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Alzheimer’s disease (AD) is commonly an age-associated dementia with
neurodegeneration. The pathogenesis of AD is complex and still remains unclear.
The inflammation, amyloid β (Aβ), and neurofibrillary tangles as well misfolded tau protein
in the brain may contribute to the occurrence and development of AD. Compared with
tau protein, Aβ is less toxic. So far, all efforts made in the treatments of AD with targeting
these pathogenic factors were unsuccessful over the past decades. Recently, many
studies demonstrated that changes of the intestinal environment and gut microbiota
via gut–brain axis pathway can cause neurological disorders, such as AD, which may
be involved in the pathogenesis of AD. Thus, remodeling the gut microbiota by various
ways to maintain their balance might be a novel therapeutic strategy for AD. In the
review article, we analyzed the characteristics of gut microbiota and its dysbiosis in AD
and its animal models and investigated the possibility of targeting the gut microbiota in
the treatment of the patients with AD in the future.
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HIGHLIGHTS

- The gut microbes communicate with the brain by several regulating pathways via the gut–brain
axis involved in the physiological activities to maintain homeostasis of the human body. The
imbalance of gut microbiota is associated with AD.

- The gut dysbiosis caused by several factors may aggravate neuroinflammation and other
pathologies promoting the development and progression of AD.

- Targeting the gut dysbiosis or remodeling the gut microbiota might be a novel strategy for
AD therapy.

INTRODUCTION

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disorder and the most
common form of age-associated dementia. In year 2017, it has been reported that about
40 million people suffered from AD in the world (Alzheimer’s Association, 2017; Esquerda-
Canals et al., 2017). Despite a lot of previous intensive studies, the pathogenesis of AD
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remains insufficiently understood. Pathologic changes in the
brain of AD include amyloid β (Aβ) plaque deposits and
neurofibrillary tangles formed by intracellular accumulation of
hyperphosphorylated tau protein and neuroinflammation. The
pathological characteristics are current major theory of the
pathogenesis of AD (Angelucci et al., 2019). However, the
great efforts in therapeutic AD basis on the pathogenesis of
AD with pathogenic Aβ or tau over the past decades have
witnessed continuous failure, indicating that the pathogenesis
of AD should be multifactorial and is more complex than a
simple pathogenic Aβ or tau would suggest. With aging of human
beings, the incidence of AD is rising continuously in the world,
which has become a major public health problem (Angelucci
et al., 2019). In order to develop the effective treatment,
we need further a better understanding of the pathogenesis
of AD.

Over the past 10 years, the researchers have been very
concerned and interested in the role of the gut microbiome
in modulating brain function, although the results were
obtained mainly from animal models (Long-Smith et al.,
2020). Microbiota may be a crucial predisposing factor
for AD and other neurological disorders, which has been
proven by a growing number of studies (Zhuang et al.,
2018; Sochocka et al., 2019; Cryan et al., 2020; Long-Smith
et al., 2020). AD has been considered as a systemic disease
related to inflammation, and the inflammatory–infectious
hypothesis of its pathogenesis becomes more significant
(Bronzuoli et al., 2016). It has been evidenced that
microbes and their products from the periphery infiltrating
into the brain causing chronic inflammation are an
important predisposing factor of neuroinflammation and
neurodegenerative changes observed in AD (Cattaneo
et al., 2017; Ashraf et al., 2019). AD and cognitive decline,
as well as other neurodegenerative diseases, are often
associated with gastrointestinal (GI) dysfunction (Zhuang
et al., 2018; Sochocka et al., 2019; Ticinesi et al., 2019). It
is postulated that AD may begin in the gut and is related
to the imbalance of gut microbiota, while the intestinal
inflammation and infections caused by various pathogens may
control the changes of the gut microbiota first, and then other
factors, as described below, are also involved in controlling
these changes.

Throughout the course of these diseases, the GI disturbances
may occur in the different stage of the diseases as a clinical
manifestation. The alteration of enteric neuroimmune system
(ENIS) and dysbiosis of the gut microbiota may lead to
the occurrence of GI dysfunction and neurologic disorders
(Pellegrini et al., 2018; Sochocka et al., 2019). Therefore,
it has been hypothesized that AD is closely related to gut
microbial alteration, and it is consistent with the pivotal role
of inflammation in the pathogenesis of AD (Calsolaro and
Edison, 2016; Haran et al., 2019). In the review article, we
clarify the characteristics of the gut microbiota, analyze the
role of dysbiosis of the gut microbes in the pathogenesis of
AD, and discuss the possibility whether targeting the dysbiosis
of gut microbes can be as a future therapeutic manipulation
in AD.

THE GUT MICROBIOME AND THEIR ROLE

Features of the Gut Microbiota
Normal microorganisms in human being consist of bacteria,
fungi, viruses, etc. and 95% of them are located in the
large intestine (Swidsinski et al., 2005; Galland, 2014). The
microbiota refers to bacteria, fungi, viruses, etc., existing in
an ecosystem/habitat, and the intestinal microbial community
is named gut microbiota (Shahi et al., 2017). The amount of
microorganisms is 1014 with a total weight of approximately
2 kg (Picca et al., 2018). In human, distribution and species of
the bacteria residing in the intestinal tract are always changing
and uncertain, which depend on the physiological condition of
the GI tract. So far, the exact species of microbe populations
are unclear.

However, the comprehensive view of human-connected
microbes has been offered by the Metagenomics of the
Human Intestinal Tract and the Human Microbiome Project.
There are a total of 2,172 species of microbes classified
into 12 phyla in human, and Proteobacteria, Firmicutes,
Actinobacteria, and Bacteroidetes phyla possess 93.5% of
total microbes (Li et al., 2014; Hugon et al., 2015; Bilen
et al., 2018). The phyla Firmicutes and Bacteroidetes are the
majority, containing the genera Prevotella, Bacteroides, and
Ruminococcus, as well as Verrucomicrobia and Actinobacteria,
but Proteobacteria phyla members have a small quantity
(Mowry and Glenn, 2018). Because many factors impact
on gut microbiota, for example, genetic factors, sex, diet,
and others, such as place of residence, smoking, etc.,
therefore, different ethnicities have different gut microbiomes
(Blum, 2017).

Role of the Gut Microbiota
The microbiota is involved in important homeostatic processes
and essential for the homeostasis of intestinal intraepithelial
lymphocytes (Liu L. et al., 2019). Besides the role of microbiota
associated with GI function, the microbiota also contributes
to inflammation and immune response, central and peripheral
(enteric) neurotransmission, glucose metabolism, etc. (Liu et al.,
2020). Therefore, the gut microbes play a beneficial role in
maintaining homeostasis of immune systems of the host.
The necessary vitamins and other substances involved in the
development of the central nervous system (CNS) and immune
regulation are produced by gut microbiota (Blum, 2017; Picca
et al., 2018).

In a healthy organism, microbiota can also create a protective
barrier against the infectious agents in the gut (Angelucci et al.,
2019; Liu L. et al., 2019). Furthermore, a dynamic network is
formed via the interaction among intestinal epithelial barrier,
intestinal immune system, gut microbiota, and enteric nervous
system (ENS) to coordinate the GI physiology and maintain
homeostasis of gut (Pellegrini et al., 2018). The association of
gut microbiota and its interaction with intestinal mucosal barrier
and immune system in maintaining brain homeostasis have been
demonstrated by more and more evidence (Foster et al., 2017;
Fung et al., 2017).
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Impact of Dysbiosis of Gut Microbes
on Body
In addition to destabilizing the intestinal environment, the
dysbiosis of gut microbes can affect behavior, learning, and
memory, as well as neurogenesis, etc. (Fang et al., 2016; Luczynski
et al., 2016; Minato et al., 2017; Tremlett et al., 2017). Therefore,
the gut microbiome plays a key role in maintaining the body
healthy. So far, several review articles summarized well the role
of gut microbiota in the maintenance of brain homeostasis (Fung
et al., 2017; Tognini, 2017; Tremlett et al., 2017; Askarova et al.,
2020). Here, we describe concisely the most important results
about the role of gut microbiota in the regulation of brain
physiological processes.

Microbiota and Senescence
The relationship between the gut microbiota and the senescent
brain is unclear, and until now, it is still an unanswerable
question. As several neurodegenerative diseases occur in the
elderly, it has attracted attention to the relationship between the
gut microbiota and aging. However, at present, not many clinical
and experimental studies evaluated this in the field. Claesson
et al. (2012) studied the composition of the gut microbiota
from 16 older than 65 years in the Ireland and showed more
diverse gut microbiota with better health outcomes, indicating
that the composition of the gut microbiota is closely related
to health condition and immune function, and a diet rich in
fruits and vegetables has a greater diversity of gut microbiota.
Thus, one of the features of healthy aging may be the diversity
of the gut microbiota (Claesson et al., 2012). Unfortunately,
the study did not provide the information regarding the
relationship between the gut microbiota and the senescence.
The field is nascent, and so far, not many studies have
been published.

The evidence concerning the relationship between gut
microbiota and aging in mice showed that age-associated
behavioral impairments were consistent with alterations of the
microbiota (Scott et al., 2017), which is a direct evidence to
confirm the close correlation between microbiota and aging. In
the process of aging, the gut microbiota’s composition is altered,
accompanied by increasing proteobacteria and decreasing
probiotics, such as bifidobacteria, and neuroprotective molecules
(Lambert et al., 2009; Caracciolo et al., 2014). The probiotic
bacteria called ‘‘good’’ microbes play an advantageous role in
human health and produce the essential substances to inhibit
inflammation (Mukherjee et al., 2018).

The age-associated neuroinflammation, a crucial pathogenic
factor in the development of AD and the cause or consequence
of most neurodegenerative diseases, was ameliorated by
administration with prebiotic inulin that targets the microbiota
(Games et al., 1995). Microglial activation as an inflammatory
hallmark in the pathology of AD is regulated by the microbiota,
which plays a key role in aging and neurodegeneration (Abbas
et al., 2002; Lambert et al., 2009). Moreover, high levels of
proinflammatory cytokines in healthy elderly subjects were
related to the disorder of microbiome function, particularly the
genes encoding short-chain fatty acids (SCFAs; Claesson et al.,

2012), which is a basic characteristic for the extensive age-related
pathologies, such as age-related dysbiosis of gut microbes and
neurological decline (Franceschi et al., 2000). Although lots of
studies demonstrated this correlation, unfortunately a direct
cause effect has not yet been established (Sun et al., 2019b; Kim
et al., 2020). Thus, more studies are needed to show evidence of
the relationship.

LINKS BETWEEN GUT AND BRAIN VIA
MICROBIOME–GUT–BRAIN AXIS

The gut microbiome is involved in bidirectional communication
between the gut and brain, which is a significant scientific
discovery recently (Erny et al., 2017; Fung, 2020). It has been
suggested that human gut microbiome may be considered
as the ‘‘second brain’’ and contributes to AD and other
neurodegenerative disorders (Gershon, 1999; Schneider et al.,
2019; Sochocka et al., 2019).

Communication Between Brain and Gut
The gut microbiota can modulate brain signals and activity
via the microbiome–gut–brain axis through the nervous,
endocrine, and immune systems proven by many animal and
preclinical experiments. Also the chemical substances produced
by themselves (monoamines and amino acids) can cross the
blood–brain barrier (BBB) reaching the CNS (Collins et al.,
2012; Crane et al., 2015; Yano et al., 2015) and influence
brain activity with possible repercussions on behavior (Wekerle,
2016; Kowalski and Mulak, 2019). The gut microbiota can also
receive signals from the brain in the form of neurotransmitters,
including acetylcholine, the modified amino acids glutamate
and γ-aminobutyric acid (GABA), and the biogenic amines
dopamine (DA), serotonin (5-HT), and histamine, interacting
with the brain (Briguglio et al., 2018). Furthermore, the
concept of the microbiome–gut–brain axis has been supported
by the current research data; thus, the gut microbiome can
communicate with the brain and is responsible for some
neurodegenerative disorders (Haran et al., 2019). The new
perspective makes us realize that the gut microbiota may play
an important role in this mutual relationship between brain
and gut communication, as well as physiological regulation.
Figure 1 presents the microbiome–gut–brain axis containing
several molecular pathways and their interactions. However, the
microbiome–gut–brain axis is a complex multidirectional system
between the gut microbiota, ENS, and the brain, which is still
poorly understood.

Communication Through Neural Regulation Pathway
The pathways of communication between the gut and brain
have been reported (Dinan and Cryan, 2017). The first pathway
is neural regulation pathway, in which the vagus nerve links
between the gut and the spinal cord (autonomic nervous system;
Bonaz et al., 2018). The ended vagus nerve of brain stem nuclei
receiving and giving afferent and efferent fibers may regulate the
gut functions and send messages to other regions of CNS (Bonaz
et al., 2018). The catecholamines or acetylcholine secreted from
the brain affecting ENS circuits can modulate the gut functions
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FIGURE 1 | The role of the gut microbiota and communication with the brain. A healthy gut contains large fractions of the phyla Firmicutes and Bacteroidetes,
including the genera Prevotella, Bacteroides, and Ruminococcus followed by Verrucomicrobia and Actinobacteria, but contains a low number of Proteobacteria
phyla members (Mowry and Glenn, 2018). The gut microbiota is related to GI function, but also involved in several complex modulatory processes, inflammation and
immune response, and peripheral (enteric) and central neurotransmission, as well as synthetize and secrete essential substances. The gut microbiota contributes to
important homeostatic processes and is essential for the homeostasis of intestinal intraepithelial lymphocytes (Liu L. et al., 2019). The gut microbiota can affect brain
function and bioactivity through gut–brain axis via several pathways: (1) the neural regulating pathway, in which vagus nerve links between the gut and the spinal cord
(autonomic nervous system; Bonaz et al., 2018). The gut microbiota can secrete and regulate neurotransmitters of the CNS. (2) The endocrine pathway. The HPA
axis can release glucocorticoids, etc., after stimulations by stress or other factors, which can alter gut microbiota composition and increase gut epithelium
permeability and immune responses in gut (Ait-Belgnaoui et al., 2012; Park et al., 2013; Bellavance and Rivest, 2014). (3) The immune-regulating pathway via
lymphocyte, cytokines, chemokines, and antigen-presenting effect of SCFAs communicating with the brain. (4) The blood circulation pathway (Logsdon et al., 2018).
The immune and endocrine molecules, such as cytokines and hormones, can pass BBB and intestinal mucosa to influence both gut and brain functions
(Zac-Varghese et al., 2010). BBB, blood–brain barrier; CNS, central nervous system; HPA axis, hypothalamic–pituitary–adrenal axis; SCFA, short-chain fatty acids;
APC, antigen-presenting cells.

(Mayer et al., 2015; Weinstein et al., 2015). It is also through
the gut bacteria to exchange signals between ENS and CNS
(Carabotti et al., 2015).

On the other hand, the gut microbiota is able to produce
and modulate neurotransmitters in both CNS and peripheral
nervous system, and intestinal environmental changes can
affect lymphocytes of the gut to produce more cytokines and
chemokines, such as interleukin 1 (IL-1), IL-6, IL-17, IL-22,
tumor necrosis factor-α (TNF-α; Thaiss et al., 2016; Sochocka
et al., 2019), and transforming growth factor β (Ma et al., 2017),
as well as chemokine, fractalkine, and its receptor (CX3CR1;
Merino et al., 2011), affecting the CNS through activating the

endocrine or paracrine systems. The proinflammatory cytokines,
IL-1, IL-6, IL-17, and TNF-α, are potentially harmful to the
brain (Angelucci et al., 2019). The gut microbes secrete several
important substances such as GABA, histamine, 5-HT, and DA,
which contribute to neuroactive and immune regulation (Barrett
et al., 2012; Lyte, 2013), and also produce toxic substances
to the brain, such as ammonia and others (Galland, 2014).
In addition, the microbiome–gut–brain axis can be affected
by microbiota via immunological, neuroendocrine, and direct
neural mechanisms (Logsdon et al., 2018), which insulted
the brain to cause memory impairment, anxiety, and other
cognitive dysfunctions (Gareau et al., 2011; Galland, 2014;
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Johnson and Foster, 2018) and resulted in several diseases, such
as anxiety and depression (Lach et al., 2018; Capuco et al.,
2020), neurodegenerative diseases, and drug-resistant epilepsy
(Braakman and van Ingen, 2018).

Communication Through Endocrine Regulation
Pathway
Endocrine regulating pathway is the second pathway
of communication between the gut and brain. The
hypothalamic–pituitary–adrenal (HPA) axis can release
glucocorticoids, mineralocorticoids, or catecholamines after
stimulations by stress or other factors, which result in the
changes of intestinal microbiota components and the intestinal
epithelium permeability, as well as immune responses in the
gut (Ait-Belgnaoui et al., 2012; Park et al., 2013; Bellavance
and Rivest, 2014). Enhanced genus Clostridium and declined
Bacteroides as the feature of the gut dysbiosis were caused
by high corticosterone levels in the stressed mice (Bailey
et al., 2011). The glucocorticoids have both proinflammatory
and anti-inflammatory roles; however, inflammations are
related to damaged HPA axis functionality in AD and other
neurodegenerative disorders (Silverman and Sternberg, 2012;
Bellavance and Rivest, 2014; Hueston and Deak, 2014).

Communication Through Immune-Regulation
Pathway
Immunoregulating pathway as the third pathway also
participates in this communication between the gut and
brain via gut microbes, which could affect antigen presentations
and regulate cytokines production and lymphocyte function, as
well as the development of two types of immune system through
the gut–brain axis (Olszak et al., 2012; Fung et al., 2017). The
gut microbiota also impacts on productions of SCFAs that can
activate immune response and trigger inflammation in the brain,
resulting in a series of neurological symptoms. Additionally,
SCFAs are related to G-protein-coupled receptor 43 (GPR43) to
lead a strong anti-inflammatory reaction (Maslowski et al., 2009).
The gut microbes are necessary for host immunity generation
in the GI tract. The data obtained from germ-free (GF) mice
have shown that the maturations of the immune, endocrine,
and nervous systems are affected by gut bacteria, which is a
strong evidence for the gut microbiota linking with the brain via
microbiome–gut–brain axis (Wang and Wang, 2016; Kowalski
and Mulak, 2019).

Communication Through Blood Circulation
Communication between the gut and brain is also through the
blood circulation (Logsdon et al., 2018). The cytokines and
hormones as well as some molecules can pass BBB and intestinal
mucosa to influence both gut and brain functions (Zac-Varghese
et al., 2010). Furthermore, the central, peripheral, immune, and
endocrine systems are involved in the communication between
gut and brain in a multifunctional network formed by the
microbiome–gut–brain axis (Borre et al., 2014).

However, the mechanisms that mediate gut–brain
communication remain in its infancy. There are still many
questions to explore, such as the molecular and cellular

mechanisms underlying the microbiome–gut–brain axis in
health and under pathological conditions, etc.

DYSBIOSIS OF GUT MICROBES IN AD
PATIENTS AND ITS ANIMAL MODELS

Generally, the gut microbial communities in human are
stable; however, they can be altered in the different conditions
by the effects of various factors through their direct action
(microbial infection) or indirect actions (antimicrobial
protection hypothesis, hygiene hypothesis; DiSabato et al.,
2016; Ashraf et al., 2019; Kong et al., 2020). Recently, the studies
of several groups have been demonstrated that various diseases,
including intestinal diseases and more systemic diseases such as
diabetes, metabolic syndrome, and neurodegenerative disorders,
including AD and others, are related to the imbalance of gut
microbiota called ‘‘dysbiosis’’ (Del Tredici et al., 2002; Murono
et al., 2015; Hu et al., 2016; Jiang et al., 2017). Occurrence and
development of AD and other neurodegenerative disorders may
be accompanied by the gut microbiome dysbiosis, inflammation,
and dysfunction of the gut–brain axis. It has been speculated that
AD may appear during the aging of immune system based on
the theory of age-related dysbiosis derived from the association
between gut microbiota and AD, which has been evidenced by
clinical and experimental studies (Cattaneo et al., 2017; Pellegrini
et al., 2018).

Generally, the traditional ecological measures are used to
characterize the composition of the gut microbiome, including
richness [the number of unique operational taxonomic units
(OTUs) present in a participant], alpha diversity (the richness
and abundance of OTUs within each participant), and beta
diversity (the similarity or difference in composition between
participants). Declined microbial richness and diversity as well
as a distinct composition of the gut microbiome were found in
AD patients. The levels of differentially abundant genera were
correlated with cerebrospinal fluid (CSF) biomarkers of AD
pathology (Vogt et al., 2017). In short, definite genera as more
abundant in AD were related to greater AD pathology, whereas
genera as less abundant in AD were associated with less AD
pathology (Vogt et al., 2017).

As mentioned previously, immune response system
participates in this communication between the gut microbes
and brain. There is also a close interaction between gut microbes
and the local as well as systemic immune system. In general,
the gut dysbiosis could lead to dysfunctions of both innate
and adoptive immune through several ways, such as changing
antigen presentations, cytokines production, and lymphocyte
functions, as well as increasing inflammation, etc., also can
cause the gut–brain axis malfunction (Levy et al., 2017). In AD
patients, the molecular and cellular alterations involving immune
cells, such as T cells, B cells, microglia, etc., as well as immune
mediators, occur not only in the peripheral blood, but also in
the brain and the CSF, which may be associated with triggering
immune response by the gut dysbiosis. The gut dysbiosis impacts
on innate and adoptive immune response in AD patients
obviously via activating immune/inflammatory cells, shifting
them into inflammatory type to enhance immune mediated
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inflammatory response, and promoting neurodegeneration in
the brain. The gut dysbiosis in AD was obviously correlated with
more T helper 1 (TH1) cell infiltration into the brain (Togo et al.,
2002; Monsonego et al., 2003), and increased T-cell infiltration
in the brain parenchyma and peripheral T-cell responses to Aβ

have been found in AD patients (Rogers et al., 1988; Monsonego
et al., 2003).

Pathologically, deposition of Aβ plaques in the brain
is a major character, and it has been considered as one
of the important pathogenic factors in AD (Salter and
Stevens, 2017; Angelucci et al., 2019). Reactive gliosis and
neuroinflammation are the histological hallmarks and key factors
in the pathogenesis of AD (Salter and Stevens, 2017; Yeh et al.,
2017; Zhang et al., 2020). Microglial activation in the CNS is
heterogeneous and categorized into two types: proinflammatory
and anti-inflammatory microglia (Tang and Le, 2016; Yu et al.,
2019). Microglia plays either a cytotoxic or neuroprotective role,
depending on the types activated, which can be changed in
the different stages of AD. The anti-inflammatory microglia
phagocytizes Aβ plaques by the Fc receptors and promotes
the cleaning and degradation of Aβ by possibly increased
phagocytic and lysosomal activity, as well as restriction of
the inflammatory response (Kamphuis et al., 2016; Dubbelaar
et al., 2018). Oppositely, proinflammatory microglia leads to
Aβ accumulation, inducing cell death and worsening disease
(Fakhoury, 2018). We speculated that microglial malfunction
may be the basis of AD pathogenesis and precede and accelerate
the onset of AD.

Table 1 compares the gut microbiota between healthy subjects
and AD patients, in which alterations of the gut microbiota can
be seen in the AD patients; thus, dysbiosis of gut microbes may
be involved in AD-related impairments.

TABLE 1 | The comparisons of the gut microbiota between healthy subjects and
Alzheimer’s disease (AD) patients.

Healthy AD References
subjects patients

The gut microbiota Eubacterium rectale ↑ Cattaneo et al. (2017)
Escherichia/Shigella ↓

Bacteroides ↓ Zhuang et al. (2018)
Actinobacteria ↑

Bacilli ↑

Negativicutes ↓

Ruminococcaceae ↑

Enterococcaceae ↑

Lactobacillaceae ↑

Lanchnospiraceae ↓

Veillonellaceae ↓

Firmicutes ↓ Vogt et al. (2017)
Bifidobacterium ↓

Dialister ↓

Bacteroidetes ↑

Blautia ↑

Phylum Firmicutes ↓ Liu P. et al. (2019)
Proteobacteria ↑

Gammaproteobacteria ↑

Enterobacteriales ↑

Enterobacteriaceae ↑

↑:increase; ↓:decrease.

Dysbiosis of Gut Microbes Involved in the
Pathogenesis of AD Models
So far, the evidence obtained about the role of dysbiosis of
gut microbes in AD pathophysiology is mainly from its animal
models. A significant decrease in the Aβ pathology was observed
in GF mice, and after the control mice were exposed to the
gut microbiota, the Aβ pathology occurred again (Harach et al.,
2017). In addition, an obvious absence of amyloid plaque deposit
and neuroinflammation were seen in GF mice when microbes
were not present (Harach et al., 2017). Of course, the pathological
manifestations in GF mice may not be completely attributed
to gut dysbiosis, because GF mice also exhibited defects in
the immune system and difficulties with energy acquisition,
etc., which also impact on the pathological changes in GF
mice. The changes of gut microbiota promoted Aβ protein
accumulations in the gut. Evidently, a thoroughly changed gut
microbiome was found in APP transgenic (Tg) mice (AβAPP)
[a genetic model of AD; the mice overexpress mutated forms
of human amyloid precursor protein (APP) linked to familial
AD] when compared to wild-type mice (WT; Wang X.-L.
et al., 2015). The removal of gut microbiome was related to
central Aβ levels in AD mice; however, increased amyloid
accumulation was found in the brain after transplantation by
microbiota from AD mice (Harach et al., 2017). Similarly, high
levels of Aβ protein of brain and related behavioral alterations
were associated with the gut dysbiosis in APP/PS1 mice [a
genetic model of AD; APP/PS1 mice are double Tg mice
expressing a chimeric mouse/human APP (Mo/HuAPP695swe)
and a mutant human presenilin 1 (PS1-dE9); Shen et al.,
2017]. Moreover, both enhanced Aβ protein precursor (AβPP)
accumulation in the gut and Firmicutes/Bacteroidetes ratio were
found in 5xFAD mice (a transgenetic model of AD; 5xFAD
mice express human APP and PSEN1 transgenes with a total
of five AD-linked mutations: APP KM670/671NL, APP I716V,
APP V7171, and PSEN1M146L and PSEN1L286V) following
the change of the gut microbiota composition in these mice
since the earliest phase of the diseases (Brandscheid et al.,
2017). These data suggest that changing of gut microbiome in
the animal models of AD promotes deposit of Aβ protein in
the brain.

A significant study indicated that calorie restriction decreased
Aβ deposition in the brain of AD mouse model. During aging
process, calorie restriction could change the gut microbiome,
including an increase in Bacteroides, which was found obviously
in female Tg2576 mouse model when compared to WT mice. It
has been demonstrated that the specific gut microbiota change
was related to Aβ levels, and the change had a greater impact on
females than males. Furthermore, long-term calorie restriction
can change the gut environment and prevent the expansion
of microbes that promotes age-related cognitive decline
(Cox et al., 2019).

Interestingly, there was activation of immune/inflammatory
cells and high expressions of Aβ and phosphorylated tau (p-tau)
protein, as well as neuronal coding rearrangements in the gut
of APP/PS1 mice, which feature is accompanied by lower levels
of neuronal nitric oxide synthase and choline acetyltransferase,
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suggesting that Aβ and p-tau protein deposits in the gut
can influence local and peripheral neurogenic/inflammatory
responses and promote inflammation and neurodegeneration in
the brain of AD models (Haghikia et al., 2016; Feng et al., 2018).
It has been shown that enhanced Aβ protein expression in the gut
precedes inflammation in the brain of TgCRND8 mice (a genetic
model of AD; TgCRND8 mice overexpress mutant human APP
KM670/671NL and APP V717F; Semar et al., 2013). Aβ protein
can also be transmitted to the CNS through myenteric neurons
and nerve gut–brain axis involved in the pathogenesis of AD
directly (Zhao and Lukiw, 2015; Pistollato et al., 2016). However,
the causal relationship between these possible pathogenic
factors is unclear; therefore, further studies are needed
to investigate.

Dysbiosis of Gut Microbes Associated
With Inflammation in AD Models
It is beyond doubt and has been evidenced that inflammation
is a crucial factor in the pathogenesis of AD. Recent
studies have shown that a strong correlation between
NLRP3 inflammasomes, one of the multiprotein complexes,
and initiation of inflammation and neurological diseases, is
identified (Pellegrini et al., 2019). NLRP3 inflammasomes
are key molecules in neuroinflammation and Aβ caused
AD pathology in AD models (Heneka et al., 2013; Ising
et al., 2019). Conversely, impaired NLRP3 inflammasome
function lowered tau hyperphosphorylation by regulating
tau kinases and phosphatases (Ising et al., 2019; Tejera et al.,
2019). NLRP3 knockout (KO) mice exhibited significant
difference of the composition of gut microbiota and behaviors
compared with WT mice, suggesting that NLRP3 inflammasome
deficiency affected the gut microbiota composition (Zhang et al.,
2019). Transplantation of the gut microbiota of NLRP3 KO
mice or using NLRP3’s inhibitor ameliorated depressive-like
behaviors via remodeling gut microbiota (Zhang et al., 2019).
The cognitive function of AD mice was repaired by using
NLRP3 inhibitor, which may be associated with altering gut
microbiota (Daniels et al., 2016; Ising et al., 2019; Tejera et al.,
2019). Inflammation playing a central role in AD is linked
to the closed relationship between gut microbiota and AD
(Calsolaro and Edison, 2016).

Dysbiosis of Gut Microbes and Enteric
Inflammation or Infections in AD Patients
In AD patients, the proportion and prevalence of bacteria
synthesizing butyrate were low, and the abundances of taxa
were high that lead to inflammation compared to healthy or
other dementia types, which evidenced that the nexus between
the gut microbiome and an altered epithelial homeostasis could
have an effect on AD (Daniels et al., 2016) by increases in
inflammatory and decreases in anti-inflammatory microbial
metabolism (Haran et al., 2019).

Several studies on dysbiosis of gut microbes in AD patients
have exhibited that AD’s main pathological features in the
brain, such as amyloidosis and inflammation, are linked to
inflammatory bacteria and their neurotoxic products, like
lipopolysaccharides (Bester et al., 2015; Cattaneo et al., 2017).

In AD patients, increased Bacteroides and Blautia and decreased
relative abundance of the genera SMB53 and Dialister were a
feature of the changes of gut microbiota, which was associated
with high levels of chitinase-3-like protein 1 and p-tau,
accompanied by a low Aβ42/Aβ40 ratio in CSF (Vogt et al., 2017).
Intestinal inflammation in AD patients was positively correlated
with a high level of fecal calprotectin (Leblhuber et al., 2015).
However, the clinical evidence on accumulations of Aβ protein,
AβPP, and p-tau in the gut of AD patients is rare, and the data
obtained are contradictory (Joachim et al., 1989; Puig et al., 2015).
Meanwhile, studies with no matched healthy controls are also
unable to make such conclusion; i.e., there is a causal relationship
between intestinal Aβ and p-tau deposition, inflammation and
gut dysbiosis.

The chronic Helicobacter pylori infection can trigger the
release of inflammatory mediators and is associated with low
Mini-Mental State Examination score in AD patients when
compared with patients without infections (Roubaud-Baudron
et al., 2012).

Infections by H. pylori, Borrelia burgdorferi, and Chlamydia
pneumoniae, and so on, increased levels of Aβ40 and Aβ42 in
serum of AD patients (Bu et al., 2015). In vitro, the
neuroblastoma cell cultures treated by H. pylori filtrate induced
tau hyperphosphorylation, which was similar to AD tau
pathological changes (Wang X.-L. et al., 2015). Furthermore, the
inflammatory disorders are also linked to gut dysbiosis caused by
viruses, such as herpes simplex virus type 1, which can be one of
the crucial risk factors for AD. Maintaining the homeostasis of
intestinal intraepithelial lymphocytes required these commensal
viruses; however, the sustaining intestinal homeostasis can be
also destroyed by infections with bacteria and virus (Harris and
Harris, 2015). Collectively, the gut dysbiosis could be a risk factor
for AD due to lacking or reducing immune defenses in the seniors
(Angelucci et al., 2019).

Although gut dysbiosis contributes to the pathogenesis of
many neurological and neurodegenerative diseases generally, the
types of microbiota changes in the gut of AD are different
from those of other neurodegenerative diseases, when compared
with multiple sclerosis (MS), Parkinson disease (PD), and
amyotrophic lateral sclerosis as shown in Table 2. We speculated
that some microbial changes are relatively specific to AD due to
causing AD pathology different from other diseases. Increased
Bacteroides was found in the AD patients, and Bacteroides
colonization aggravated Aβ deposition, which is speculated to
be a mechanism whereby the gut impacts AD pathogenesis (Cox
et al., 2019). However, there are too many factors affecting the
gut microbiota; it is difficult to determine a causal relationship
and needs to be further explored.

Up to now, no study confirmed clearly that Aβ deposition or
tau accumulation is related to alter a particular microbe in the
gut of AD patients. However, the specific microbes resulting in
inflammation may promote Aβ and p-tau protein deposits in the
gut indirectly, and the two promote each other. We considered
that the infections by H. pylori and B. burgdorferi and enhanced
Bacteroides may promote Aβ deposition or tau accumulation in
the gut of AD patients, which needed to be evidenced in the
future studies.
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TABLE 2 | The gut microbes in central nervous system (CNS) disorders and treatments by microbes or microbial products.

CNS disorders Pathologies Gut microbes ↑ Gut microbes ↓ Treatments Other results

AD Glial cell activation and
inflammatory molecules
production. Aβ plaques
containing extracellularly
deposited Aβ.
Intracellular neurofibrillary tangles
formed with
hyperphosphorylated and
misfolded tau protein (Angelucci
et al., 2019).

CMV, HSV-1, B. burgdorferi, C.
pneumoniae and H. pylori
(Kountouras et al., 2009; Bu
et al., 2015)
Bacteroides, Gemellaceae,
genera Blautia,
Phascolarctobacterium, and
Gemella (Vogt et al., 2017).

Firmicutes, Actinobacteria,
genera SMB53 (family
Clostridiaceae), and
Dialister, Clostridium,
Turicibacter, and cc115 (family
Erysipelotrichaceae;
Vogt et al., 2017).

Increased MMSE after
treatments by probiotic
(Lactobacillus acidophilus,
Lactobacillus casei,
Bifidobacterium bifidum, and
Lactobacillus fermentum, Akbari
et al., 2016), or by selenium plus
probiotic (Tamtaji et al., 2019a).
GV-971 had cognition
improvement by targeting gut
dysbiosis (Wang et al., 2019).
Increased MMSE after
triple eradication regimen
(omeprazole, clarithromycin
and amoxicillin) treatment for
HP+ patients (Kountouras et al.,
2009).

ALS Tetanus and botulinum toxins,
“leaky gut”; higher richness of
OTUs and reduction of butyrate
(Zhu et al., 2020).

Dorea (Fang et al., 2016).
E. coli and enterobacteria
(Mazzini et al., 2018).

Oscillibacter, Anaerostipes,
Lachnospiraceae (Fang et al.,
2016).
Total yeast (Mazzini et al., 2018).

MS BBB integrity disruption and
astrocyte pathogenicity, primary
demyelination, axonal loss, and
reactive gliosis in the CNS (Duffy
et al., 2014; Chu et al., 2018).

Methanobrevibacter and
Akkermansia (Jangi et al., 2016).
Actinobacteria,Bifidobacterium
and Streptococcus
(Miyake et al., 2015)
Firmicutes, Archaea
Euryarchaeota
(Tremlett et al., 2016)
Ruminococcus
(Cantarel et al., 2015)

Butyricimonas (Jangi et al.,
2016)
Bacteroides, Faecalibacterium,
Prevotella, Anaerostipes
Clostridia XIVa and IV Clusters
(Miyake et al., 2015)
Fusobacteria (Tremlett et al.,
2016)
Faecalibacterium,
Bacteroidaceae (Cantarel et al.,
2015)

Prevotella, Sutterella↑ and
Sarcina↓ after IFN-ßor GA
treatmet (Jangi et al., 2016).
Faecalibacterium↑ after GA
treatment (Cantarel et al., 2015).
C. perfringens ↓ after
Fingolimod, DMF or
Teriflunomide treatment (Rumah
et al., 2017).

Absence (vs. presence) of
Fusobacteria associated with
relapse risk (Tremlett et al.,
2016).
Inhibiting the growth of C.
perfringens enhancing the
efficacy of MS drugs (Rumah
et al., 2017).

PD Higher frequency of α-synuclein,
dopaminergic neuronal loss (Zhu
et al., 2020).

Prevotellaceae (Scheperjans
et al., 2015).
Blautia, Coprococcus, and
Roseburia (Zhu et al., 2020).

H. pylori (Fasano et al., 2015).
E. coli, Ralstonia, Oscillospira
and Bacteroides (Zhu et al.,
2020).

Decreased MDS-UPDRS
after probiotic (Lactobacillus
acidophilus, Bifidobacterium
bifidum, Lactobacillus reuteri,
and Lactobacillus fermentum)
treatment for 12 weeks (Tamtaji
et al., 2019b).

Reduced Prevotellaceae
significantly in PD as a sensitive
biomarker for PD (Zhu et al.,
2020).

Abbreviations: Aβ, Amyloid β; AD, Alzheimer’s disease; ALS, Amyotrophic lateral sclerosis; BBB, Blood-brain barrier; CNS, Central nervous system; DMF, Dimethyl fumarate; GA, Glatiramer acetate; GV-971, Sodium oligomannate; HP+,
Helicobacter pylori positive; MDS-UPDRS, Movement disorder society unified Parkinson’s disease rating scale; MS, Multiple sclerosis; MMSE, Mini-mental state examination; OTUs, Operational taxonomic units; PD, Parkinson’s disease.
↑:increase; ↓:decrease.
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Factors Caused Dysbiosis of Gut Microbes
Can Target AD
The factors that disturbed the gut microbiota to lead gut dysbiosis
could target AD (Stenman et al., 2013; Vogt et al., 2018;
MahmoudianDehkordi et al., 2019). There was an interaction
between gut microbiome and bile acid (BA) levels. The bacteria
containing the abundant bile salt hydrolase can easily change
BA pattern to modulate the commensal bacteria and protect the
integrity of the intestinal barrier (Stenman et al., 2013; Shapiro
et al., 2014; MahmoudianDehkordi et al., 2019). In the CSF of
mild cognitive impairment (MCI) and AD patients, the high level
of trimethylamine n-oxide (TMAO), a metabolite derived from
gut microbiota, was related to the biomarkers of AD in CSF
(Vogt et al., 2018).

A pivotal pathogenic factor, oxidative stress (OS) has been
shown to contribute to the development of AD. In the CNS, the
reactive oxygen species (ROS) levels and inflammation can be
enhanced by a microbiota type to favors abnormal aggregation
of Aβ, which speculated that high levels of CNS OS may be due
to gut dysbiosis or its consequence (Jones et al., 2012; Dumitrescu
et al., 2018). In short, it can be seen from the above results
and summarized as follows: (1) chronic bacterial infections as a
possible etiology linking AD pathogenesis; (2) obvious alteration
in the compositions of gut microbiome in AD; and (3) rising
proinflammatory and lowering anti-inflammatory bacteria in the
gut related to systemic inflammation in the patients suffering
from the brain amyloidosis and cognitive impairment, which
changes might impact brain functions. Thus, microbial dysbiosis
or imbalance may potentially contribute to the pathogenesis
of AD.

IS TARGETING DYSBIOSIS OF GUT
MICROBES AS A THERAPEUTIC
MANIPULATION IN AD?

The gut microbiota may impact on AD development and
progress as descripted above. Dysbiosis of gut microbes supposes
to be involved in the pathogenesis of AD. Despite much
disappointment in anti-AD drug discovery previously, it is
still promising and possible to find new treatments basis
on gut microbe impacting on AD. Modifying the microbiota
composition or remodeling gut microbes using the substances
or manipulations that are able to change their composition or
balance gut microbes, such as antibiotics and others, may affect
or provide therapy for AD and other neurological diseases (Chu
et al., 2018).

Targeting Dysbiosis of Gut Microbes by
Antibiotics in AD Patients and Its Models
Usually, eliminating and avoiding bacterial colonization are the
main effects of antibiotics on human, rather than targeting
the specific types of bacteria (Angelucci et al., 2019). After
treatments by the broad-spectrum antibiotics, the composition of
the gut microbiota was markedly altered, and its biodiversity was
declined, as well as the colonization was temporized (Angelucci
et al., 2019). Therapies with antibiotic could change the gut

microbiota during the different length of time (Ianiro et al.,
2016) and alter behavior we know well as brain chemistry in
both humans and animals (Jernberg et al., 2007; Fröhlich et al.,
2016). However, the evidences from two studies displayed that
the antibiotic treatment caused also neuropsychiatric symptoms
such as anxiety, psychosis, and delirium in AD patients who
received antibiotic as a cocktail therapy (Loeb et al., 2004; Molloy
et al., 2013), which is associated with antibiotic treatment of H.
pylori infections, but these neuropsychiatric symptoms as side
effects were not found in the general population (Neufeld et al.,
2017). The effects of antibiotics on AD may be extensive or
even opposite, depending on the antibiotics applied and on the
role of targeted gut microbiome in the pathogenesis of AD. The
antibiotic therapy was effective in the animal models of AD, but
it has not yet been widely investigated in AD patients, because
it is not clear which microbiomes dominate in the gut of AD
patients and whether there are safe antibiotics available (Panza
et al., 2019). Besides, there is a lack of such study on the effect of
different antibiotics on AD pathology; further study is needed.

Obviously, lower amounts of microglia and astrocyte
accumulation around amyloid plaques in the hippocampus and
reduced insoluble Aβ plaques in aged APPSWE/PS1DeltaE9 Tg
mice of AD model (which overexpress the Swedish mutation
of APP KM670/671NL together with PS1 deleted in exon
9) after treatment with an antibiotic cocktail (Minter et al.,
2017) were found, which is only circumstantial evidence
that antibiotic interfered with microglial activation through
reducing the amounts of microglia. However, in APP/PS1 Tg
mice, the treatments with cocktail of antibiotics resulted in
enhanced neuroinflammation and proinflammatory cytokine
levels, and the disease itself was deteriorated (Minter et al.,
2016). The harmful effects of antibiotics may break down
the balance of gut bacteria, as streptozotocin and ampicillin
did, which favors AD or worsens its course (Zarrinpar et al.,
2018). Ampicillin increased rat serum corticosterone related to
memory dysfunctions and decreased brain-derived neurotrophic
factor in hippocampus, the features of AD pathology. Also,
ampicillin deteriorated the anxiety-like behavior and impaired
spatial memory in rats (Fröhlich et al., 2016). Surprisingly, the
disorder of physiological and psychological function caused by
ampicillin in rats was turned down by administration with
probiotics (Wang T. et al., 2015). The clinical and experimental
studies highlight that the results using antibiotics targeting and
remodeling gut microbes in AD patients are controversial. Also
there were some adverse consequences after antibiotic treatment,
such as gut microbes coming back with their same features.
According to the results of the current studies, it might be
difficult to determine the effect of antibiotics in the treatment of
AD. Attention should be paid to protection of the new beneficial
and specific microbes and to the focus of future therapeutic trials
by antibiotics in AD.

Remodeling Gut Microbes by Fecal
Microbiota Transplantation
A new therapeutic method with fecal microbiota transplantation
(FMT) has been applied in the neurodegenerative disorders and
their animal models, as well as other diseases recently (Allegretti
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et al., 2018). FMT consists of obtaining a fecal specimen from
a healthy donor and administering a sample through either
the mouth or the rectum of the ill person. The obtained
results from FMT were encouraging and remarkably good in
patients with recurrent Clostridium difficile infection, and FMT
has become an important care option. FMT improved clinical
symptoms obviously and fecal microbiome in the dog model
with inflammatory bowel disease (Niina et al., 2019). In this
respect, most clinical and experimental studies have been done
in the patients with PD and its animal model. The exciting
results with slowing down clinical progress in PD patients were
obtained after reconstruction of the gut microbiome by FMT
(Dutta et al., 2019). A study reported that constipation in a PD
patient was clearly relieved after FMT through reconstruction of
gut microbiota (Huang et al., 2019). The mechanisms behind the
therapeutic effects of FMT are related to significant reduction of
gut microbial dysbiosis and fecal SCFAs, as well as increment
of levels of striatal DA and 5-HT, which has been evidenced
in PD mice model. Furthermore, the activation of glial cells
in the substantia nigra and TLR4/TNF-α signaling pathway
molecules was inhibited by FMT in both gut and brain, which
further evidences that gut microbial dysbiosis contributes to PD
development, and FMT is beneficial to PD models (Sun et al.,
2018). Therefore, the gut microbiota reconstruction may have
therapeutic effects on PD patients and is a new therapeutic option
(Fang, 2019). However, the study on treatment with FMT in AD
and its animal models is scarce.

Recently, DeFilipp et al. (2019) reported a patient death
treated with FMT due to extended-spectrum beta-lactamase-
producing Escherichia coli bacteremia. To avoid similar
accidents, it is necessary to enhance donor screening in order
to reduce the transmission of microorganisms when treating
patients with FMT and to properly evaluate the benefits and risks
of FMT in different patient populations (DeFilipp et al., 2019),
which should improve the new approaches for treatments in AD
patients in the future (Blaser, 2019).

Remodeling Gut Microbes With
Substances/Compounds in AD Patients
and Its Models
Moreover, prebiotic fructooligosaccharides (FOSs) as dietary
supplements ameliorated cognitive deficits and pathological
changes in the APPSWE/PS1DeltaE9 Tg mice and increased the
levels of synapsin I and synaptic plasticity markers, postsynaptic
density protein 95, and decreased the phosphorylated level of
c-Jun N-terminal kinase, indicating that FOS can modulate the
gut microbiota-glucagon-like peptide-1 (GLP-1)/GLP-1 receptor
(GLP-1R) pathway to play a beneficial role in AD (Sun et al.,
2019a).

However, the results obtained from a double blind clinical
trial, which was carried out in AD patients treated by
probiotic supplementation (PS) and placebo, respectively, for
12 weeks, were negative, indicating that treatment with PS was
ineffective in the severe AD patients, and the curative effect
with PS was related to severity of AD at least (Agahi et al.,
2018). In another clinical trial, treatment with multispecies

probiotic for 4 weeks changed gut microbiota composition and
tryptophan metabolism in serum of AD patients. Furthermore,
a correlation between kynurenine/tryptophan and neopterin
levels was observed indicating activation of macrophages and/or
dendritic cells in AD patients (Leblhuber et al., 2018).

An exciting new drug for treatment of AD named GV-971
(sodium oligomannate) is discovered more recently (Wang
et al., 2019). Polysaccharides or oligosaccharides are able
to regulate gut microbiota (Thomson et al., 2018). Main
therapeutic effects of GV-971 on AD are: (1) restoring the
balance of gut microbiota via targeting and remodeling gut
microbiota; and (2) inhibiting the neuroinflammation caused
by gut bacterial amino acids to slow down AD progression
(Wang et al., 2019). The enhanced levels of phenylalanine
and isoleucine in periphery caused by dysbiosis of the gut
microbiota can induce activation of proinflammatory microglia
and proliferation of infiltrated inflammatory TH1 cells from
blood into the brain of AD mice deteriorating inflammation.
Meanwhile, there were high levels of phenylalanine, isoleucine,
and TH1 cell in blood of MCI patients. The oligomannate
sodium GV-971 is a carbohydrate-based anti-AD drug that
markedly improved cognition in Chinese patients by targeting
gut dysbiosis, dropping phenylalanine/isoleucine in the feces and
blood, and inhibiting TH1-associated neuroinflammation in the
brain to reverse the cognition impairment (Wang et al., 2019).

In the study, the authors focused on the gut microbiota
associated with neuroinflammation in AD patients and animal
models through observing TH1 and proinflammatory microglia
activities. They showed that alterations of gut microbiota
composition in AD were obviously correlated with more
TH1 cell infiltration into the brain. Also removing the gut
microbiota by administrating antibiotic in AD mice can
block TH1 cell infiltration and proinflammatory microglia
activation. Additionally, strengthened TH1 cell infiltration and
proinflammatory microglia activation in WT mice can be
caused by FMT from AD mice and prolonged contact with
fecal bacteria (Wang et al., 2019). By contrary, less TH1 cell
infiltration can be seen in Tg mice receiving FMT from WT
mice (Wang et al., 2019). The new discoveries emphasize
the abnormal phenylalanine and isoleucine induced by gut
microbiota worsening TH1 cell–mediated inflammation in AD
and its models and effectively remodeling the gut microbiota
is a novel strategy for AD therapy (Figure 2). The therapeutic
strategies targeting the gut microbiota in AD patients and animal
models are summarized in Table 3. Unfortunately, it is still
difficult to determine which microbes are special targets for AD
therapy currently, because many factors, including diet, place of
residence, smoking, ethnicity, etc., can also influence the changes
of the gut microbiota in AD.

Targeting dysbiosis of gut microbes as a future therapeutic
manipulation in many diseases including AD is a promising
therapeutic strategy. The advantages of this manipulation are
effective to treat or alleviate diseases. It prevented the recurrence
of MS by adding microbes to the daily diet for long-term use
(Tremlett et al., 2016) and slowing down the clinical progress
in PD patients (Dutta et al., 2019), as well as treated refractory
constipation in a PD patient (Huang et al., 2019), etc., in which
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FIGURE 2 | Dysbiosis of gut microbes in AD and the intervention strategy. The communications between the gut microbes and brain is through gut–brain axis to
involve in the modulatory processes, inflammation, and immune response to maintain homeostasis of body. The gut microbiota can affect brain function and
bioactivity (Liu L. et al., 2019). Several factors including inflammation (such as NLPR3 inflammasomes), chronic infections by bacteria or viruses, aging, and increased
inflammatory molecules (OS, ROS, and TMAO) production, etc., can cause the changes of microbiota composition, microbial dysbiosis, and ENIS alterations, which
contribute to AD pathology in the brain, including neuroinflammation due to glial cell and M1 microglia activations and increased inflammatory molecules production
and enhanced Aβ deposition and tau tangles in the brain, these being the classical pathological features in AD (Angelucci et al., 2019). The microbial dysbiosis also
leads to the peripheral accumulation of phenylalanine and isoleucine, which promotes the differentiation and proliferation of proinflammatory T helper 1 cells that
infiltrated into the brain of AD mice via blood circulation, associated with the M1 microglia activation, contributing to neuroinflammation in AD (Liu P. et al., 2019). AD
pathological changes result in a series of clinical symptoms, as cognitive impairment, anxiety, depression, and others. The novel intervention strategies contain
applying probiotics, antibiotics, and FMT, as well as using a compound, such as GV-971 and others, which are targeting and remodeling gut microbiota and
suppressing gut bacterial amino acids-shaping neuroinflammation to inhibit AD progression. AD, Alzheimer disease; OS, oxidative stress; ROS, reactive oxygen
species; TMAO, trimethylamine n-oxide; ENIS, enteric neuroimmune system; FMT, fecal microbiota transplantation.

the conventional treatments were helpless. This therapeutic
manipulation overcomes the disadvantages of conventional
treatments that either overlook the microbes in the mechanism
of action or remove vast populations of microbes via antibiotics.
It aims at rebalancing the gut microbiota balance, preventing
dysbiosis, and keeping the internal environment stable. Thus, the
therapeutic manipulation is exciting and challenging. However,
there are still many problems and disadvantages in microbial
treatment. First, the obtained results treated by microbes or
microbial products in human disorders are contradictory. Also
the sample size treated by microbes is too small, which causes
doubt to the effectiveness of the treatments. Second, it is difficult
to select the correct therapeutic scheme. Third, although the side
effects of the microbial treatment were reported sporadically, the
exact side effects were not found because of the small sample size.
It is unclear whether microbial therapy can cause other diseases.

There are many ways to balance the microbiota in the gut,
such as reducing or inhibiting infections and inflammation of

the system and gut, eating a healthy diet, quitting smoking,
increasing immunity, and exercise, etc.; thus, balancing the
microbiota can be maintained for a long time.

CONCLUSIONS

The gut microbiome may contribute to the pathogenesis
of AD and neurodegenerative disorders through the
microbiota–gut–brain axis pathway. The dysbiosis of the
gut microbiome and resulting inflammation may be important
pathogenic factors in development and progression of AD.
Targeting and remodeling the gut microbiome open a potential
new door to an effective therapeutic strategy in AD patients.
However, the field is nascent, and the data obtained are
controversial, as well as many factors influence the gut
microbiome. It is still difficult to establish the relationship
between the gut microbiome and brain bioactivity in any specific
disorder of humans via the microbiota–gut–brain axis pathway.
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TABLE 3 | Therapeutic strategies targeting the gut microbiota in AD animal models and patients.

Pre-clinical and clinical
studies

Therapeutic
manipulations

Gut microbiota changes after treatments Results References

APPSWE/PS1deltaE9

ABX Lachnospiraceae and S24-7↑ Brain Aβ deposition↓
Microglia and astrocyte accumulation around amyloid
plaques↓
Blood: Foxp3+ T-regulatory cells ↑

Minter et al. (2017)

APPSWE/PS1deltaE9 ABX Akkermansia ↑
Lachnospiraceae↑

Brain Aβ deposition↓
Brain soluble Aβ↑

Blood: CCL11, CXCL16, LIX, TIMP-1 and NFαR1↑

Minter et al. (2016)

APP/PS1 mice probiotic Eubacteria, Roseburia↑
Clostridium↓

Spatial memory↑ Hippocampus Aβ plaques↓
The numbers of microglia in hippocampus ↓
OOG1 in the hippocampus↓

Abraham et al.
(2019)

APP/PS1 mice OMO Lactobacillus, Akkermansia, Bacteroides,
Adlercreutzia, and Desulfovibrio↑
Ruminococcus, Bifidobacterium, Blautia,
Oscillospira, Coprococcus, Sutterella, and
Clostridium↓

Learning and memory impairments↓
Aβ1−42 positive cells in brain↓

Xin et al. (2018)

APP/PS1 mice FOS Epsionproteobacteria, Proteobacteria,
Helicobacteraceae, Deferribacteraceae,
Helicobacter↓
Actinobacteria, Lactobacillus↑

Cognitive deficits↓
Aβ deposition in the brain↓
synapsin I and PSD-95 in the brain ↑
phosphorylated level of JNK in the brain↓
GLP-1, GLP-1R in the gut↑

Sun et al. (2019a)

5XFAD mice GV-971 remodeling the gut microbiota Cognitive impairment↓
Aβ and tau phosphorylation in the hippocampus ↓
Brain Th1 cells↓
IBA1 in hippocampal↓
Inhibiting neuroinflammation by harnessing amino acid
metabolism

Wang et al. (2019)

D-galactose and Aβ1-42-induced
Alzheimer’s rats

OMO Firmicutes, Bacteroidetes, Bacteroidia, Bacilli,
Lactobacillales, Bacteroidales, Lactobacillaceaes↑
Clostridia, Clostridiales↓

Learning and memory abilities↑
Swelling of brain tissues and neuronal apoptosis↓
Tau and Aβ1−42 expression in brain↓
Tissue damages and inflammation induced by
TNBS ↓

Chen et al. (2017)

(Continued)
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TABLE 3 | Continued

Pre-clinical and clinical
studies

Therapeutic manipulations Gut microbiota changes after
treatments

Results References

ddY mice (the strain is outbred
and has been maintained as a
closed colony and a model of
postprandial hypertriglyceridemia
in response to dietary fat)

B. breve A1 Phylum Actinobacteria and
Bifidobacteriaceae↑
Odoribacteraceae and
Lachnospiraceae↓

Prevents Aβ-induced cognitive
dysfunction
Aβ-induced gene expression
changes in the hippocampus↓
Plasma acetate↑

Kobayashi et al.
(2017)

D-Galactose-induced
Alzheimer’s rats.

Lactobacillus plantarum MTCC1325 Cognition deficits↓
Aβ in brain↓
Ach and AChE in hippocampus and
cerebral cortex↑

Nimgampalle and
Kuna (2017)

Wistar rats intrahippocampal
injection of Aβ1–42

Lactobacillus acidophilus, L.
fermentum, Bifidobacterium lactis,
and B. longum

Coliform↓
Bifidobacterial and lactobacilli↑

Learning and memory abilities↑
MDA in the hippocampus ↓
SOD in the hippocampus ↓

Athari Nik Azm
et al. (2018)

AD patients Probiotic (Lactobacillus acidophilus,
Lactobacillus casei, Bifidobacterium
bifidum, and Lactobacillus
fermentum)

MMSE score↑
hs-CRP, HOMA-IR, HOMA-B and
MDA in blood↓
QUICKI↑

Akbari et al. (2016)

AD patients selenium plus probiotic
(Lactobacillus acidophilus,
Bifidobacterium bifidum, and
Bifidobacterium longum)

MMSE score↑
hs-CRP, HOMA-IR, LDL-cholesterol,
total-/HDL-cholesterol ratio, and
QUICKI in blood↓

Tamtaji et al.
(2019a)

Abbreviations: ABX, broad-spectrum antibiotics, including gentamicin, vancomycin, metronidazole, neomycin, ampicillin, kanamycin, colistinand and cefaperazone; Ache, Acetylcholinesterase; B. breve A1, Bifidobacterium breve strain
A1; FOS, Prebiotic fructooligosaccharides; GLP-1, Glucagon-like peptide-1; GLP-1R, GLP-1 receptor; GV-971, Sodium oligomannate; HOMA-B, Homeostatic model assessment for B-cell function; HOMA-IR, Homeostatic model of
assessment for insulin resistance; hs-CRP, High sensitivity C-reactive protein; JNK, C-Jun N-terminal kinase; MDA, Malondialdehyde; OMO, Oligosaccharides from Morinda officinalis; OOG1, 8-oxoguanine DNA glycosylase-1; PSD-95,
Postsynaptic density protein 95; QUICKI, Quantitative insulin sensitivity check index; SOD, Superoxide dismutase. ↑:increase; ↓:decrease.
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Therefore, the longitudinal study and randomized controlled
trials in humans are essential to determine the role of the gut
microbiota in AD and other neurological diseases. Finding
potent drugs targeting the microbiome may be more promising
for future clinical therapeutic strategies.
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