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Abstract
In this work, the radial basis function approximations are used to improve the accuracy of
meshfree Galerkin method. The method is applied to the free vibration problems of non-
rotating and rotating Euler–Bernoulli beams. The stiffness and mass matrices are derived by
using conventional methods. In this meshfree method, only six nodes are considered within
a single sub-domain. The parameters are varied for different approximations; the results are
obtained with different approximations and found accurate. Two new basis function have
been developed which are relatively accurate than conventional basis function: the first new
basis function is obtained by multiplication of linear function to radial basis function and
second new basis function is obtained bymultiplying cubuic radial basis function to Gaussian
radial basis function. The first fewmodes show same result that is available in literature using
finite element method and higher modes are found very accurate as well. The result are found
to be more accurate for first three modes of non-rotating and rotating Euler–Bernoulli beams
where the cantilever beam boundary conditions are used; the first three modes do not change
with the change in the parameter c of radial basis function.

Keywords Radial basis function · Mechanical vibration · Meshfree Galerkin method ·
Rotating Euler–Bernoulli beam

Introduction

Radial basis functions are frequently used in numerical methods; the meshfree method is
used for structural problems where it is superior to conventional finite element method.
Generally, moving least squares functions are used in formulation of meshfree method but it
does not satisfy the Kronecker delta property like radial basis functions; it is easier to apply
the essential boundary conditions with radial basis functions. The selection of parameters for
radial basis functions plays an important role for the accuracy of method. Also, it depends
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on the problem which we solve. Number of solutions can be obtained with changing the
parameters of radial basis function: in meshfree methods the length of the subdomain may
change and accurate results can be obtained with only few nodes. The meshfree Galerkin
method can be used to conclude the results using radial basis function.

The traditional Galerkin method and Galerkin finite element method are generally used.
The governing partial differential equation of rotating Euler–Bernoulli beam has been solved
with traditional Galerkin method, Galerkin finite element method and Galerkin meshfree
method. In Galerkin meshfree method, the subdomain for trial and test functions remains
same; we have to be careful with selection of basis functions. The Petrov–Galerkin method
which is a trulymeshless method has explored in literature as well with radial basis functions.
It is very essential to select the parameters of radial basis functions based on the problem.
In literature, it is also found that summation of two radial basis functions increases the
subdomain length: increase in number of nodes within the subdomain. The stiffness matrix
of a rotating Euler–Bernoulli beam has been converted in symmetric form in recent literature.

The radial basis functions are generally used in neural networks and other computations;
the radial basis functions are used to solve the differential equations [1]. The collective
approach of radial basis functions and finite element method has been used to solve the
electromagnetic problems [2]. The radial basis functions which are self-organizing are used
for the development of neural network [3]. These entire radial basis functions are assumed
in its original form while the improvements can be done based on the nature of the problem.
In numerical problems, radial basis functions are assumed as basis functions and results
obtained are accurate; the higher order derivatives of a radial basis function can be computed
easily. The radial basis function has been frequently used with meshfree methods as well
where the shape functions are defined on the nodes.

The meshless methods have relative advantage in few areas to finite element method: In
problems of structures having cracks, the nodes can be placed at the location of crack and the
analysis can be done. The meshfree methods have been used with different basis function:
(1) moving least squares basis function, (2) basis functions derived from Kriging polynomial
and (3) radial basis function. The advantage of radial basis function is that it does satisfy
the Kronecker delta property and the essential boundary conditions can be applied easily.
The formulation involves mostly Galerkin method or Petrov–Galerkin method. To check the
initial results of the method Galerkin method can be used where the subdomain of trial and
test function is same.

The basic accuracy has been discussed with the combination of meshless method and
radial basis function [4]. The Dirichlet problems have been solved using this combination
[5]. The Navier–Stokes equation has also been solved where results show good agreement
with literature [6]. Partial differential equations have been solved with this combination [7].
The collocation method has been used to solve the partial differential equation with similar
combination of meshless method and radial basis function [8]. The radial basis function
interpolation alongwith the barycentric rational interpolation has been used to 2Dviscoelastic
wave equation [9]. The global and local meshless method has been used for solving problems
of incompressible fluid flow with heat transfer where radial basis functions have been used
[10]. Kernel Techniques have also been used for meshless methods [11].

The ordinary differential equations followed by high order L-stable method have been
discussed in literature [12]. The partial differential equations have been solved using the
integrated multi quadric radial basis function approximation methods [13]. The radial basis
functions with finite difference method have been discussed in literature [14]. The unsteady
Burgers’ equation has been solved using the meshless methods where radial basis functions
are used as basis functions [15]. On arbitrary surfaces, the partial differential equations are
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solved by orthogonal gradients method where basis functions are radial basis functions [16].
A unique stable basis for the interpolation using radial basis function has been discussed as
well [17]. The advection–diffusion-reaction equations have been solved using the local radial
basis function method [18]. Non local boundary value problems with Neumann’s boundary
conditions are solved using the radial basis functionmethod [19]. In literature, the orthogonal
polynomials have also been used as basis functions in meshless method approximation.

An analytical solution has been obtained with the combination of orthogonal polynomials
and Walsh function for fractional transport equation [20]. The general fractional model of
COVID-19 has been comparatively studied with the effects of isolation and quarantine where
general fractionalmodel provides better resultswhen compared to conventionalmethods [21].
A novel fractional chaotic system has been studied where quadratic and cubic nonlinearities
are considered and a nonstandard finite difference scheme is used [22]. The motion of a beam
on nanowire has been studied where Lagrangian and fractional Euler-Lagrangian equations
[23]. A similar formulation has been used for capacitor microphone case study [24]. A
fractional hybrid integro-differential equation with mixed hybrid integral boundary value
conditioned was investigated which leads to less material consumption [25]. A new fractional
hybrid value problem has been explored with examples [26]. The solution for fractional
differential inclusions has been studied which is useful in solving real world problems [27].
The extensions of fractional thermostat model were provided using the solved examples [28].

The Caputo-Fabrizio fractional modeling has been used to study the hearing loss due
to Mumps virus [29]. It has also been used to analyze transient response of the parallel
RCL circuit [30]. The generalized Caputo fractional derivatives were used to investigate the
p-Laplacian nonperiodic nonlinear boundary value problem [31]. In the recent literature,
the extended fractional Caputo-Fabrizio derivation has been used for fractional integro-
differential inclusions [32]. This derivative has also been applied to higher order fractional
integro-differential equations and to analyze the model of HIV-1 infection of CD4 + T-cell
[33, 34]. The new class of hybrid type fractional differential equations has been solved where
the examples are provided as well [26].

In this paper, we solve the free vibration problem of rotating Euler–Bernoulli beam using
the meshless method where radial basis functions are used. Generally, the problem is solved
using the finite element method [35–38]. The non-rotating beam solutions are also obtained
by using the meshless method where radial basis functions are used [39]. The parameter
used in radial basis function approximation is never explored. In this study, we change the
parameter of radial basis function to get accurate solutions of rotating beams. Also, based
on the concept of centrifugal force which varies along the length of the beam, we develop a
new basis function which is found to be more accurate for the first three modes. The results
are discussed in detail where only one sub-domain is considered for trial and test functions.
The accurate values of this problem have been obtained in recent literature [40]. The results
include the non-rotating and rotating Euler–Bernoulli beam and non-uniform rotating and
non-uniform non-rotating beam as well. The solutions can be obtained with numbers of
techniques where the radial basis functions are used for weak form of Petrov–Galerkin
method. Here we choose this method and notice the change in parameters which influence
the results.
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Formulation inWeak Form

The partial differential equation for a rotating Euler–Bernoulli beam is given by

∂2

∂x2

(
E I (x)

∂2w(x, t)

∂x2

)
+ m(x)

∂2w(x, t)

∂t2
− ∂

∂x

(
G(x)

∂w(x, t)

∂x

)
� 0 (1)

For a fixed free beam the boundary conditions and initial conditions are given byw(0, t) �
0, ∂w(0,t)

∂x � 0, E I ∂2w(R,t)
∂x2

� 0, E I ∂3w(R,t)
∂x3

− G(R) ∂w(R,t)
∂x � 0, w(x, 0) � w0(x) and

∂w(x,0)
∂x � ẇ0(x). where, 0 ≤ x ≤ R and 0 ≤ t ≤ 2π.

Here, the flexural stiffness is E I (x), mass per unit length is m(x).
G(x) is the centrifugal force which is given by

G(x) �
R∫

x

m(x)�2xdx (2)

where, � is the angular velocity and R is the radius of the rotating beam.
The centrifugal force for a rotating beam is maximum at the root while minimum at the

free end. Figure 1 shows a rotating Euler–Bernoulli beam.
The problemwill be an ordinary differential equation after substitutingw(x, t) � eiωtw(x)

to get

d2

dx2

(
E I (x)

d2w(x)

dx2

)
− m(x)ω2w(x) − d

dx

(
G(x)

dw(x)

dx

)
� 0 (3)

The flexural stiffness and mass per unit length will be constant for a uniform beam and
the equation can be written as

E I
d4w(x)

dx4
− mω2w(x) − d

dx

(
G(x)

dw(x)

dx

)
� 0 (4)

where, ω is the natural frequency.
The weak form of Eq. (4) is given by

R∫
0

v(x)

{
E I

d4w(x)

dx4
− mω2w(x) − d

dx

(
G(x)

dw(x)

dx

)}
dx � 0 (5)

where, v(x) is the test function.

Fig. 1 A rotating Euler–Bernoulli beam
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Stiffness andMass Matrices of Rotating Euler–Bernoulli Beam

Equation 5 is integrated by parts to get

[
v(x)E I

d3w(x)

dx3

]R

0
−

[
dv(x)

dx
E I

d2w(x)

dx2

]R

0
+

R∫
0

E I
d2v(x)

dx2
d2w(x)

dx2
dx −

[
v(x)G(x)

dw(x)

dx

]R

0

+

R∫
0

G(x)
dv(x)

dx

dw(x)

dx
dx − mω2

R∫
0

v(x)w(x)dx � 0 (6)

[
v(x)

{
E I

d3w(x)

dx3
− G(x)

dw(x)

dx

}]R

0
−

[
E I

dv(x)

dx

d2w(x)

dx2

]R

0
+

R∫
0

E I
d2v(x)

dx2
d2w(x)

dx2
dx

+

R∫
0

G(x)
dv(x)

dx

dw(x)

dx
dx − mω2

R∫
0

v(x)w(x)dx � 0

(7)

Writing w(x) � [N (x)][q] and v(x) � [q]T [N (x)]T , we get

[
E I [N ]T

d3[N ]T

dx
− G(x)[N ]T

d[N ]

dx

]R

0
[q] −

[
E I

d[N ]T

dx

d2[N ]

dx2

]
[q]

+

⎧⎨
⎩

R∫
0

E I
d2[N ]T

dx2
d2[N ]

dx2
dx +

R∫
0

G(x)
d[N ]T

dx

d[N ]

dx
dx

⎫⎬
⎭[q] −

⎧⎨
⎩mω2

R∫
0

[N ]T [N ]dx

⎫⎬
⎭[q] � 0

(8)

The terms outside the integral will be zero as we satisfy the natural boundary conditions.
Then we get

⎧⎨
⎩

R∫
0

E I
d2[N ]T

dx2
d2[N ]

dx2
dx +

R∫
0

G(x)
d[N ]T

dx

d[N ]

dx
dx

⎫⎬
⎭[q] −

⎧⎨
⎩mω2

R∫
0

[N ]T [N ]dx

⎫⎬
⎭[q] � 0

(9)

The mass and stiffness matrices are given by

[K ] �
R∫

0

E I
d2[N ]T

dx2
d2[N ]

dx2
dx +

R∫
0

G(x)
d[N ]T

dx

d[N ]

dx
dx (10)

[M] � m

R∫
0

[N ]T [N ]dx (11)

Radial Basis Function Interpolation for Meshfree Method

The test and trial functions are similar in Galerkin method and are having the same sub-
domain length (�(1)

s ).

123



121 Page 6 of 17 Int. J. Appl. Comput. Math (2022) 8 :121

Fig. 2 Distributions of nodes

Figure 2 shows the distribution of the nodes in a rotating Euler–Bernoulli beam. In the
current study only six nodes are considered for the subdomain of trial and test function.

The transverse displacement of an Euler–Bernoulli beam is given by

w(x) � R1(x)a1 + S1(x)b1 + R2(x)a2 + S2(x)b2 + . . . + RN (x)aN + SN (x)bN (12)

where, a1, b1, a2, b2,…, aN , bN are arbitrary constants. The radial basis function is given by

R j (x) � e
−c

(|x−x j |)2
s2j (13)

Generally, the value of c is considered as one. In the present study we explore the values
for c � 1, 1

2 ,
1
5 ,

1
10 ,

1
50 ,

1
100

The derivative of radial basis function is given by

S j (x) � dR j (x)

dx
(14)

Values of c and s j are user defined. The slope is given by

θ (x) � dR1(x)

dx
a1 +

dS1(x)

dx
b1 +

dR2(x)

dx
a2 +

dS2(x)

dx
b2 + . . . +

dRN (x)

dx
aN +

dSN (x)

dx
bN

(15)

We can then rewrite the transverse displacement as

w(x) � [Q(x)](1,2N )[c]
T
(2N ,1) (16)

where,

[Q(x)](1,2N ) � [R1(x)S1(x)R2(x)S2(x) . . . RN (x)SN (x)] (17)

and

[c](1,2N ) � [a1b1a2b2 . . . aNbN ] (18)

The slope can be given as

θ (x) �
[
dQ(x)

dx

]
(1,2N )

[c]T(2N ,1) (19)

where, [
dQ(x)

dx

]
(1,2N )

�
[
dR1(x)

dx

dS1(x)

dx

dR2(x)

dx

dS2(x)

dx
. . .

dRN (x)

dx

dSN (x)

dx

]
(20)

Eventually the assembled equation can be written as

[QM ](2N ,2N )[c]
T
(2N ,1) � [d](2N ,1) (21)
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Fig. 3 Multiple subdomain with in a rotating Euler–Bernoulli beam

where,

[d](1,2N ) � [w1θ1w2θ2 . . . wN θN ] (22)

and

[QM ] �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1(x1) S1(x1) R2(x1) S2(x1) . . . RN (x1) SN (x1)
dR1(x1)

dx
dS1(x1)

dx
dR2(x1)

dx
dS2(x1)

dx . . .
dRN (x1)

dx
dSN (x1)

dx
R1(x2) S1(x2) R2(x2) S2(x2) . . . RN (x2) SN (x2)
dR1(x2)

dx
dS1(x2)

dx
dR2(x2)

dx
dS2(x2)

dx . . .
dRN (x2)

dx
dSN (x2)

dx
...

...
...

...
...

...
...

R1(xN ) S1(xN ) R2(xN ) S2(xN ) . . . RN (xN ) SN (xN )
dR1(xN )

dx
dS1(xN )

dx
dR2(xN )

dx
dS2(xN )

dx . . .
dRN (xN )

dx
dSN (xN )

dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

Here, w1, θ1, w2, θ2,…, wN , θN are the nodal degrees of freedom.
Rewriting Eq. 21, we get

[c]T(2N ,1) � [QM ]−1
(2N ,2N )[d](2N ,1) (24)

The transverse displacement can be given as

w(x) � [H (x)](1,2N )[d](2N ,1) (25)

where, [H (x)] is the shape function vector.

(26)

[H (x)](1,2N ) � [Q(x)](1,2N ) [QM ]−1
(2N ,2N )

�
[
φ
(w)
1 (x)φ(θ )

1 (x)φ(w)
2 (x)φ(θ )

2 (x) . . . φ(w)
N (x)φ(θ )

N (x)
]

Here, φ(w)
i (x) and φ

(θ )
i (x) are the shape functions associated with node i .

We can then write transverse displacement as

w(x) �
N∑
j�1

(
φ
(w)
j (x)w j + φ

(θ )
j (x)θ j

)
(27)

In meshfree Galerkin method, we assume the test function similar to the trial function and
it is given by

v(x) �
N∑
j�1

(
φ
(w)
j (x)δw j + φ

(θ )
j (x)δθ j

)
(28)
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Fig. 4 1 and 2 Mode shapes of a uniform beam for rotating speed s � 0 (left) and s � 12 (right) for P(x)

The mass matrix and stiffness matrix for each subdomain is given by

[K ]
�
(i)
S

� E I
∫

�
(i)
S

[
H

′′
(x)

]T[
H

′′
(x)

]
dx +

m�2

2

∫

�
(i)
s

(R2 − x2)
[
H

′
(x)

]T[
H

′
(x)

]
dx (29)

[M]
�
(i)
S

� m
∫

�
(i)
S

[H (x)]T[H (x)]dx (30)

In case of multiple subdomain the assembly is required. Figure 3 shows the multiple
subdomains.

Formulation of a New Basis Function

In case of rotating Euler–Bernoulli beam, the centrifugal force varies along the length. To
capture this, the radial basis function is multiplied with function x . The resulting function is
given by

Pj (x) � x R j (x) � xe
−c

(|x−x j |)2
s2j (31)

The results show that the first, second, and third mode can be relatively accurate when
we use above basis functions. The rest of the procedure is similar to radial basis function
approximation.

The Gaussian radial basis function when multiplied to cubic radial basis function the
approximation is give by

Q j (x) � (∣∣x − x j
∣∣)3e−c

(|x−x j |)2
s2j (32)
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Fig. 5 1 and 2 Mode shapes of a uniform beam for rotating speed s � 0 (left) and s � 12 (right) for Q(x)

Results

Results are obtained for a single sub-domain where six nodes are considered in each sub-
domain. The results are obtained for the value of c � 1, 1

2 ,
1
5 ,

1
10 ,

1
50 ,

1
100 Both non-rotating

and rotating beams are considered here. Tables 1 and 2 show the results for non-rotating
and rotating beam respectively. Non-dimensional rotating frequency η and non-dimensional

rotating speed s is given by η � ω

√
m0R4

E I0
, s � �

√
m0R4

E I0
.

The results show that value of c should not be one and the tables show the accuracy when
the values are less than one. The exact values can be obtained using trial and error where
the values are similar to the conventional finite element method. The results of new basis
function Pj (x) are given in Tables 3 and 4. Figure 4 shows the respective mode shapes.

The results of new basis function Q j (x) are given in Tables 5 and 6. Figure 5 show the
respective mode shapes. Here in Table 5, the results are not accurate for c � 1 and c � 0.5
which clearly show the importance of approximation. The similar observation can be seen in
Table 6.

Conclusions

The parameter (c) has been varied to get the approximate solutions; we observed that for
better accuracy the values of c are in between 1 and 0.01. The results get accuracy for the
decreasing value of c. The results are obtained for non-rotating and rotating Euler–Bernoulli
beams. The two new basis functions which have been developed provide better results for the
first three modes when compared to conventional method. The stiffness and mass matrices
have been derived for meshfree method. The results are found for a fixed-free beam, which
are accurate while considering only six nodes within the sub-domain of trial and test function.
The new basis function is introduced to see the effect of centrifugal force in the solution. The
results clearly show the importance of approximation in numerical methods: finite element
method and meshfree methods. These methods can be applied to a numbers of problems such
as Rayleigh beam theory and Timoshenko beam theory where the results may or may not
vary with change in radial basis function paramter c. The results will also vary with numebrs
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on nodes within the sub-domain of trial function. One more important observation is for
second new basis function the results are not accurate for c � 1 and c � 0.5. The radial basis
function is having numbers of approximations: Gaussian functions, multi-quadric functions
and thin plate spline functon. These approximations provides results which are not similar
as we change the parameters.
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