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Spanning the scales of granular materials through
microscopic force imaging
Nicolas Brodu1,2,*, Joshua A. Dijksman1,3,* & Robert P. Behringer1

If you walk on sand, it supports your weight. How do the disordered forces between particles

in sand organize, to keep you from sinking? This simple question is surprisingly difficult to

answer experimentally: measuring forces in three dimensions, between deeply buried grains,

is challenging. Here we describe experiments in which we have succeeded in measuring

forces inside a granular packing subject to controlled deformations. We connect the

measured micro-scale forces to the macro-scale packing force response with an averaging,

mean field calculation. This calculation explains how the combination of packing structure

and contact deformations produce the observed nontrivial mechanical response of the

packing, revealing a surprising microscopic particle deformation enhancement mechanism.
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T
he way that a disordered packing of macroscopic particles
responds to mechanical deformations, such as compres-
sion, was investigated as early as the seventeenth century,

when Stephen Hales studied the expansion of dried peas
submerged in water1. The motivation for such studies is clear.
Packings of particles surround us: coffee beans and rice; soils,
embankments, many industrial processes and geophysical
processes from earthquakes to landslides involve granular
materials2, hence, the gamut of recent investigations3–5. Part of
the relevant physics also applies to emulsion and foams, which
consist of highly deformable frictionless particles, and to colloidal
systems6,7, where thermal agitation is relevant. A major challenge
for granular materials is relating microscopic contact and force
details to global system response, such as applied stresses or
strains. The link from micro- to macro-scale behaviour informs
the mathematical link, known as a constitutive relation, between
macroscopic strain or stress and macroscopic response. These
relations appear routinely for conventional materials such as
Newtonian fluids (shear stress proportional to shear strain rate)
or linear elastic solids (stress proportional to strain). For granular
materials, there are continuum models containing empirical
constitutive relations8, which are widely used in the soil
mechanics communities. However, they suffer from problems:
the connection between grain-scale and macro-scale behaviour is
still an open question, and these models are known to contain
complex mathematical instabilities9. The lack of a well-
established constitutive relation for granular materials is highly
limiting; it is essential in applications where a continuum
description is the only computationally feasible approach.

To develop models such as constitutive relations, it is essential
to have direct access to microscopic experimental information
that shows how granular materials respond to applied stresses or
strains. The challenge is to have access to all microscopic

quantities inside a granular packing, including at every contact
between grains, not just for a single packing under fixed boundary
conditions, but during the entire evolution of a packing under
realistic deformations. Experimental probes of granular micro-
scopic properties that provide structure and contact forces in
three-dimensional (3D) packings are limited. Photoelastic
methods provide this type of information in two dimensions10,
but are hard to implement in 3D. Pioneering measurements by
Brujić et al.11 and by Zhou et al.12 for emulsions yielded the
distribution of forces at contacts, P(f), relative to the average
force and information on contact networks. Tomographic
techniques (such as X-ray microscopic computed tomography
(microCT)13,14 and refractive index matching15,16) have been
successfully implemented to measure structure and particle
contacts. Extracting forces was done in microCT data17,18, by
imposing a global force balance constraint. This constraint infers
local contact forces from (measured or simulated) average particle
stresses and boundary conditions, even when contact forces
cannot be easily extracted. An alternative approach would be to
measure forces directly, at each individual contact. Both the
methods could be combined to improve accuracy. Importantly, all
existing methods are limited in their ability to yield microscopic
structure, particularly contact forces, over many closely spaced
macroscopic state changes and with a precise control of applied
strains.

In this work, we use refractive index matching tomography to
provide full access to microstructure, for packings of deformable
hydrogel particles that are compressed and decompressed
uniaxially. The crucial aspect of our work is the unique combined
ability to measure individual contact forces in vectorial detail,
while straining the sample in small increments, enabling us to
track the system-scale stress tensor over many small strain steps.
This feature gives access to the complete micro–macro range of
mechanical details of the packing, including ingredients for
constitutive modelling.

Results
Description of the experiment. In a typical experiment, sketched
in Fig. 1a, 514 hydrogel particles that have been saturated with
fluorescent dye are contained in a Plexiglas box. The particles are
roughly, but not perfectly, spherical, with a mean diameter of
2.1 cm. The box is filled with a solution of water and poly-
vinylpyrrolidone, such that the index of refraction of the particles
is well matched to the solution. This allows optical access to a
vertical laser sheet that is scanned horizontally. A camera, whose
image plane is parallel to the laser sheet, records a series of images
as the laser sheet is swept. To reconstruct particles and contacts,
we have developed dedicated tomography algorithms that yield
the force (including direction) for each individual particle con-
tact. We discuss this method further, along with additional
experimental information, in the Methods section. The particles
are contained in a box with five rigid transparent walls. The sixth
and topmost wall is a porous piston, which moves in the vertical
direction, providing compression/decompression. A force gauge,
which is in-line with the piston, measures the vertical force acting
on the top layer of particles, and hence the pressure at the top
boundary. The piston location and the force gauge give us the
macroscopic strain and stress imposed on the system. For each
scanned sequence of images, we infer the particle shapes,
locations and all the contact vector forces, which give us the
full microstructure (Fig. 1b). For the present system, friction is
negligible and forces are nearly normal to contacts. However, the
technique used here can be generalized to contact forces with
friction. The density of the particles is also nearly matched to the
fluid, so that the particles experience an effective gravity of about
0.01 g (g is the acceleration of gravity).
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Figure 1 | View of the experiment setup, grain tomography and forces

between particles. (a) Schematic representation of the setup: hydrogel

grains saturated with a fluorescent dye are immersed in an index-matched

bath, which is subject to a uniaxial strain. A moving laser sheet illuminates

cross-sections, which are imaged by a digital camera; a force sensor

measures the compressive stress. (b) Superimposed image data showing

part of a single slice fluorescence image (black with grey particle cross-

sections), the reconstructed particles (blue) and force networks (coloured

rods). The blue semitransparent spherical shapes show the reconstructed

particle surfaces from one complete set of slices. Rods show forces

between grains, as determined from the reconstructed grain surfaces and

contact deformations. Rod thickness (thin–thick) and colour (blue–red)

represent strength of the force (low–high) at the contact, scaled with the

cumulative distribution function. The scale bar represents 1 cm at this

position in the perspective.
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The experimental protocol consists of a series of 20 uniaxial
compressions, each followed by a corresponding expansion to the
original boundary configuration. Each cycle consists of a
compression phase imposing a strain up to 13.4% of the initial
height, followed by a decompression phase returning the top plate
to its original position. A full cycle is carried out in 60 quasi-static
steps of 1 mm each, but the top plate does not touch the grains in
the first five and last five steps. After each quasi-static step, we
carry out a complete volume scan.

Microstructure and 3D force information. To obtain the contact
forces from the reconstructed scanned images, we implement the
following steps, which we discuss further in the Methods section.
First, we identify the boundary of each particle, which is not
perfectly spherical, including regions of contact with other par-
ticles. Then, from the areas of contact, we use linear elasticity, and
the independently measured Young modulus of the particles
(EE23 kPa), to infer the contact normal forces. The particles are
nearly incompressible (volume change from uncompressed to
fully compressed is o1%) so we assume that they have a Poisson
ratio of E0.5. Our best estimate of the hydrogel friction coeffi-
cient is mE0.03. Hence, for these experiments, the tangential
(frictional) forces are at most 3% of the corresponding normal
forces and lie below experimental resolution (the minimum
average contact force is hfi¼ 10� 2 N, see Methods). We then
compute the coarse-grained continuum stress tensor19. We
integrate the normal contribution of the stress tensor over the
upper boundary to obtain the force on the top plate. We
emphasize that this measurement uses only information from the
micro-scale and the independently measured particle Young’s
modulus. The force data resulting from the stress integration and
from the independent in-line force gauge are nearly identical, as
we show in Fig. 2, for the last 15 of the 20 uniaxial compression/
decompression cycles. Here red and blue distinguish, respectively,
the macroscopic force measurement of the gauge from the
microscopically derived measurement. Although there is a small
offset between the two different force measurements, the overall
agreement is very good, and the results are very reproducible
from cycle to cycle. The difference in the two types of
measurements may be due to friction, which we neglected, as
well as small differences in the properties of the hydrogels
between compression and decompression20. These may also be
responsible for part of the hysteresis. In the remainder of this
paper, we use the force values derived from the images, for
consistency with other microstructure measures.

With large data sets of particle-scale data, it is possible to
obtain reliable statistics on all quantities of interest. We measured
data from the 20 compression cycles, but we avoid the first five
cycles in the analysis as they show weak transient effects. We
compute statistics (microscopic averages noted by h � i) only on
grains that do not touch the walls, and on contacts between such
grains, to reduce any boundary effects. We also separate the
compression and the decompression motion at the same
compression level to display the full mechanical trajectory. The
measures presented in Fig. 3 are typically averaged over 10,400
samples for contacts and 4,100 samples for grains.

These data allow us to link microscopic quantities to similar
global properties of the packing, which we discuss in the context
of Fig. 3. In particular, we provide insight into the nominally
power–law relation between the macro-scale force F and the total
strain D: FpDb. We contrast F and D to their microscopic
equivalents, hfi the average force at contacts, and hdi the average
contact deformation. These last two variables are related by Hertz’
law, together with the radius of curvature, r, at contacts. A key
observation is that F(D) and hfi(hdi) follow substantially different
functional relations21.

Linking microstructure and global packing response. Figure 3a
shows the uncompressed and fully compressed states corre-
sponding to one of the cycles. In Fig. 3b, we show data for the
global force, F, versus the global compression D. A fit of these
data to a power law yields an exponent b¼ 2.2±0.2, which is
significantly larger than the microscopic (Hertzian) force law
exponent of 1.5 measured for intergrain forces. This non-Hert-
zian packing mechanics has even been observed in much larger
packings21, so it is not a finite size effect—the key point is that
F depends on hfi as well as on additional microscopic properties.
This is already partly revealed through the small hysteresis visible
in the compression loop of Fig. 3b. The pressure, exerted on the
top plate, can be expressed as a combination of the averaged
microscopic quantities. Using a mean field argument detailed in
the Methods section, we obtain:

F / fh i Zh i jh i bh i ð1Þ

where hZi is the average number of contacts per particle, hbi is
the average distance between grain centres and hji is the average
packing fraction of grains within the packing (not touching the
boundaries). In Fig. 3c, we show this mean field relation is well
satisfied. This result gives a simple explanation of why the global
force response with strain has a larger effective exponent than the
particle-scale force law.

Figure 3d shows data for hZi versus hji. Near jamming, for
hji near 0.64, we expect hZiE6, whereas we measure Z between
4 and 5. This error is due to experimental uncertainty in
distinguishing between two particles that are very close, but not in
contact, versus actually in contact. By contrast, near maximal
compression, the experimental error in hZi is much lower. For the
largest packing fractions, hji40.74, our particles approximately
organize into a crystalline lattice (see Methods), with a
coexistence of hexagonal compact and cubic face-centred
organization modes that implies crystal defects. Note that
hji¼ 0.74 corresponds to the packing fraction for an ordered
close-packed lattice of hard spheres (FCC or HCP), although our
particles are deformable. Using an overestimate for errors in all
relevant quantities, including hZi, we obtain the error bars
indicated by crosses for the scaling relation of Fig. 3c and
equation 1. Note that the scaling relation of equation 1 is not
strongly affected in absolute terms by errors in hZi, since
the region where hZi is most uncertain corresponds to small
values of hfi.
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Figure 2 | Accuracy of the image processing. Comparison of the

compressive force F measured by the in-line force gauge (red) with the

force inferred from the tomographic reconstruction (blue), for each of the

900 full scans taken during 15 loading/unloading cycles of the uniaxial

compression experiment (the first cycle is blown-up). The top plate does

not touch the grains in the first and last five scans in each cycle, but in

between, the scan numbers can be viewed as an ‘unfolded’ measure of

strain expressed in mm.
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Now that we have established the microscopic ingredients for
the macroscopic mechanical response via equation 1, we can
further elucidate the micro–macro link of the constitutive relation
P(D) or, equivalently, F p Db. Importantly, we note that F p Db

is approximately, but not strictly a power law. For example, hji,
in equation 1, varies with D as hjip 1/(c-D), where the constant
c depends on the packing geometry. We further see that F
depends on D indirectly through hZi, so the strain-evolving
topology of the microstructure matters as well—indeed, the
micro–macro link is very complex. However, the fact that F is
roughly a power law in D suggests that there may be other
effective power–law-like relations between microscopic and
macroscopic properties. We indeed find such relations. For
instance, we find that hdi is well approximated by hdip Da, with
aE1.4±0.1, providing we shift hdi by a small offset, hdimin,
which is below the experimental resolution (Fig. 4a), and that that
hfip Dg, with an empirical exponent gE1.7±0.2 (Fig. 4b). It is

important to note that we cannot directly link all the empirical
exponents a, b and g, as hdi appears both in Hertz’ law and as
part of hbi in equation 1 (see the Methods section).

These observations yield the notable finding that, because
a41, there is an effective mechanism through which the global
strain D produces nonlinearly amplified deformations hdi at the
grain level. This makes the nonlinear deformation amplification
highly relevant, while also showing the deep entanglement of
force and structure in the constitutive modelling of disordered
packings of particles.

Discussion
We present a novel experimental technique that yields all
microscopic contact and force vector information from a 3D
packing of particles subject to controlled deformation. With these
microscopic data, we have been able to verify a quantitative
relation between the macroscopic mechanical response of the
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packing and microscopic structural metrics of the packing.
Furthermore, our experiment has revealed an important non-
linear enhancement of contact deformation in response to a
global packing deformation, which significantly impacts the
understanding and modelling of granular materials. Our new
experimental approach has great potential for yielding under-
standing of other granular systems, including the granular
response to shear, the jamming transition, particle diffusion,
effects of particle shape and so on. It supplements other 3D
imaging methods, such as microCT, NMR and confocal imaging,
opening up a wide range of opportunities to shed new light on the
poorly understood mechanics of disordered materials.

Methods
Derivation of the contact forces from geometric properties. We compute the
deformation, d, at a given contact from the geometric properties of the grains
involved in that contact. All grains have the same Young’s modulus, so d is split
equally between the two grains22. The radius of curvature, r, of the undeformed

surface (see Fig. 5), which is different for each grain and each contact, is therefore
r¼ dþ½d, with d the distance between the centre of the contact area and the grain
centre. We observe that the force is given by F¼ Ee re

1/2 d3/2 and F¼ Ee d a, with Ee

the effective Young’s modulus, 1/re¼ 1/r1þ 1/r2 the effective contact radius and
a¼O(A/p) the radius of the area of contact, A. Equating the two expressions for
the contact force we obtain a cubic relation, which gives us d. We have inde-
pendently measured the Young’s modulus for our particles: EE23 kPa, see Fig. 6.

Derivation of the mean field scaling relation. The stress tensor can be com-
puted23 with a relation of the form s ¼ 1=V

P
c2V bc � f c, with V an averaging

volume and cAV the contacts in that volume (V is actually replaced by a smoothing
kernel19). For each contact c, bc is the vector between the centres of the grains
and fc is the force vector along the contact normal. Neglecting friction and non-
sphericity, bc and fc are nearly aligned; hence, the trace tr ðbc � f cÞ � bc � f c . The
number of terms in the sum depends on the density of contacts, which is about ½ Z
j, with Z the number of contacts per grain and j the grain volume fraction within
the packing (for grains not touching the boundaries). The grains are nearly density
matched with the surrounding fluid (density difference of E10 kg m� 3) so we can
ignore the hydrostatic pressure. With roughly spherical grains, the isotropic
pressure is very nearly proportional to tr bc � f c. Hence, p p hb f Z ji. If we write
any one of the quantities, q, on the right as q¼hqiþ e, the contact force, f, has
qualitatively different statistical properties compared with b, Z and j. The contact
forces are distributed broadly over 0rfrfmax, while the others have relatively
narrow fluctuations around a non-zero mean value. For instance, b is typically
twice the roughly constant particle radius minus a typical small deformation d.
Since f is the only quantity that can change by orders of magnitude in the
experiment, we use the mean values of b, Z and j in the expression for p and
assume that deviations from the mean are uncorrelated, which means that
pphbihZihji � hfi. The integral of p over the top plate yields the top plate force,
F, which reflects the mean field relation for p. When the top plate barely touches
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Figure 5 | Contact and grain geometries, sketched in a 2D plane
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shown as dashed lines. The deformation, d, for this contact is the unknown

quantity that we infer from linear elasticity. We measure the area of contact

A, the position of the contact centroid C and its distance d to the center of

mass G of each grain. Note that d (hence r) can vary for different contacts

on the same particle, as particles are weakly non-spherical. The distance

between grain centres b depends mainly on the grain polydispersity and

weakly on their non-sphericity so, on average, hbiE2hdi. Our force

inference algorithm uses the observed surfaces, without assuming

sphericity, and provides experimental access to all the relevant quantities in

order to reconstruct d.
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the grains, F should be null and, due to the density matching, so should hfi.
We subtract the small minimal measured values from hfi and F, which are present
at the instant the plate touches the grains and which we attribute to measurement
inaccuracies. This guarantees that F¼ 0 when hfi¼ 0. The coefficient of
proportionality is the averaging volume, V, divided by the top plate area. As shown
in Fig. 3c, this relation is remarkably well respected.

Crystalline structure of the packing. We analyse this crystalline structure by
looking at the frequencies of the preferred directions of contacts, in each angular
sector around a grain’s center of mass. This gives a spherical probablility dis-
tribution, the amplitude of which in each angular sector can be represented
as a surface (see Fig. 7).

Inference of 3D geometrical properties from images. For a given state of our
system, we measure images of the packing cross-sections. From these we infer the
geometric properties of the grains and their contacts. We use standard image
denoising, local grey level renormalization, and image rescaling to compensate
varying optical path lengths. We combine all the slice images into a 3D repre-
sentation in terms of voxels. We detect border voxels by using a combination of
statistical tests and signal processing techniques to account for physical properties
of the hydrogels (for example, homogenous grey levels within grains, compensation
of artifacts induced by index mismatch at grain boundaries due to their surface
properties and so on). These methods are detailed in the publicly available source
code. They ensure that very few false-border outliers remain. We then uniquely
attribute border voxels to grains: a local tangent plane is fit at each voxel, such that
the plane normal determines the direction towards a rough estimate of the grain
centre at an average radius distance. These protocentres are considered to be
distributed around a unique grain identifier, which we compute with 3D kernel
density estimation. This process yields a cloud of border voxels uniquely attributed
to each grain. We then fit an analytic shape to these borders such that for each
direction u (unit vector), the surface of the grain from the center of mass in that
direction is given by a function s(u) that best interpolates through all border voxels.
This function s is expressed in terms of a basis of spline functions on S2�{u}, the
unit sphere. Unlike their Cartesian counterpart (for example, non-uniform rational
B-splines (NURBS)), the triangular spherical b-splines24 do not introduce any
singularities on the sphere, and they are maximally isotropic. We use the convexity
of the hydrogel grains as a regularizing condition, and we then perform a
Levenberg–Marquardt least-square optimization to find the coefficients of s in the
spline basis, so as to best fit border voxels, discarding any remaining outliers. Once
we have analytic descriptions of the grain surfaces, it is easy to compute their
centres of mass and any other geometric quantity, including the areas of contact.

Experimental methods. The granular material used here consists of 514 hydrogel
beads16,20. The beads are approximately spherical and roughly monodisperse with
a typical diameter of 2.1±0.1 cm. They are immersed in a water-
polyvinylpyrrolidone 360,000 MW(polyvinylpyrrolidone) solution to match the
particle index of refraction to the surrounding fluid. This matching allows interior
optical access, which is necessary for the refractive index-matched tomography
technique used here15. Since the particles are almost entirely composed of water,
they are also nearly density matched with the fluid; the particle density is
o10 kg m� 3 greater than the fluid density. By itself, the fluid–particle system
is completely transparent. To obtain contrast, we dye the particles with a
hydrophobic fluorescent dye (Nile Blue 690), which can be excited with a laser
sheet. This laser sheet (Lasiris SNF 635 nm, 25 mW) moves on a fast linear stage,
which sequentially illuminates the sample slice-by-slice. A fast camera (Basler
ava1000-120) equipped with lens and long pass filter records the fluorescent image
of each slice. This produces a sequence of particle cross-sections. The camera is
mounted on the same stage as the laser, as in the design of ref. 25.
A complete scan typically consists of 360 slices. We confine the granular system in
a rectangular box with base size 16.5� 16.5 cm and carry out cyclical uniaxial
compression/decompression using a stage-controlled piston as described in the
main text. The top piston is made from a 6 mm thick perforated sheet, which
allows flow of index-matching fluid into and out of the packing. Except for
gravitational gradients, the pore pressure inside the fluid is uniform and matched
to the ambient atmosphere. The piston is driven by a linear stage (Newport
MTM250) and controller (Newport XS4), with a step resolution of 1 mm. The force
on the piston plate is measured with a force sensor (Loadstar RSB4-005M-A). The
compression speed during compression/decompression is 0.1 mm s� 1 to reduce
fluid-induced shear stresses on the particles and to drive the granular system
completely quasi-statically. The spacing between the piston plate and the walls is
small enough that particles cannot escape confinement, so the number of particles
during an experiment is constant. The container height depends on the
compression level, but a typical uncompressed height is about 15 cm. More
experimental details can be found elsewhere20.
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