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Dispersal polymorphism and mutation play significant roles during biologi-
cal invasions, potentially leading to evolution and complex behaviour such
as accelerating or decelerating invasion fronts. However, life-history theory
predicts that reproductive fitness—another key determinant of invasion
dynamics—may be lower for more dispersive strains. Here, we use a math-
ematical model to show that unexpected invasion dynamics emerge from the
combination of heritable dispersal polymorphism, dispersal-fitness trade-
offs, and mutation between strains. We show that the invasion dynamics
are determined by the trade-off relationship between dispersal and popu-
lation growth rates of the constituent strains. We find that invasion
dynamics can be ‘anomalous’ (i.e. faster than any of the strains in isolation),
but that the ultimate invasion speed is determined by the traits of, at most,
two strains. The model is simple but generic, so we expect the predictions to
apply to a wide range of ecological, evolutionary, or epidemiological
invasions.
1. Introduction
Evolution can significantly affect the dynamics of biological invasions and range
expansion [1–3]. Deleterious mutations can accumulate during invasions, leading
to a deceleration in the rate of advance [4], but evolutionary processes can also
facilitate invasions. Dispersal evolution has attracted particular interest, as
higher dispersal ability confers a clear advantage when colonizing new habitat
[3]. Empirical data suggest that newly established populations contain individ-
uals with elevated dispersal capabilities [5,6], and accelerating cane toad
invasions are accompanied by an evolution of dispersal-related traits such as
leg length [7] and dispersive behaviour [8]. The tendency of more dispersive
strains to be found at the vanguard of an invasion has been dubbed ‘spatial sort-
ing’ [9], a form of dispersal evolution that plays out in space as well as time [10].

However, invasion dynamics depend on population growth as well as disper-
sal [11,12]. A higher investment in dispersal ability can imply a lower investment
in traits related to reproduction [13], so an increase in dispersal ability does not
necessarily imply a faster invasion. Moreover, a sufficiently strong trade-off
could disrupt strict spatial sorting—a hypothetical example would be a highly
dispersive but infertile strain, which would not advance the invasion. Simulation
studies show that the rate of spread can accelerate in the presence of a dispersal-
fecundity trade-off [14], but to predict the general conditions under which
different invasion scenarios (e.g. spatial sorting, constant or accelerating speed,
etc.) occur requires a mathematical theory. Several studies have shown that inva-
sion speed for a polymorphic species with a trade-off is determined by the strain
which would invade most quickly on its own [10,15,16], but those studies omit
mutation—which plays a key role in invasion dynamics by creating interactions
between strains. Elliott & Cornell [17] showed that, if a species comprises two
strains (one a superior disperser, and onemore fecund), with infrequent mutation
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between strains, it can invade at a faster ‘anomalous’ speed
thanwould be predicted for either strain in isolation. However,
it is not clear what would occur in a more realistic species
consisting of multiple strains. For example, it is not obvious
whether the invasion dynamics are determined by all of the
strains or just a few, or how the invasion dynamics could be
predicted for a species with a very large number of strains.
Since both dispersal and reproductive fitness are beneficial,
invasions could potentially promote a mixed strategy or even
evolutionary branching [18,19]. Here, we define ‘reproductive
fitness’ as per capita growth rates at low density and use this
definition throughout the article.

We study a model for invasions by species with dispersal
polymorphism, a dispersal-fitness trade-off, and mutation
between strains. We show that the shape of the trade-off
curve critically determines whether the invasion speed con-
tinues to accelerate or approaches an asymptote. The trade-off
curve also determines whether the invasion speed equals that
of one of the constituent strains, or whether the speed is anom-
alous, i.e. is faster than any single strain on its own. Surprisingly,
in all cases, we find that the asymptotic speed is determined by
the traits of, at most, two of the constituent strains. We find that
strong effects of spatial sorting are not realized in all cases—the
most dispersive strains do not necessarily lead the invasion—
and that the invasion speed is not necessarily determined by
the most dispersive or the most fecund strain, or the one
which, in isolation, would invade at the fastest speed. Our
model is simple but generic and requires large population
sizes, so is most likely to apply to microbial or viral systems
such as infectious diseases.
2. Methods
We consider an asexual haploid species consisting of N strains
(i.e. genotypes), where each strain has a distinct growth
rate and dispersal phenotype, with the possibility of mutation
between strains at birth (derivation can be found in electronic
supplementary material, appendix S1). We first consider a deter-
ministic model in continuous space and time, for which we
can derive exact results. We assume density-dependent compe-
tition between strains and that dispersal can be approximated
by diffusion, and model the dynamics using the following spatial
Lotka–Volterra model
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(2:1)

for all i∈ S, where: S = {1, 2,…, N} is the set of all strains; ni, Di

and ri are, respectively, the density, diffusion constant, and popu-
lation growth rate of the ith strain, Cji is the competitive effect of
strain j on i, and μνij the mutation rate from strain i to strain j.
This extends the investigation of Elliott & Cornell from two
strains to a general degree of population polymorphism [17].
Equations including diffusion, Lotka–Volterra competition, and
mutation between strains have been considered before [20–22],
but explicit results for the case where both Di and ri differ
among strains have not previously been computed for N > 2.
We assume that the species does not comprise sub-species
between which mutation is not possible (i.e. that the νij allow
an individual to have descendents of any strain, after enough
generations), and that the Cij are such that there is a single
stable spatially uniform equilibrium.

We consider an invasion, where half of space is initially empty
and the other half is occupied by the species at equilibrium, in
which case solutions to equations (2.1) converge to travelling
waves of the form ni =Ni(x− c*t). Girardin [22] has proven that
the spreading speed c* for equations of the form (2.1) is given by
linearizing around the unstable equilibrium ni = 0 and finding
the solution of the form ni∼ exp (λt− kx) whose phase velocity
λ/k is smallest. We compute an exact expression for c* in the
biologically interesting case of weak mutation ( μ→ 0+). More
details of the calculation, and a graphical illustration, can be
found in electronic supplementary material, appendix S1.

It is known that demographic stochasticity can affect anomal-
ous speeds in dimorphic species [23], so to test the robustness of
our results we also ran simulations of a stochastic Beverton–Holt
model. This is based on the following deterministic model:

mi(x, t) ¼ ni(x, t)(1þ ri(1�Nh))þ h
X
j[S

r jn j(x, t) (2:2)

qi ¼ mi

1þ a
P
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(2:3)

ni(x, tþ 1) ¼ qi(x, t)(1� 2Di)þDi(qi(x� 1, t)
þ qi(xþ 1, t)),

(2:4)

where equation (2.2) represents reproduction with mutation,
equation (2.3) density-dependent mortality, and equation (2.4)
dispersal. However, in the stochastic model Poisson and Multi-
nomial pseudorandom number generators replace equations
(2.3) and (2.4) (more details in the electronic supplementary
material, appendix S1). Here, ri andDi again represent population
growth rate and dispersal ability, and η( < 1/N ) is a mutation par-
ameter. The parameter a sets the scale of density dependence, so
that the stable equilibrium density is proportional to 1/a. We
expect that the stochastic and deterministic version of the model
will behave similarly when a is very small.
3. Results
We find that anomalous invasion speeds are possible in
the N-strain case, just as was found in the 2-strain case
(figure 1). When the mutation rate is very small but non-
zero (i.e. in the limit μ→ 0+), the speed of invasion by any
N-strain species is obtained by calculating the maximum of
cmi and cdij in the following expressions:

cmi ¼ 2
ffiffiffiffiffiffiffiffi
riDi

p
, (3:1)

for all i, and
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Here, cmi is the ‘monomorphic speed’ at which a species con-
sisting solely of strain i would invade. cdij is the ‘dimorphic
speed’ at which a species consisting solely of strains i and j
would invade, provided conditions (3.3) are met [17]. Con-
ditions (3.3) imply that valid dimorphic speeds only exist
for pairs of strains whose dispersal and growth rates differ
sufficiently—a graphical representation can be seen in [17]
figure 1. If the largest valid cdij is greater than the largest cmi ,
then the invasion is more rapid than that for any of the con-
stituent strains in isolation, and the invasion is said to be
‘anomalous’ [17].

Our analysis shows that an N-strain species therefore
invades at the same speed as if it consisted of only one or
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Figure 1. Anomalous invasions by polymorphic species into unoccupied habitat, where all strains can coexist at equilibrium, from numerical solutions of equation
(2.1). Panel (a): trait values for five strains used in this figure. (Di, ri) = (0.025, 0.00425), (0.15, 0.004), (0.25, 0.0025), (0.4, 0.0015), (0.425, 0.00025) for strains
i = 1, 2, 3, 4, and 5, respectively. Squares denote the ‘vanguard’ strains (2 and 4) and triangles the ‘extreme’ strains with the highest growth rate (strain 1) and
highest dispersal ability (strain 5), respectively. Strain 3 (circle) has the highest monomorphic speed. Colours correspond to those used in (b,d ) (green, blue, black,
red, and orange for i = 1, 2, 3, 4, 5, respectively). (b,d) Population density as a function of spatial coordinate x during invasion by a species consisting of all five
strains, displaying travelling waves, at times t = 4 × 105 (solid curves), 5 × 105 (dashed curves), 6 × 105 (dotted curves). Mutation is universal among strains
(nij ¼ 18i, j) in panel b, but in panel d is only non-zero between neighbouring strains (nij = 1 if |i− j| = 1, 0 otherwise). (c) Speed of position of front for
species consisting of different combinations of strains. Magenta: all five strains present, universal mutation. Cyan: all five strains present, neighbouring-strain
mutations only. Brown dotted curve: vanguard strains (2 and 4) only. Black: strain 3 (fastest monomorphic speed) only. Green: extreme strains (1 and 5) only.
Dashed horizontal lines are theoretical predictions for μ→ 0: c ¼ cd24 ¼ 0:055 (magenta); c ¼ cm3 ¼ 0:05 (black); c ¼ cd15 ¼ 0:045 (green). In all cases,
mutation rate μ = 10−6, and competition coefficients are Cij = 1 for i = j, 0.9 otherwise.
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two of its constituent strains—the traits of the other strains do
not affect the invasion speed. This is illustrated by simulation in
figure 1 for a species consisting of five strains. Parameters are
chosen (figure 1a) so that the strains that are predicted to deter-
mine the invasion speed (2 and 4) are not the strain with the
highest monomorphic speed (strain 3) nor the strains with
the highest population growth rates or dispersal (strains 1
and 5). Figure 1c shows that, after a transient, the invasion
for a 5-strain species (magenta curve) advances at the same
speed as a species containing only strains 2 and 4 (brown
dotted curve), which are the strains with the highest dimorphic
speed c dij from equation (3.2). This is faster than either strains 2
or 4 in isolation (not shown), or the strain with the fastest
monomorphic speed in isolation (black curve). Thus, while
anomalous invasion dynamics implies a synergy between
two strains (benefiting from the growth rate of a more fecund
strain and the dispersal ability of a more dispersive one), this
synergy does not extend beyond more than two strains. More-
over, one might expect that the ‘vanguard’ strains (i.e. the two
strains whose traits determine the anomalous speed) would be
themost dispersive and themost fecund, so that the population
as a whole benefits from the highest diffusion constant and the
highest population growth rate. However, it turns out that this
need not be the case: a species consisting of strains 1 and 5,
which have, respectively, the highest fecundity and dispersal
ability, invades more slowly (green curve in figure 1c). Note
from figure 1b that the invasion shows weak effects of spatial
sorting: the invasion is led by the second least dispersive
strain (blue curve), and the strains with the highest monomor-
phic speed (black) and dispersal (orange curve) trail behind. In
all cases, the long-term invasion speeds closely match the pre-
dictions for small mutation rate from equations (3.1) and (3.2)
(horizontal dashed lines in figure 1d).

Girardin’s proof [22] shows that the invasion speed is
determined by the dynamics at low densities, and is therefore
independent of the competition coefficients Cji. Thus, we
obtain the same anomalous speeds whether or not the strains
coexist within the range core (i.e. at the stable equilibrium). In
figure 2a, the invasion speed of a species consisting of strains
2, 3, and 4 (magenta) is given by the anomalous speed for
strains 2 and 4 (brown dotted curve), even though both are
outcompeted by strain 3 in the core range. This shows that
strains that are very rare in the range core of the species
can still determine the invasion dynamics. Strain 2, which
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Figure 2. Strains that are outcompeted at equilibrium can still generate anomalous invasion speeds. Strains are numbered as in figure 1a, but competition coeffi-
cients are such that strain 3 outcompetes strains 2 and 4 at equilibrium (Cji = 0.8 for i = 3 and j = 2 or 4; Cji = 1.25 for j = 3 and i = 2 or 4). (a) Invasion speeds as
a function of time. Colours denote different combinations of strains being present in the species: strains 2,3,4 with universal mutation (magenta); strains 2 and 4
(brown dotted); strains 2 and 3 (blue); strains 3 and 4 (red); strain 3 only (black). Dashed horizontal lines are theoretical predictions for μ→ 0: c ¼ cd24 ¼ 0:055
(magenta); c ¼ cd23 ¼ cd34 ¼ 0:05103 (cyan); c ¼ cm3 ¼ 0, 5 (black). (b) Population density as a function of spatial coordinate x, at times t = 105 (solid curves),
1.5 × 105 (dashed curves), 2 × 105 (dotted curves). In b, strains are coloured as in figure 1a. From numerical solutions of equation (2.1), with mutation μ = 10−6.
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has the highest population growth rate, leads the front with
high density (figure 2b, blue curve). Strain 4, which has the
highest dispersal ability, has a higher density in the wake of
the front than at equilibrium but lower density than the
other two strains (figure 2b, red curve). Nevertheless, remov-
ing either strain 2 or 4 slows the invasion (figure 2a, red and
blue curves), to a slower but still anomalous speed (cyan hori-
zontal dashed line), which is quicker than the invasion speed
for strain 3 alone (black), which in turn is quicker than either
vanguard strains 2 or 4 in isolation (not shown).

It is important to note that anomalous speeds require
mutation to be non-zero, but persist even when the mutation
rates between strains are vanishingly small (i.e. in the limit
μ→ 0, but still non-zero). This is surprising because, when
the mutation rates are strictly zero, anomalous speeds do
not occur and the strains invade independently at their
monomorphic speeds (or not at all, if they are outcompeted
in the stable equilibrium [16,17]). In the partial differential
equation model (2.1), a small amount of mutation, combined
with exponential growth, is sufficient for the different strains
to keep up with each other during the invasion and partici-
pate in the invasion. However, we will show later that
demographic stochasticity eliminates anomalous invasion
speeds unless μ is sufficiently large (figure 4).

Furthermore, the limiting invasion speed when μ→ 0
does not depend on the relative values νij of the mutation
rates, even if some are zero (provided the system does not
factorize into independent subsets of strains between which
mutation is impossible). In particular, the invasion speed is
the same for a system with ‘universal’ mutation (νij = 1 for
all i and j) as for ‘nearest-neighbour’ mutation (νij = 0 unless
|i− j| = 1) (figure 1d, cyan curve in figure 1c). This means
that our results should not only apply to species with a
small set of discrete strains, but also extend to the case of a
very large set of strains where traits mutate by small amounts
at each generation.

This allows us to predict the invasion speed for a species
with a continuous set of strains. We assume that each strain
has a unique phenotype determined by r and D, and that
there is a trade-off between r and D so that r(D) is a decreas-
ing function of D. The invasion speed, after a sufficiently long
time, will again be given by the largest permitted value of cmi
and cdij calculated using equations (3.1)–(3.3) for all strains,
and pairs of strains of the species. These equations have a
geometric interpretation and the invasion speed depends,
in a simple way, on the shape of the r(D) curve. In particular,
the existence of an anomalous invasion speed is determined
by the curvature of the trade-off curve (figure 3; electronic
supplementary material, appendix S1).

Some simple algebra (electronic supplementary material,
appendix S1) shows that the dimorphic speed for two strains
is equal to the monomorphic speed for a ‘virtual’ strain,
which lies at the midpoint (green triangles in figure 3) of
the straight-line segment joining the two axes (dotted line
in figure 3) and passing through the points representing the
two strains (blue circles in figure 3) in r(D)–D space. Further
simple algebra shows that, if the virtual strain lies between
the two real strains, then conditions (3.3) are met and this
is a valid dimorphic speed (figure 3a,c,e,f ); otherwise, this is
not a valid dimorphic speed for the species.

Therefore, if the trade-off curve is a straight line (figure 3a,b),
then all pairs of strains have the same virtual strain (and there-
fore the same dimorphic speed) whether or not the trade-off
curve encompasses this virtual strain. In both figure 3a,b, the
invasion speedwill equal themonomorphic speed of the fastest
constituent strain. On the other hand, if the trade-off curve has
negative curvature, figure 3e, then the virtual strain for any pair
of strains either lies below the trade-off curve, or does not lie
between the two real strains. In that case, none of the valid
anomalous speeds are faster than the fastest monomorphic
speed for the species. In both of these cases, the ultimate inva-
sion speed will be the same as the monomorphic speed for
the fastest strain in isolation, i.e. the strain with the highest
value of Dr(D) (see equation (3.1)).

However, if the trade-off curve has positive curvature
(figure 3c,d), then the chord joining the twomost extreme strains
will lie above the trade-off curve. If the range of r andD values is
wide enough that the corresponding virtual strain lies between
these extreme strains (figure 3c), then this will have the fastest
dimorphic speed, which will be faster than any of the constitu-
ent monomorphic speeds. However, if the range of r and
D values are not wide enough (figure 3d), the species will
invade at the fastest monomorphic speed. In the former case,
the invasion will follow the anomalous speed when the
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virtual strain has a faster speed than any single constituent. In b,d, the virtual strain does not lie between any pair of points on the trade-off curve, so does not yield
a valid anomalous invasion speed. If the trade-off has negative curvature (e) there are valid anomalous speeds, but none of their virtual strains lie above the trade-
off so the asymptotic invasion speed is the fastest constituent monomorphic speed. In f, the chord is tangential to the trade-off at the two blue points, and since the
whole trade-off curve lies below this chord the corresponding anomalous speed is faster than any other monomorphic or dimorphic speed for this species. This
shows that the vanguard strains are not necessarily the ones with the highest values of r or D. We show further in the Methods section that the vanguard strains do
not necessarily have the highest value of rD either.
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vanguard strains have the highest r and the highestD. A further
possibility is that the curvature of the trade-off curve is positive
in some places and negative in others (figure 3f ), for example, if
the trade-off is more acute at more extreme values. In this case,
the vanguard strains will be the ones where the chord joining
them is tangential to the trade-off at both points, which will
not represent the most extreme traits in the species (similar to
what was found in figure 1 for a species with a discrete set of
trait values, where the vanguard strains can be found from
figure 1a using the same construction as figure 3f).

While the deterministic model, equation (2.1), predicts
anomalous speeds for vanishingly small mutation, it has
been shown for N = 2 that demographic stochasticity sup-
presses anomalous speeds when mutation or populations are
small [23]. We also find this to be the case for N > 2. While
figure 4b shows that a 5-strain species (black data) always
invades at a speed close to that for a 2-strain species consisting
of the vanguard strains (magenta data), this is only faster
than the fastest monomorphic speed (blue data) if either
the mutation rate is high or local populations (which are
proportional to 1/a) are large.We again find that the vanguard
strains (labelled 7 and 9 in figure 4a) need not be the
most dispersive or the most fecund if the curvature of the
dispersal-fitness trade-off resembles figure 3f.
4. Discussion
Wehave extended existing theory for invasions by a dimorphic
species where dispersal ability varies among lineages and
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trades off against fitness to the case ofN strains. In some cases,
invasions advance at the same rate as if the species consisted
solely of the single strain that has the highest monomorphic
speed. However, if the dispersal-growth curve has positive cur-
vature, and extends over a wide enough range of dispersal
rates, then an anomalous invasion occurs which is faster than
that for any single constituent strain. This speed depends
only on the traits of two ‘vanguard’ strains, which need not
be the most dispersive nor the most fecund. The invasion
speed is insensitive to the mutation rates between strains (pro-
vided they are small but non-zero) or the details of inter-strain
competition (as proven by Girardin [22]), and anomalous
speeds can even be caused by strains that are outcompeted at
equilibrium (figure 2).

Our results are counterintuitive in a number of respects.
First, while synergy between strains can cause polymorphic
species to behave differently from monomorphic species [24],
it is surprising that the effect is still strong (figures 1c and 2b)
even when mutation—the process generating this synergy—
is very weak. In other examples of anomalous invasion
speeds, each strain has a strongly positive effect on the other
[25,26], and it has not been shown whether the anomalous
speedup would remain strong if the cooperative interactions
wereweak. Note that [26] use ‘anomalous’ in a more restrictive
sense than we do, requiring that at least one component of the
system spreads at a slower speed; our model does not display
‘anomalous’ speeds sensu Weinberger et al. [26] because all
strains spread at the same speed, but their models do display
anomalous speeds according to our definition. Note also that
there are other examples where a vanishingly small parameter
can have a non-vanishing effect on an invasion speed, such as
when a small fraction of a population disperses according to a
fat-tailed dispersal kernel (see Lutscher [27], ch. 12). Second,
since the species exploits the dispersal ability of one strain
and the fecundity of another, it is surprising that the vanguard
strains do not necessarily have the highest dispersal or repro-
ductive ability. Third, if strains interact synergistically, then
one might expect that more than two strains would contribute.
A similar analysis can be applied to any model where invasion
dynamics are determined by the linearized behaviour at low
density (i.e. ‘pulled waves’, [28–30]), and the ultimate invasion
speed for low mutation rate will be given either by the
minimum of the λ/k curve for one strain, or the intersection
between the curves of two strains (see electronic supple-
mentary material, appendix S1 figure 1). Thus, no matter
how many traits trade off against each other, or whatever
density dependence acts at higher density, we predict that
anomalous invasion speeds at low mutation rate depend
only on the traits of two strains.

Our results show that dispersal evolution during invasion
is still more complex than previously thought. Evolving inva-
sion fronts are not necessarily led by the most dispersive
strains [5,9,31,32], nor even by the one that would invade
most quickly in isolation [10,15,16]. Phillips & Perkins [10]
have introduced the concept of ‘spatio-temporal fitness’ to
explain why evolution during invasions selects for a combi-
nation of dispersal and reproductive fitness. They do not
considermutation and therefore predict that the product of dis-
persal and reproductive fitness (or, equivalently, monomorphic
invasion speed) is maximized. Our results resemble those of
Laroche et al. [18], who showed that evolution in metacommu-
nities can lead to mixed dispersal strategies in the presence of
trade-offs. However, the promotion of the densities of the van-
guard strains is rather different from the evolution of a mixed
strategy. First, while one vanguard strain leads the invasion,
the density of the other one can trail behind non-vanguard
strains (figures 1b,d and 2b) so the species is not dominated
by these two strains. Second, the vanguard strains do not rep-
resent competing but rather cooperative strategies. We do not
expect that anomalous invasion dynamics can lead to evol-
utionary branching between the vanguard strains since
mutation between the vanguard strains is essential.

The anomalous dynamics we report require a combination
of dispersal polymorphism, dispersal-fitness trade-off, and
mutation during invasions. Without the trade-off, i.e. if all
strains have the same population growth rate [20,21], the inva-
sion accelerates to the monomorphic speed of the most
dispersive strain. Mutation is necessary because otherwise the
strain with the fastest monomorphic speed leaves the others
behind [16,17]. However, our results contrast with other studies
on the effect of mutation on invasion dynamics, because anom-
alous invasion dynamics do not converge to monomorphic
dynamics when the mutation rate becomes very small. Griette
et al. [33] computed the mutation-dependent invasion speed
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in a related 2-strain model, but without dispersal poly-
morphism so their invasion speeds converge to the fastest
single-strain speed when the mutation rate approaches zero.

Our results predict that invasion dynamics depend criti-
cally on the curvature of the trade-off curve between
dispersal and population growth rate, but while the existence
of such trade-offs has been established [34–36] their shape
has not been quantified empirically in much detail. This
trade-off arises from the organism diverting resources either
to dispersal or to reproductive success, but the rates describing
these abilities depend on the details of the organism’s physi-
ology so could in principle take many different shapes. One
plausible assumption would be that the organism’s reproduc-
tive success is proportional to the energy diverted to
reproductive organs, and the distance of each dispersal event
is proportional to the energy diverted to movement organs,
which would imply a straight-line trade-off between fitness
and dispersal distance. However, while population growth
rate is directly proportional to fitness, the diffusion constant
is proportional to the square of the dispersal distance, which
would imply that theD(r) curvewould be a parabolawith posi-
tive curvature. On the other hand, diminishing returns would
imply that an incremental improvement in one trait comes at a
much greater cost when that trait is at the higher end of its
range of possible values, which would suggest a trade-off
with negative curvature (e.g. figure 3e) or possibly a more
complex curve such as in figure 3f. Anomalous speeds could
also occur when the trade-off curve has negative curvature, pro-
vided the species exists in distinct morphs (such as wing
dimorphic crickets [37]) so that the trade-off is not a single con-
tinuous curve (and that the virtual strain with the fastest
invasion speed lies between different segments of the trade-
off curve). Thus, while anomalous speeds can be expected in
a wide range of scenarios, to predict the species in which
they occur we would need more detailed measurements of
the trade-offs between dispersal and reproductive fitness
than are currently available.

Our models may be simple and generic, but we expect the
predictions to apply in a wide range of scenarios. Our model
assumes a haploid species, but we predict our theory to hold
in any species where offspring inherit their strain (with rare
mutation) from only one parent when population densities
are low. This is true for microbes as well as self-fertile plants.
We used Brownian motion to model dispersal (i.e. assuming
dispersal comprises many very short steps), but the analysis
and our predictions would be similar if dispersal followed a
jump process with thin-tailed (exponentially bounded) disper-
sal kernels. Our theory should apply to modestly fat-tailed
dispersal kernels of the class which lead to finite speed waves
(i.e. those which are not exponentially bounded but have
finite second moment), but, at first sight, not to ‘fatter’ tailed
kernels used to describe dispersal combining local movement
and long-distance events [38–40]. Such kernels have been
shown to predict accelerating invasions rather than a travelling
wave of constant speed. However, it has been shown that
fat-tailed dispersal kernels can describe a population of individ-
uals, each performing Brownian motion but with a distribution
of diffusion constants [41]. This is analogous to the dispersal
polymorphism we discuss, but for the case of no trade-off
between r and D. In that case, and (unrealistically, but in
common with [41]) assuming no upper limit to D, we also
would predict invasions that acceleratewithout limit. However,
if the more dispersive strains have a lower population growth
rate, then our theory predicts that the invasion could follow
an asymptotic constant invasion speed determined by the
shape of this trade-off. This shows that it could be misleading
to characterize a species by a single dispersal kernel, without
considering whether intrinsic dispersal ability or reproductive
ability might differ among individuals. We expect a more com-
plex theory is needed to account for other factors such as
nonlinear diffusion or landscape heterogeneity, but our results
constitute the first steps in this direction.

To observe anomalous invasion speeds empirically, a
study species would need to have at least two strains which
differ in their dispersal, where the stronger disperser has
weaker population growth. It needs to be possible for these
strains to mutate into each other (e.g. they represent single
nucleotide polymorphisms). Also, mutation rates and/or
population sizes need to be high enough that both strains
will be present in the leading edge of the wave. This suggests
that microbes or viruses are the most likely systems to display
anomalous speeds, including pathogens where hosts consti-
tute demes within a large local population. RNA viruses
can have mutation rates as high as 10−3− 10−5 per base pair
per generation [42], and can exist at densities of 1012 individ-
uals per gram of human faeces [43], so within-host
populations could easily be high enough to generate anoma-
lous invasion speeds. To maximize the ‘speedup’ (the ratio of
the dimorphic speed to the faster monomorphic speed) the
strains should differ as much as possible in their traits (r1,
D1) and (r2, D2). If one strain were effectively immobile
(D1→ 0), then equation (3.3) requires r1 > 2r2, and from
equations (3.1) and (3.2) and the speedup is r=(2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� 1)

p
,

where ρ = r1/r2. This speedup can be large if r2 is very
small, but r2 should not be so small that none of its offspring
mutate into the other strain in the leading edge of the wave.

Another much-studied aspect of evolution during inva-
sions is ‘expansion load’ [44], a progressive decrease in
fitness and/or the speed of invasion or range expansion [4]
due to the fixation of deleterious mutations near the invasion
front. Evolution of dispersal can act in combination and
remove the deceleration caused by expansion load [45]. How-
ever, it is not clear that anomalous invasion speeds can occur
in populations where expansion load is significant. This is
because the former requires large population sizes in the
leading edge of the front, but the latter required populations
small enough for deleterious mutations to become fixed.
These two phenomena therefore represent complementary
potential outcomes for evolution during range expansions.

Many global threats are due to biological invasions: food
security from crop pests, antibiotic resistance, local disease
outbreaks, and loss of biodiversity. Many other important
phenomena can be modelled with similar equations, e.g. the
cell population dynamics of tumour growth. Our results show
that it is not safe to model an invading polymorphic population
with a single ‘average’ strain, or asmultiple strains that vary in a
single trait. Nevertheless, we show that the invasion speed can
be straightforwardly predicted from the dispersal-fitness trade-
off alone. Our results highlight the importance of understanding
and quantifying such trade-offs, as well as the need to account
for evolution when considering central questions in ecology.
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