets included in “fragility”

to demonstrate the data structures, and then provide details about the functions for assessing

and visualizing fragility.

Example datasets. The package “fragility” provides four datasets, dat.ad, dat.ns,

dat.copd, and dat.sc. They all consist of multiple clinical studies, and are used for differ-

ent illustrative purposes.

The dataset dat.ad contains 347 randomized controlled trials of antidepressant drugs

with a binary acceptability (dropout due to any cause) outcome; these trials were systematically

collected by Cipriani et al. [90]. This dataset is used to illustrate the usage of functions for

assessing and visualizing the fragility of individual studies. We display the first six trials as

follows:

> data(“dat.ad”)
> head(dat.ad)
e0 n0 e1 n1
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1 7 107 12 105
2 17 118 18 120
3 30 252 49 263
4 25 109 19 109
5 35 167 35 168
6 17 137 26 140
Each row presents the data of a trial. The columns e0, n0, e1, and n1 present event counts

and sample sizes in group 0 and those in group 1, respectively. Of note, we use this dataset as

an example of (multiple) individual studies, although Cipriani et al. [90] originally performed

an NMA based on this dataset. The two treatments (antidepressant drugs or placebo) com-

pared in each study may be different. This dataset does not include multi-arm trials originally

collected by Cipriani et al. [90].

The dataset dat.ns contains a collection of 564 pairwise MAs on nutrition support

retrieved from Feinberg et al. [91]. Each MA may compare different treatments and have dif-

ferent binary outcomes. This dataset is used to illustrate the usage of functions for assessing

and visualizing the fragility of pairwise MAs. Its first six rows are:

> data(“dat.ns”)
> head(dat.ns)
ma.id e0 n0 e1 n1
1 1 3 24 4 20
2 1 2 10 1 9
3 1 2 28 0 22
4 1 31 265 46 260
5 1 6 32 4 28
6 1 4 35 5 39
Each row represents a specific study in a specific MA. The first column ma.id indexes the

MAs, ranging from 1 to 564; the output above is from the first six studies in the first MA. The

remaining four columns e0, n0, e1, and n1 have the same interpretations as in the dataset

dat.ad of individual studies. Some MAs may have overlapping studies, and some may be

divided into several subgroups.

Finally, the datasets dat.copd and dat.sc are used to illustrate the usage of functions

for assessing and visualizing the fragility of NMAs. The dataset dat.copd is extracted from

Woods et al. [92]; it gives a simple NMA with 3 studies comparing 4 treatments for chronic

obstructive pulmonary disease. As this dataset is small, the assessment of its fragility does not

take much time, and thus it serves as a toy example. The full dataset is:

> data(“dat.copd”)
> dat.copd
sid tid e n

1 1 3 1 229
2 1 1 1 227
3 2 2 4 374
4 2 3 3 372
5 2 4 2 358
6 2 1 7 361
7 3 3 1 554
8 3 1 2 270
The data structure of the NMA is different from those of individual studies and pairwise

MAs introduced above. Specifically, each row represents the data from a specific treatment

group in a specific study. The columns sid and tid give the indexes of studies and
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treatments, respectively, and e and n give the corresponding event counts and sample sizes.

The four treatments in this dataset are indexed as 1) placebo; 2) fluticasone; 3) salmeterol; and

4) salmeterol fluticasone combination. As shown in the output above, studies 1 and 3 are two-

armed, while study 2 is four-armed. In addition to this simple dataset, the package “fragility”

also includes a larger NMA dataset of smoking cessation, dat.sc. Its first six rows are dis-

played as follows:

> data(“dat.sc”)
> head(dat.sc)
sid tid e n

1 1 1 9 140
2 1 3 23 140
3 1 4 10 138
4 2 2 11 78
5 2 3 12 85
6 2 4 29 170
This dataset is retrieved from Lu and Ades [93] that used formal methods to perform the

NMA, while it was originally reported in Hasselblad [94]. It has the same data structure as in

dat.copd. The NMA contains 24 studies comparing 4 treatments: 1) no contact; 2) self-

help; 3) individual counseling; and 4) group counseling. The binary outcome is successful

smoking cessation. The first two studies are three-armed as shown in the output above, and

the remaining 22 studies are two-armed.

Functions for assessing the fragility of individual studies. Three functions, frag.
study(), frag.study.alpha(), and frag.studies(), are available in the package

“fragility” to assess the fragility of individual studies. The function frag.study() assesses

the fragility of a single study; frag.study.alpha() assesses an individual study’s fragility

at different significance levels; and frag.studies() assesses the fragility of multiple indi-

vidual studies.

The arguments of the function frag.study() include:

frag.study(e0, n0, e1, n1, data, all = FALSE, methods,
modify0 = “both”, modify1 = “both”, alpha = 0.05,
alternative = “two.sided”, OR = 1, RR = 1, RD = 0,

allcase = TRUE)
where e0, n0, e1, and n1 specify event counts and sample sizes in groups 0 and 1. The

argument data is optional for specifying the dataset; if specified, the previous four arguments

should be the corresponding column names in data. The logical argument all indicates

whether all possible event status modifications will be considered for assessing the study’s fra-

gility. If users only need the numerical value of FI or FQ and the corresponding event status

modifications that alter the significance or non-significance, then all = FALSE (the default)

is sufficient to produce these results via an iterative algorithm (i.e., starting from modifying

one event’s status, until the significance or non-significance is altered). The output of this func-

tion is of class “frag.study”. If all = TRUE, this function generates p values corre-

sponding to all possible event status modifications, so that users are able to visualize the extent

of significance based on these p values. In this case, the output is of both classes “frag.
study” and “frag.study.all”. The visualization can be easily performed using the

function plot() via the S3 method for class “frag.study.all” (detailed later). If the

study has large sample sizes (n0 and n1) in both treatment groups and there may be many

possible event status modifications, all is recommended to be set to FALSE because R may

run out of memory; for example, a study with 1000 samples in each group may lead to up to
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one million possible event status modifications. Appendix A in S1 File includes more details of

additional arguments.

The function frag.study.alpha() efficiently assesses an individual study’s fragility at

different significance levels, and produces the average FI and FQ across these levels. Its argu-

ments include:

frag.study.alpha(e0, n0, e1, n1, data, methods,
modify0 = “both”, modify1 = “both”,
alpha.from = 0.005, alpha.to = 0.05, alpha.breaks = 100,
alternative = “two.sided”, OR = 1, RR = 1, RD = 0)

All arguments except the second line are the same as their counterparts in frag.study();

the second line specifies the range of possible significance levels, which may be particularly use-

ful if clinicians have different opinions about defining statistical significance [56, 57]. Specifi-

cally, alpha.from, alpha.to, and alpha.breaks specify the smallest and largest values

of the significance levels to be considered, and the number of levels, respectively. The candidate

significance levels are equally spaced within the range. This function produces an object of clas-

ses “frag.alpha” and “frag.study.alpha”. The FIs or FQs assessed at different sig-

nificance levels can be visualized as a step-like function using plot() via the S3 method for

class “frag.alpha” (detailed later).

The function frag.studies() permits users to input multiple studies for assessing

their fragility. It is particularly useful if users would like to conduct an overall assessment

among a collection of studies (e.g., trials belonging to some similar specialties) and investigate

the distribution of their fragility measures [31, 32]. Its arguments are similar to those of

frag.study(); they are displayed as follows:

frag.studies(e0, n0, e1, n1, data, methods,
modify0 = “both”, modify1 = “both”, alpha = 0.05,
alternative = “two.sided”, OR = 1, RR = 1, RD = 0)

All arguments have the same usage as in frag.study(), except that e0, n0, e1, and n1
specify vectors of event counts and sample sizes from the multiple studies, instead of single

numerical values. The function output is of classes “frag.multi” and “frag.stud-
ies”; users can apply plot() to the output for generating a bar plot or histogram to visual-

ize the overall distribution of the multiple studies’ FIs or FQs via the S3 method for class

“frag.multi”.

Functions for assessing the fragility of pairwise meta-analyses. Similar to the three

functions above for assessing individual studies’ fragility, “fragility” offers frag.ma(),

frag.ma.alpha(), and frag.mas() for assessing the fragility of pairwise MAs. The

package imports the function rma.uni() from “metafor” [88] to perform pairwise MAs and

obtain the effect size estimates (including CIs), which further determine the FIs or FQs. Users

may refer to [95] for many additional arguments that can be used to customize the MAs.

The major function frag.ma() for assessing a pairwise MA’s fragility has the following

arguments:

frag.ma(e0, n0, e1, n1, data, measure = “OR”, alpha = 0.05,
mod.dir = “both”, OR = 1, RR = 1, RD = 0, method = “DL”, test
= “z”,
. . .)

where e0, n0, e1, and n1 specify the event counts and sample sizes of each study in the

MA, and the optional argument data can specify the MA dataset. One of the three effect mea-

sures, OR, RR, and RD, may be specified for measure, and the arguments OR, RR, and RD
give the corresponding null values. The argument alpha specifies the significance level; it

corresponds to the confidence level (1 − alpha) × 100% of CIs. The argument mod.dir
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indicates the direction of the CI change due to event status modifications when the original

MA’s CI covers the null value (i.e., the case of non-significance altered to significance). It is

not used if the original MA has a significant estimate. Users may specify “left” (moving the

CI to the left side of the null value), “right” (moving the CI to the right side), “one”
(based on the direction of the original point estimate of the overall effect size), or “both”
(both directions) for mod.dir. The default option “both” is expected to find the minimal

event status modifications for altering the non-significance, but it may require more computa-

tion time than the other three options. Appendix A in S1 File includes more details of addi-

tional arguments. The function frag.ma() returns an object of class “frag.ma”; users

can apply plot() to the output via the S3 method for this class to visualize the iterative pro-

cess of event status modifications for deriving the fragility measure of the MA.

The function frag.ma.alpha() assesses the fragility of an MA at multiple significance

levels. Its relationship with frag.ma() is similar to that between frag.study() and

frag.study.alpha(). Its arguments are the same as frag.ma(), except that users can

specify a range of significance levels using the arguments alpha.from, alpha.to,

and alpha.breaks. The function returns an object of classes “frag.alpha” and

“frag.ma.alpha”; like the output of frag.study.alpha(), it can be visualized

using plot() via the S3 method for “frag.alpha”.

The function frag.mas() assesses the fragility of multiple MAs; its relationship with

frag.ma() is similar to that between frag.study() and frag.studies(). It returns

an object of classes “frag.mas” and “frag.multi”, and users can visualize the fragility

measures among the multiple MAs using plot() via the S3 method for “frag.multi”.

Its arguments slightly differ from frag.ma():

frag.mas(e0, n0, e1, n1, ma.id, data, measure = “OR”,
alpha = 0.05,
mod.dir = “both”, OR = 1, RR = 1, RD = 0, method = “DL”, test
= “z”,
. . .)

The major difference is about the arguments e0, n0, e1, n1, and ma.id for inputting data.

Users may refer to the structure of the example dataset dat.ns introduced previously. Specifi-

cally, ma.id is a vector for indexing the multiple MAs, and e0, n0, e1, and n1 specify the

event counts and sample sizes of each study in each MA. Like frag.ma(), users may specify

additional arguments from “metafor” for frag.mas(), as well as frag.ma.alpha(), to

customize the implementation of MAs.

Functions for assessing the fragility of network meta-analyses. In addition, “fragility”

provides two functions frag.nma() and frag.nma.alpha() for assessing the fragility

of NMAs. These are designed for the similar purposes to frag.ma() and frag.ma.
alpha(); that is, frag.nma() deals with an NMA at a specific significance level, while

frag.nma.alpha() assesses the fragility at multiple significance levels. However, these

two functions’ arguments may involve more specifications than their counterparts for pairwise

MAs, owning to the more complicated structure of NMAs. The functions pairwise() and

netmeta() imported from “netmeta” [89] are used to implement NMAs. Of note, “fragility”

does not provide a function for simultaneously assessing the fragility of multiple NMAs like

frag.studies() and frag.mas(), because a single NMA can be viewed as a compre-

hensive collection of many pairwise MAs for comparisons of all available treatments. Usually,

only a few NMAs are available on certain common topics. In such cases, users may apply

frag.nma() to each NMA separately for assessing their overall fragility.

The arguments of frag.nma() are as follows:

frag.nma(sid, tid, e, n, data, measure = “OR”, random = TRUE,
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alpha = 0.05, mod.dir = “both”, tid1.f, tid2.f,
OR = 1, RR = 1, RD = 0,
incr, allincr, addincr, allstudies, . . .)

where sid, tid, e, and n specify study IDs, treatment IDs, their corresponding event

counts and sample sizes. One may also specify the dataset for the optional argument data.

We recommend using the natural numbers (starting from 1) to index the studies and treat-

ments; otherwise, the functions imported from “netmeta” may give warnings that treatments

are re-sorted according to a certain order. Moreover, the arguments measure, alpha,

mod.dir, OR, RR, and RD have the same usage as in frag.ma() for pairwise MAs. The log-

ical argument random indicates whether the NMA is performed under the fixed-effects set-

ting (FALSE) or random-effects setting (TRUE, the default). The two arguments tid1.f and

tid2.f specify the treatment comparison(s) of interest for the assessment of fragility; the

default is that the fragility is assessed for all treatment comparisons. For example, if tid1.
f = 1 and tid2.f = 2, then the function only assesses the fragility of 1 vs. 2; if tid1.
f = c(2, 3) and tid2.f = c(1, 2), then it assesses the fragility of 2 vs. 1 and 3 vs. 2.

The four arguments incr, allincr, addincr, and allstudies are used for handling

zero event counts; they are passed to pairwise() in “netmeta.” Users may additionally

specify arguments from netmeta() to customize the implementation of the NMAs; see its

manual for more details [89]. The output of frag.nma() is of class “frag.nma”. It can be

visualized using plot() via the S3 method for class “frag.nma” to show the iterative pro-

cess of event status modifications for deriving the fragility measure of a specific treatment

comparison.

The function frag.nma.alpha() assesses the fragility of an NMA at multiple signifi-

cance levels, similar to frag.study.alpha() and frag.ma.alpha(). Most argu-

ments are the same as frag.nma(), except the arguments alpha.from, alpha.to, and

alpha.breaks for specifying the range of candidate significance levels. Because it may be

time-consuming to perform many NMAs for deriving the fragility measures, we recommend

users to specify a relatively small number of significance levels to alpha.breaks, especially

for large NMAs. The output of frag.nma.alpha() is of classes “frag.alpha” and

“frag.nma.alpha”; again, users can use plot() via the S3 method for “frag.
alpha” to visualize the relationship between fragility measures and significance levels for a

specific treatment comparison.

Summary of data types, functions, and output classes. Table 2 summarizes the functions

and their output classes for each data type. The object produced by each function is a list

Table 2. Summary of major functions (followed by parentheses) and their output classes (within quotation marks) in the package “fragility” for assessing the fragil-

ity of different data types.

Data type Function and output class under each scenario

Single significance level and single dataset Multiple significance levels and single dataset Single significance level and multiple datasets

Individual study frag.study(); frag.study.alpha(); frag.studies();

“frag.study” and “frag.alpha” and “frag.multi” and

“frag.study.all” (if all = TRUE) “frag.study.alpha” “frag.studies”

Pairwise meta-analysis frag.ma() frag.ma.alpha() frag.ma()

“frag.ma” “frag.alpha” and “frag.multi” and

“frag.ma.alpha” “frag.mas”

Network meta-

analysis

frag.nma() frag.nma.alpha() Not applicable

“frag.nma” “frag.alpha” and

“frag.nma.alpha”

https://doi.org/10.1371/journal.pone.0268754.t002
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containing different elements about the input data, relevant estimates, and their fragility

measures. It is automatically printed by print() via the S3 method for its corresponding

class(es). The printed messages are informative summaries of the data, analyses, and assess-

ments of the fragility. If users would like to obtain more comprehensive information, they can

extract elements from the output list; the elements’ names in the list can be found by applying

the function names().

Functions for visualizing the fragility. The package “fragility” offers functions for visual-

izing the fragility of individual studies, pairwise and NMAs; they are called by plot() via the

S3 method for certain classes.

To visualize the fragility of an individual study, users need to specify all = TRUE in

frag.study() so that all possible event status modifications are considered. The produced

object belongs to the class “frag.study.all”; for this object, the arguments of the visual-

ization function are as follows:

plot(x, method, modify0, modify1, trun, xlab, ylab, xlim,
ylim,
cex.pts, cex.legend.pval, cex.legend.title,
col.ori, col.ori.hl, col.f.hl, col.sig, lty.ori, lwd.ori,
pch, pch.ori, pch.ori.hl, pch.f, pch.f.hl, pch.trun,
adjust.legend, adjust.seg, legend.pvals, . . .)

where x is the output of frag.study() with all = TRUE. Users may only specify a

single statistical method used to calculate the p value for the argument method when visualiz-

ing the fragility at one time; it must be an element of x$methods, i.e., the argument meth-
ods specified for frag.study(). If method is not specified, then the first method in x
$methods is used. The arguments modify0 and modify1 specify logical values indicating

whether event status is modified in groups 0 and 1, respectively, for the visualization. When

both modify0 and modify1 are TRUE, the generated plot presents p values (with different

colors representing their magnitudes) based on all possible event status modifications; the

modifications in groups 0 and 1 are presented on the x and y axes, respectively. A legend is

displayed to relate different colors to p value magnitudes. When only one of modify0 and

modify1 is TRUE, a scatter plot is generated. It presents p values (on a base-10 logarithmic

scale) on the y axis against modifications in group 0 (if modify0 = TRUE) or group 1 (if

modify1 = TRUE) on the x axis. The default of modify0 and modify1 is TRUE if the

range of modifications in the corresponding treatment group, which is stored in the object x
(i.e., x$f0.range or x$f1.range), is not 0; otherwise, the default is FALSE. Appendix B

in S1 File includes more details of additional arguments.

To visualize the fragility of a pairwise MA, users may apply plot() via the S3 method for

class “frag.ma” to the object x produced by frag.ma() as follows:

plot(x, xlab, ylab, xlim, ylim, ybreaks = NULL, study.
marker = TRUE,
cex.marker, offset.marker, col.line, lwd,
legend, x.legend, y.legend, cex.legend, . . .)

This generates a plot showing the iterative process of event status modifications, where the x

axis presents the iterations and the y axis gives the group-specific total event counts. As the

total event counts of the two treatment groups may differ greatly, users may specify a range (a

vector of two numerical values) for the argument ybreaks to break the y axis for better visu-

alization. The default of this argument is NULL (i.e., not breaking the y axis). The specified

range should be between the total event counts of the two groups. The axis break is imple-

mented by importing axis.break() from “plotrix” [96]. The argument study.marker
specifies a logical value indicating whether study labels involved in modifications are presented.
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When it is TRUE (the default), an asterisk represents that the corresponding study with an

event status modification remains the same as in the previous iteration. The study labels can be

adjusted by the arguments cex.marker (text size) and offset.marker (distance from

lines). The remaining arguments are mainly used to specify certain graphical parameters;

again, additional arguments from plot.default() can be specified for customizing the

plot. A legend is automatically presented to identify the two treatment groups; it can be modi-

fied by the last three arguments, which are passed to legend() in “graphics.” The default is

to place the legend on the right side with x.legend = “right” and y.legend = NULL;

in cases that the default legend box overlaps with the lines of the event status modification pro-

cess, users may specify other coordinates or keywords to change the legend location.

The visualization function for an NMA is similar to the function above for a pairwise MA.

Specifically, the arguments of plot() via the S3 method for class “frag.nma” include:

plot(x, tid1, tid2, xlab, ylab, xlim, ylim, ybreaks = NULL,
study.marker = TRUE, cex.marker, offset.marker, col.line,
lwd,
legend, x.legend, y.legend, cex.legend, . . .)

where x is the output from frag.nma(). Most arguments are the same with those for

class “frag.ma” of a pairwise MA. The major difference is regarding the arguments tid1
and tid2, which specify the two treatments of the comparison of interest (i.e., tid1 vs.

tid2). Only one comparison can be specified by tid1 and tid2 at one time for visualiza-

tion. If these two arguments are not specified, the first comparison stored in x$tid.f is used.

In addition to the three functions above for a single dataset, “fragility” provides two func-

tions for visualizing the relationship between fragility measures and significance levels and for

generating overall distributions of fragility measures among multiple datasets. Specifically, for

an object x of class “frag.alpha” produced by frag.study.alpha(), frag.ma.
alpha(), or frag.nma.alpha(), one may visualize it using plot() via the S3 method

for this class with the following arguments:

plot(x, method, fragility = “FI”, percentage = TRUE, xlab,
ylab,
xlim, ylim, cex.pts, col.line, col.pval, col.sig, lty.pval,
lwd, lwd.pval, pch, pch.inf, tid1, tid2, FQ.nma = FALSE, . . .)

In the generated plot, the x axis presents the significance levels, and the y axis presents the

corresponding fragility measures. Appendix B in S1 File gives details of these arguments.

For an object of class “frag.multi”, the visualization function is:

plot(x, method, dir = “both”, fragility = “FI”,
percentage = TRUE,
max.f = NULL, bar, names.arg, space = 0, breaks, freq,
reverse = FALSE, xlab, ylab, main = NULL, cex.marker, col.
border,
col.sig, trun.marker = TRUE, . . .)

where x is the output from frag.studies() and frag.mas(). This function gener-

ates a bar plot or histogram (depending on the specified arguments) to show the overall distri-

bution of fragility measures among the multiple datasets of individual studies or pairwise

MAs. Appendix B in S1 File gives details of these arguments and the generated plot.

Results

This section presents worked examples to illustrate the usage of the various functions in “fra-

gility.” These examples are based on the datasets introduced earlier; users may first load them
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before implementing the following code. We focus on illustrating the usage of several major

arguments for each function with detailed interpretations; users may refer to the manual of

“fragility” for more examples that specify many other arguments for various purposes. The

results were obtained using R (version 4.0.2) with “fragility” (version 1.1).

Example of an individual clinical study

Recall that the dataset dat.ad consists of 347 trials; each row presents the data of one trial.

We first apply the function frag.study() to assess the fragility of trial 13; the code and

output are in Fig 1. The produced object out.trial13 is of class “frag.study”, and

the informative output is displayed via the print method for this class. The output consists of

three parts. The first part gives the information about the original 2×2 table and the ranges of

event status modifications in both groups are presented. The second part displays the informa-

tion about the significance, including the pre-specified significance level, null value(s) (if using

the OR, RR, and/or RD), and the p value(s) with the associated method(s). The third part con-

tains the major information about the fragility, including the FI and FQ based on each method

considered, the direction of significance change, and the corresponding minimal event status

modification(s) for altering significance or non-significance.

In this example, all arguments besides those receiving data input are set to the default, so all

five methods, i.e., Fisher’s exact test, the chi-squared test, OR, RR, and RD, are considered. All

methods indicate significant results in the original dataset at the level of 0.05, so the directions

of their FIs are significance altered to non-significance. All methods except the RD have FIs of

6, while the RD has an FI of 7. The FI may be derived by multiple minimal event status modifi-

cations for some methods. As the produced object out.trial13 is a list, users can apply

names() to obtain the names of all list elements and thus retrieve the results of interest; they

may refer to the manual of “fragility” for details about each element. For example, the FIs of all

five methods can be retrieved as follows:

> out.trial13$FI
Fisher chisq OR RR RD

6 6 6 6 7
To visualize the fragility of trial 13, users need to specify all = TRUE in the frag.

study() function:

> out.trial13.all <- frag.study(e0 = e0, n0 = n0, e1 = e1,
n1 = n1,

data = dat.ad[13,], all = TRUE)
The produced output is also of class “frag.study.all”; it can be visualized as follows:

> plot(out.trial13.all, method = “Fisher”,
main = “FI = 6, significance altered to non-significance”,
cex.pts = 0.5, font.main = 1, cex.main = 0.9)

> plot(out.trial13.all, method = “Fisher”, modify1 = FALSE,
main = “FI = 6, significance altered to non-significance”,
cex.pts = 0.8, font.main = 1, cex.main = 0.9)

> plot(out.trial13.all, method = “Fisher”, modify0 = FALSE,
main = “FI = 7, significance altered to non-significance”,
cex.pts = 0.8, font.main = 1, cex.main = 0.9)

Here, Fisher’s exact test is used to calculate p values. Fig 2a–2c present the generated plots.

The first function implementation in the code above visualizes the fragility of trial 13 by

modifying event status in both treatment groups; the argument cex.pts specifies the size of

points in Fig 2a. Each point represents a p value based on certain event status modifications
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Fig 1. Output from the function frag.study().

https://doi.org/10.1371/journal.pone.0268754.g001
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given by the x axis (group 0) and the y axis (group 1). By default, the significance level is 0.05;

the p values lower than this level (significant results) are presented in red, and those above this

level (non-significant results) are in green. The legend on the right side indicates the magni-

tudes of p values; the color opacity of a p value changes linearly according to the negative base-

Fig 2. Visualizations of trial 13 in the dataset dat.ad. Points or areas in green indicate non-significant results, and those in red indicate significant

ones. Dashed lines represent no modifications in the corresponding groups. Square points represent the original p value, and triangle points indicate

minimal modifications that alter the significance. In panels (a) and (d), event statuses are modified in both groups. Each point represents the extent of

the p value corresponding to a specific combination of event status modifications in groups 0 and 1. In panels (c) and (d), event statuses are modified in

only one group. Plus points represent truncated p values at 10−10.

https://doi.org/10.1371/journal.pone.0268754.g002
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10 logarithm of the p value. Because trun is set to 10 by default, p values lower than 10−10 are

truncated. The non-significant results are generally around a diagonal line, where the event

status is modified so that the even counts in the two groups are close, leading to large p values.

On the other hand, for points away from the diagonal line, the difference between the modified

event counts in the two groups becomes larger, so the corresponding p values are smaller. In

addition, the vertical and horizontal dashed lines indicate no modifications in groups 0 and 1,

respectively; they cross at a square point, corresponding to the p value of the original data. This

p value is located in the red area, implying a significant result; therefore, to assess the fragility

of this trial, we aim at modifying event statuses so that the original p value is moved to the

green area of non-significant results. The three triangle points in the green area indicate three

cases of minimal event status modifications that can alter the significance to non-significance.

They represent 1) changing 6 non-events in group 0 to events; 2) changing 5 non-events in

group 0 to events and 1 event to a non-event in group 1; and 3) changing 4 non-events in

group 0 to events and 2 events to non-events in group 1. These match the output of out.
trial13 displayed previously. All three cases indicate FI = 6.

The second function implementation sets modify1 = FALSE to visualize the fragility by

restricting the modifications to group 0 (Fig 2b). As event status is only modified in group 0,

this plot presents the negative base-10 logarithm of p values against the corresponding modifi-

cations. The p values in this plot correspond to those on the horizontal dashed line at 0 in

Fig 2a. The red area at the top indicates significant results, and the green area at the bottom

indicates non-significant results. Again, the p values lower than 10−10 are truncated; the trun-

cated p values are presented as plus signs. The vertical dashed line at 0 implies the original p
value (presented as a square point), which is within the red area of significant results. The tri-

angle point represents the minimal event status modification in group 0 for altering the signifi-

cance to non-significance; it also implies that the FI is 6 when restricting the modifications to

group 0 (by changing 6 non-events to events). The numerical value of this FI can be also

obtained from the output of frag.study() with its argument all = TRUE, i.e., out.
trial13.all$FI0.

Similarly, the third function implementation sets modify0 = FALSE; it visualizes the

fragility by restricting the modifications to group 1 (Fig 2c). The FI is 7 with this restriction (by

changing 7 events to non-events). The numerical value of this FI can be obtained from out.
trial13.all$FI1.

If users would like to reduce the type I error rate by lowering the significance level α to

0.001, they may simply specify this level for the argument alpha:

> out.trial13.all.2 <- frag.study(e0 = e0, n0 = n0, e1 = e1,
n1 = n1,

data = dat.ad[13,], all = TRUE, alpha = 0.001)
> plot(out.trial13.all.2, method = “Fisher”,

main = “FI = 3, non-significance altered to significance”,
cex.pts = 0.5, font.main = 1, cex.main = 0.9)

Fig 2d shows the generated plot. Compared with Fig 2a at α = 0.05, the original result is no

longer significant, and the original p value is now within the green area. As the significance

level decreases, the green area of non-significant results becomes wider. The original p value is

close to the border of the green area, implying that this result might be fragile; indeed, the FI

becomes 3, and its direction is the non-significance altered to significance. This can be

achieved by 1) changing 3 events to non-events in group 0; 2) 2 events to non-events in group

0 and 1 non-event to an event in group 1; or 3) 1 event to a non-event in group 0 and 2 non-

events to events in group 1.
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Example of a pairwise meta-analysis

We use the dataset dat.ns to illustrate the assessment of the fragility of pairwise MAs. Recall

that this dataset contains 564 pairwise MAs on nutrition support. We apply the function

frag.ma() to the first MA that investigates the overall all-cause mortality; see Fig 3. All

arguments besides those receiving data input are set to the default; that is, the effect measure is

the OR with the null value at 1, the significance level is 0.05, the meta-analysis is performed via

the DL method, and the CI of the overall effect size is derived based on the normal distribu-

tion. The OR is analyzed on a logarithmic scale; the null value of the log OR is 0. The informa-

tive output gives a summary of the original data, the evaluation of significance, and the

assessment of the fragility. In this example, the CI of the overall log OR of the original data cov-

ers 0, indicating a non-significant effect of nutrition support on all-cause mortality. The FI is

14 for altering the non-significance to significance, and the FQ is 0.1%. Due to the space limit,

the output does not provide complete results. The produced object out.ma1 is a list that con-

tains many results produced during the iterative process of deriving the FI, including the study

and treatment group that are involved in each event status modification, the estimated overall

effect size with its CI in each iteration, as well as the data with modified event status in the final

iteration where the non-significance is just altered. Users may apply names() to obtain the

names of all elements of the produced object.

The package “fragility” does not provide functions to produce classic plots for the pairwise

MA, such as the forest plot and funnel plot, because many existing popular packages such as

“metafor” [88] and “meta” [97] have included these features. Nevertheless, the process of deriv-

ing the FI can be visualized as follows:

> plot(out.ma1, ybreaks = c(840, 880), font.main = 1, cex.
main = 0.9,

main = “FI = 14, non-significance altered to
significance”)

Fig 4 presents the produced plot, which shows the total event counts in the two treatment

groups during the iterations. It contains two lines that depict the process, where the blue and

red lines represent groups 0 and 1, respectively. As the argument ybreaks is specified as c
(840, 880), the plot omits this range on the y axis for better visualization. The numbers

around the blue line indicate the studies that are involved in the event status modifications

during the iterations. Each asterisk indicates that a study remains unchanged as in the previous

iteration; that is, the first asterisk represents study 43, and the second represents study 45. No

event status is modified in group 1 for deriving the FI in this example.

Fig 3. Output from the function frag.ma().

https://doi.org/10.1371/journal.pone.0268754.g003
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Example of a network meta-analysis

The function frag.nma() assesses the fragility of an NMA. We apply it to the dataset dat.
sc of the NMA on smoking cessation, which contains 24 studies comparing a total of 4 treat-

ments; see Fig 5. We do not specify the arguments tid1.f and tid2.f, so the fragility of

each treatment comparison is assessed. Because many NMAs need to be performed during the

iterative algorithm for each comparison, the computation time is around 1 hour; the actual

time depends on users’ processors.

This NMA contains 4 treatments, so the results of FIs and FQs are presented in 4×4 matri-

ces. The informative output only displays some important characteristics of the NMA and

results about fragility. As in the previous examples, more detailed results (e.g., directions of the

altered significance or non-significance, studies and treatment groups involved in event status

modifications) can be retrieved from the elements of the produced object out.nma, whose

names can be obtained via applying names(). In this example, the FI is as small as 3 for the

comparison 4 vs. 1 (a relatively fragile comparison), and it is as large as 32 for 3 vs. 1 (a less

fragile comparison).

Fig 4. Event status modifications in the first pairwise meta-analysis in the dataset dat.ns. Each line represents

changes in the total event count in a certain group. The numbers around each line indicate the studies involved in the

event status modifications during the iterations; each asterisk indicates that a study remains unchanged as in the

previous iteration.

https://doi.org/10.1371/journal.pone.0268754.g004
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The visualization of the process of deriving the FI in an NMA is similar to that in a pairwise

MA. The major difference is that the visualization in the NMA needs to be implemented for

each treatment comparison separately. We apply plot() to the produced object out.nma
that is of class “frag.nma”:

> plot(out.nma, tid1 = 2, tid2 = 1, ybreaks = c(170, 595),
x.legend = “topright”, font.main = 1, cex.main = 0.9,
main = “FI = 18, non-significance altered to
significance”)

> plot(out.nma, tid1 = 3, tid2 = 1, ybreaks = c(635, 1200),
x.legend = “bottomright”, font.main = 1, cex.main = 0.9,
main = “FI = 32, significance altered to non-
significance”)

> plot(out.nma, tid1 = 4, tid2 = 1, ybreaks = c(105, 600),
font.main = 1, cex.main = 0.9,
main = “FI = 3, significance altered to non-significance”)

> plot(out.nma, tid1 = 3, tid2 = 2, ybreaks = c(160, 1205),
font.main = 1, cex.main = 0.9,
main = “FI = 19, non-significance altered to
significance”)

> plot(out.nma, tid1 = 4, tid2 = 2, ybreaks = c(110, 140),
x.legend = “topright”, font.main = 1, cex.main = 0.9,
main = “FI = 12, non-significance altered to
significance”)

> plot(out.nma, tid1 = 4, tid2 = 3, ybreaks = c(130, 1205),

Fig 5. Output from the function frag.nma().

https://doi.org/10.1371/journal.pone.0268754.g005
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x.legend = “bottomright”, font.main = 1, cex.main = 0.9,
main = “FI = 23, non-significance altered to
significance”)

Fig 6 presents the produced plots. The argument ybreaks is specified differently for each

comparison because the ranges of the involved total event counts differ. Again, an asterisk rep-

resents that a study with modified event status remains unchanged as in the previous iteration.

These plots indicate event status is generally modified in a few studies to alter the significance

or non-significance. For example, to derive the FI of the comparison 2 vs. 1 in Fig 6a, only

studies 2, 16, and 22 among the 24 studies are involved in event status modifications.

The function frag.nma() can be similarly applied to the dataset dat.copd. This data-

set serves as a toy example; its fragility can be assessed much faster due to its small size. Its

results are not presented in this article. If an NMA contains many treatments, the assessment

of its fragility may take a long time. In this case, users are recommended to only assess the fra-

gility of certain treatment comparisons of primary interest by specifying tid1.f and tid2.
f. Moreover, “fragility” does not provide functions to visualize the NMA, such as the treat-

ment network plot and treatment rank plot, because many existing packages such as “gemtc”

[98], “netmeta” [89], and “pcnetmeta” [99] have included these features.

Example of assessing the fragility at multiple significance levels

The previous examples present the assessment and visualization of the fragility of individual

studies, pairwise MAs, and NMAs at a specific significance level. As there are ongoing debates

on the choice of statistical significance level [56, 57], users might want to assess the fragility at

multiple significance levels. They may apply the functions frag.study.alpha(), frag.
ma.alpha(), and frag.nma.alpha() to individual studies, pairwise MAs, and NMAs,

respectively, for such purposes. Their usage is similar to their counterparts frag.study(),

frag.ma(), and frag.nma(). The produced objects are all of class “frag.alpha”,

which can be visualized using plot() via the S3 method for this class. We focus on an exam-

ple of an individual study; the code can be similarly applied to pairwise MAs and NMAs.

We continue to use trial 13 in the dataset dat.ad for illustrating frag.study.alpha
(); see Fig 7. The default options are used to specify the range of significance levels, i.e., 100

equally-spaced values between 0.005 and 0.05. The p values are derived based on all five meth-

ods, i.e., Fisher’s exact test, the chi-squared test, OR, RR, and RD. Like the output produced by

frag.study(), the informative output displays summaries in three parts, which are about

original data, significance tests, and fragility. Compared with the output produced by frag.
study(), the major difference is in the last part about fragility; the output of frag.
study.alpha() gives the average fragility measures in the range of specified significance

levels. The produced object out.trial13.alpha is a list, and users can retrieve more

detailed information, such as the FI and FQ at each significance level, from this list.

The results can be visualized via plot() as follows:

> plot(out.trial13.alpha)
> plot(out.trial13.alpha, fragility = “FQ”)
In the first line, the fragility measure is the FI by default; in the second line, the fragility

measure is the FQ. Fig 8a and 8b present the generated plots. As the argument method is not

specified, the plots are based on the default option, i.e., Fisher’s exact test. Because the FQ is

the FI divided by the total sample size in the study, which is a constant, the two plots have the

same shape; they only differ with respect to the scale on the y axis. Because the FIs must be

integers, the plots appear to be step functions. All points in the plots are in red, indicating that

the original results are significant at all levels, and the FIs and FQs represent that the
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Fig 6. Event status modifications in the network meta-analysis dataset dat.sc. Each line represents changes in the

total event count in a certain group. The numbers around each line indicate the studies involved in the event status

modifications during the iterations; each asterisk indicates that a study remains unchanged as in the previous iteration.

(a) Comparison 2 vs. 1. (b) Comparison 3 vs. 1. (c) Comparison 4 vs. 1. (d) Comparison 3 vs. 2. (e) Comparison 4 vs. 2.

(f) Comparison 4 vs. 3.

https://doi.org/10.1371/journal.pone.0268754.g006
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significance is altered to non-significance. As the significance level increases from 0.005 to

0.05, the FI increases from 1 to 6. These correspond to the previous output of out.
trial13.alpha, and the average FI is 4.23.

Users may specify additional arguments; for example, we change the code to:

> out.trial13.alpha.2 <- frag.study.alpha(e0, n0, e1, n1,
data = dat.ad[13,], alpha.from = 0.001, alpha.to = 0.1,
alpha.breaks = 500)

> plot(out.trial13.alpha.2)
> plot(out.trial13.alpha.2, log = “x”)
The significance levels range from 0.001 to 0.1; 500 equally-spaced values are chosen within

this range; the results are visualized in Fig 8c. Other arguments from plot.default() can

be imported; here, we specify log = “x” to present the significance levels on a logarithmic

scale as in Fig 8d. From the previous output of out.trial13.alpha, the p value of the

Fig 7. Output from the function frag.study.alpha().

https://doi.org/10.1371/journal.pone.0268754.g007
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original data based on Fisher’s exact test is 0.004, so the result is significant if the significance

level is above 0.004 but is non-significant if the level is below 0.004. The vertical dashed line in

Fig 8c indicates the original p value; the FIs on its left side (points in green) represent the non-

significance altered to significance, and those on its right side (points in red) represent the sig-

nificance altered to non-significance. As the significance level increases from 0.001 to 0.1, the

FI first decreases from 3 to 1 and then increases from 1 to 8.

Fig 8. Visualizations of trial 13 in the dat.ad dataset at multiple significance levels. (a) Fragility index at α from 0.005 to 0.05. (b) Fragility

quotient at α from 0.005 to 0.05. (c) Fragility index at α from 0.001 to 0.1. (d) Fragility index at α from 0.001 to 0.1 with the x axis on a logarithmic scale.

https://doi.org/10.1371/journal.pone.0268754.g008
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Example of assessing the fragility of multiple datasets

As multiple clinical studies or pairwise MAs (e.g., with different disease outcomes) may be

available on certain common topics, clinicians may be interested in the overall distributions of

the fragility measures of these studies or pairwise MAs. The functions frag.studies()
and frag.mas() can be used for such purposes. Such a function is not provided for NMAs

in “fragility,” because usually only a few NMAs are available on common topics. The usage

of frag.studies() and frag.mas() is similar to that of frag.study() and frag.
ma(), respectively. The produced objects of both functions are of class “frag.multi”;

they can be visualized using plot() via the S3 method for this class.

Specifically, we can assess the fragility of all trials contained in the dataset dat.ad as in

Fig 9. By default, all five methods (Fisher’s exact test, the chi-squared test, OR, RR, and RD)

are used to derive the fragility measures. The informative output displays a summary of the

original data, significance tests, and fragility measures (e.g., medians, ranges, and interquartile

ranges [IQRs]). When presenting the fragility measures, the 347 trials are distinguished into

two groups, i.e., those with originally significant results and non-significant ones. Users can

retrieve complete results from the elements of the output list out.trials; for example, the

FIs of all trials are stored in out.trials$FI.

The fragility measures of all trials can be visualized as follows:

> plot(out.trials, method = “Fisher”, cex.name = 0.6)
> plot(out.trials, method = “Fisher”, max.f = 16, cex.
name = 0.6)
> plot(out.trials, dir = “sig2nonsig”, method = “Fisher”,

cex.name = 0.6)
> plot(out.trials, dir = “nonsig2sig”, method = “Fisher”,

cex.name = 0.6)
> plot(out.trials, method = “Fisher”, fragility = “FQ”, max.
f = 20)
> plot(out.trials, method = “Fisher”, fragility = “FQ”, max.
f = 20,

breaks = 20)
Six plots are produced for different illustrative purposes, as shown in Fig 10. They are based

on Fisher’s exact test. In the first four function implementations, the argument fragility
uses the default option, i.e., “FI”, and bar is TRUE by default, so Fig 10a–10d present bar

plots of FIs. The argument cex.name is passed to barplot() for adjusting the text size on

the x axis; if the size is too large, many values may disappear due to space limit. Fig 10a pres-

ents the overall distribution of FIs of all 347 trials. The FIs range from 1 to 19; many trials have

FIs between 1 and 10, implying that their significance could be altered by changing the event

statuses of at most 10 patients. The bars in red represent trials with originally significant

results, so their FIs indicate the significance altered to non-significance; the bars in green rep-

resent trials with originally non-significant results, which are altered to be significant. Most tri-

als originally have non-significant results. The FIs of some trials have extreme values, which

may affect the visualization effect of the overall distribution. As in the second function imple-

mentation of the code above, users can specify max.f to truncate FIs above the specified

value. Fig 10b presents the overall distribution with FIs truncated at 16; all trials with FIs above

16 are stacked at the rightmost bar. If users want to focus on the direction of FIs that alter the

significance to non-significance or its inverse, dir can be specified as “sig2nonsig” or

“nonsig2sig”, leading to the bar plots in Fig 10c and 10d, respectively. By default, this

argument is “both”, i.e., both directions are presented as in Fig 10a and 10b.
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Fig 9. Output from the function frag.studies().

https://doi.org/10.1371/journal.pone.0268754.g009
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Alternatively, users can specify fragility = “FQ” to produce plots for FQs as in the

last two function implementations in the code above. As FQs can take any values within 0%–

100%, instead of only integers like FIs, the histogram rather than the bar plot is produced for

FQs. Fig 10e presents the overall distribution of FQs, truncated at 20%. If breaks is not speci-

fied, the number of breaks in the histogram is automatically determined by hist(). Users

may adjust this argument to change the number of breaks as in Fig 10f.

We also apply frag.mas() to the dataset dat.ns to assess the fragility of multiple pair-

wise MAs, as in Fig 11. The effect measure of these MAs is the OR (measure = “OR”) by

default. The output is similar to that of out.trials. It displays a summary of the input

MAs, information about significance, and fragility measures. Among the total of 564 pairwise

MAs, 97 have significant overall ORs, and their FIs range from 1 to 167; 467 have non-signifi-

cant overall ORs with FIs ranging from 1 to 61.

The produced object out.mas is of class “frag.multi”, and can be visualized as

follows:

Fig 10. Distributions of fragility measures of the clinical trials in the dataset dat.ad. (a) Bar plot of fragility indexes of all trials. (b) Bar plot

fragility indexes of all trials truncated at 16. (c) Bar plot of fragility indexes of trials whose significance altered to non-significance. (d) Bar plot of

fragility indexes of trials whose non-significance altered to significance. (e) Histogram of fragility quotients of all trials. (f) Histogram of fragility

quotients of all trials with more breaks.

https://doi.org/10.1371/journal.pone.0268754.g010
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> plot(out.mas, max.f = 40, cex.name = 0.5)
> plot(out.mas, fragility = “FQ”, breaks = 20)
The first line produces the bar plot of FIs of all 564 MAs in Fig 12a, and the second line pro-

duces the histogram of FQs in Fig 12b. As displayed in the output of out.mas, the FIs may

take large values up to 167, so max.f is specified as 40 for truncation. Most MAs have FIs less

than 15 and FQs less than 1%.

Discussion

This article has reviewed methods for assessing and visualizing the fragility of an individual

study, pairwise MA, and NMA with a binary outcome; the package “fragility” is designed for

implementing these methods. We have focused on introducing the usage of many user-

friendly functions provided by this package and illustrating them via several worked examples.

The FI and FQ are useful tools to assess clinical results’ fragility; many researchers are

becoming interested in these measures due to the growing concerns about research reproduc-

ibility and replicability. Nevertheless, it may be limited to assess the fragility based entirely on

the numerical value of the FI or FQ. Most existing software programs do not provide much

additional information about the FI or FQ besides its numerical value. The package “fragility”

offers a variety of results that may aid the assessment of fragility. For example, the package pro-

duces various plots that visualize the studies and treatments involved in event status modifica-

tions in the iterative process for computing the FI or FQ of a pairwise MA or NMA. Such plots

may indicate studies or treatments that are potentially influential in the meta-analytic results;

clinicians may carefully examine the reliability (e.g., methodological quality) of the associated

studies. In addition, users can specify certain directions of event status modifications in each

treatment group for an individual study. The package provides information about different

scenarios when the significance or non-significance is altered. It is crucial to incorporate such

detailed information with clinicians’ opinions on a case-by-case basis; for some rare diseases, it

may be more sensible to modify events to non-events.

There are still several limitations of the “fragility” package. First, using this package requires

researchers to possess some coding skills; clinicians without coding training might not directly

use this package for assessing the fragility of clinical studies. Second, the current version of the

Fig 11. Output from the function frag.mas().

https://doi.org/10.1371/journal.pone.0268754.g011
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Fig 12. Distributions of fragility measures of the pairwise meta-analyses in the dataset dat.ns. (a) Bar plot of

fragility indexes. (b) Histogram of fragility quotients.

https://doi.org/10.1371/journal.pone.0268754.g012

PLOS ONE Assessing and visualizing fragility of clinical results with binary outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0268754 June 1, 2022 32 / 38

https://doi.org/10.1371/journal.pone.0268754.g012
https://doi.org/10.1371/journal.pone.0268754


“fragility” package can only deal with clinical studies with binary outcomes. Recently, Caldwell

et al. [100] proposed a method to define the FI of studies with continuous outcomes. If this

method is further validated in practical applications, we will consider incorporating it into the

future releases of the “fragility” package. Third, the existing literature lacks a guideline or rule

of thumb to interpret the magnitude of the FI or FQ (i.e., the extent of fragility). On the one

hand, the interpretation might depend on the clinical setting, e.g., whether the outcomes of

some patients are possibly modified. On the other hand, in future work, we plan to systemati-

cally collect many clinical studies, pairwise MAs, and NMAs across different specialties (e.g.,

from the Cochrane Library), obtain their FIs and FQs, and derive the empirical distributions

for all datasets and those within subgroups of specific research areas. Such empirical distribu-

tions will be incorporated in future versions of “fragility,” and they will further assist users in

properly interpreting the fragility of clinical results.
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