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Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and devastating disorder. It
is characterized by alveolar epithelial cell injury and activation, infiltration of inflammatory
cells, initiation of epithelial mesenchymal transition (EMT), aberrant proliferation and
activation of fibroblasts, exaggerated deposition of extracellular matrix (ECM) proteins,
and finally leading to the destruction of lung parenchyma. MicroRNAs (miRNAs) are
endogenous small non-coding RNA molecules that post-transcriptionally regulate gene
expression in diverse biological and pathological processes, including cell proliferation,
differentiation, apoptosis and metastasis. As a result, miRNAs have emerged as a major
area of biomedical research with relevance to pulmonary fibrosis. In this context, the
present review discusses specific patterns of dysregulated miRNAs in patients with
IPF. Further, we discuss the current understanding of miRNAs involvement in regulating
lung inflammation, TGF-β1-mediated EMT and fibroblast differentiation processes, ECM
genes expression, and in the progression of lung fibrosis. The possible future directions
that might lead to novel therapeutic strategies for the treatment of pulmonary fibrosis
are also reviewed.

Keywords: idiopathic pulmonary fibrosis, miRNAs, inflammation, TGF-β1, epithelial cells, fibroblasts, α-SMA,
type-1-collagen

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrosing lung disorder (Gross
and Hunninghake, 2001; Wynn, 2007), which is the first or second most commonly encountered
lung disease (17–86%) among various interstitial lung diseases (ILD) in clinical settings (Coultas
and Hughes, 1996; Karakatsani et al., 2009; Ley and Collard, 2013; Musellim et al., 2014).
However, its overall incidence and prevalence is unclear due to geographic or demographic
differences in the risk of IPF (Ley and Collard, 2013). The median survival period of IPF
patients is 2–3 years from the time of diagnosis (Raghu et al., 2011). Despite the fact that the
etiology of IPF is largely unknown, in some patients, abnormalities in genes such as surfactant
protein A2 (SFTPA2), surfactant protein C (SFTPC), ELMO/CED-12 domain containing 2
(ELMOD2), mucin 5b (MUC5B), and two telomerase genes (hTERT and hTR) are considered
as risk factors for pulmonary fibrosis (Khalil et al., 2001; Hodgson et al., 2006; Seibold et al.,
2011; Armanios, 2012). Similarly, some environmental factors, namely cigarette smoking, viral
infections and exposure to metal and wood dust are also considered as risk factors (Hubbard
et al., 1996; Baumgartner et al., 1997; Kelly et al., 2002). Several studies have reported that
IPF likely results from alveolar epithelial injury and subsequent dysregulated repair process
(Horowitz and Thannickal, 2006; Wilson and Wynn, 2009). The pathological hallmarks of IPF
include recruitment of inflammatory cells and excessive secretion of pro-fibrotic mediators,
such as transforming growth factor-β1 (TGF-β1), and platelet-derived growth factor (PDGF),
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aberrant activation of epithelial mesenchymal transition (EMT),
fibroblasts activation and proliferation, and persistence of
apoptotic resistant myofibroblasts in the lesions (Todd et al.,
2012; Samarakoon et al., 2013).

During the active period of fibrosis in humans and animal
models, the presence of myofibroblasts in fibrotic lesions is
amply documented (Adler et al., 1989; Mitchell et al., 1989;
Kuhn and McDonald, 1991; Pache et al., 1998). Studies show
that myofibroblasts express α-smooth muscle actin (α-SMA), a
stress fiber and are considered to be the cells responsible for
the deposition of the extracellular matrix (ECM) that constitutes
the scar (Kuhn and McDonald, 1991). Myofibroblasts have
the potential of intensifying or prolonging the inflammation
associated with fibrosis (Flavell et al., 2008) and also have
contractile property that is thought to be important in wound
contraction (Adler et al., 1989). Although fibroblasts are well-
documented progenitor cells for myofibroblasts, recent studies
suggested that fibrocytes (Quan et al., 2004), pericytes (Hung
et al., 2013), epithelial (Liu, 2004) and endothelial (Piera-
Velazquez et al., 2011) cells are also the candidate precursors
of myofibroblasts. The successful healing process is associated
with the gradual disappearance of myofibroblasts, however, their
continued presence results in the fibrogenic cytokine expression,
exaggerated production and deposition of ECM in the lung
parenchyma, and subsequent impaired tissue regeneration or
pathologic fibrosis (Kuhn and McDonald, 1991). In recognition
of the potential importance of myofibroblasts in fibrosis, studies
are focused on the nature and precise roles of this cell type in the
context of pulmonary fibrosis.

Further, sustained dysregulation in ECM homeostasis alone
can result in life-threatening pathological conditions as the
increased ECM synthesis, accumulation and subsequent cross-
linking may lead to altered biochemical and biomechanical
matrix properties (Lu et al., 2011). Although constitutive
activation of collagen-secreting myofibroblasts is reported to be
responsible for increasing collagen secretion and accumulation,
an imbalance of matrix mettalloproteinases (MMPs) and
their inhibitors, the tissue inhibitors of metalloproteinases
(TIMPs) has been shown to contribute in the incomplete
matrix remodeling and irreversible fibrosis (Lu et al., 2011).
MMPs are zinc-dependent, secreted or cell surface based
endopeptidases, and centrally involved in the turnover of ECM
components such as collagens and proteoglycans. MMPs activity
is tightly regulated at several levels, including transcription
and translation, compartmentalization, and inhibition by their
endogenous inhibitors, the TIMPs (Lemaitre and D’Armiento,
2006). In addition, other matrix metalloproteinases, a disintegrin
motifs (ADAMTS) families, and serine proteinases, which
include plasmin and cathepsin G are specialized in degrading
the ECM. Other proteinases like cysteine proteinase, aspartate
proteinase, and threonine proteinase are predominantly active
at acidic pH and mainly digest intracellular proteins (Cawston
and Young, 2010). In contrast, the cysteine proteases namely,
cathepsins B and L can be secreted outside the cell and digest
ECM as well (Green and Lund, 2005). Hence, understanding
of ECM components and factors involved in ECM remodeling
in pulmonary fibrosis is also crucial for uncovering novel

therapeutic targets and treatment strategies. In spite of
some progress made to understand the development of
severe pulmonary fibrosis, current therapeutic options such as
corticosteroids alone or in combination with immunosuppressive
drugs such as cyclophosphamide, azathioprine, and colchicine
are available with limited success. Therefore, it is important to
have a recent update on understanding of cellular and regulatory
factors for presenting novel therapeutic strategies against lung
fibrosis.

In this context, recently, MicroRNAs (miRNAs), a growing
family of small non-coding RNAs, have gained significant
attention for their work as post-transcriptional regulators of
gene expression and control various cellular processes such as
differentiation, proliferation, and cell-cell interaction (Foshay
and Gallicano, 2007; Bueno et al., 2008; Inui et al., 2010).
In addition, miRNAs dysregulations are linked to a wide
spectrum of diseases, including proliferative vascular disease,
cardiac disorders, kidney diseases, diabetes mellitus, fibrosis and
cancer (Thum et al., 2008; Kato et al., 2009; Lee and Dutta,
2009; Kumar et al., 2012; Noetel et al., 2012; Zampetaki and
Mayr, 2012). Thus, this review emphasizes recent knowledge
on specific miRNAs that are differentially expressed in human
IPF lungs and also describes pro-fibrotic or anti-fibrotic
role of specific miRNA in animal models of lung fibrosis.
Further, those miRNAs that directly regulate pro-inflammatory
mediators, EMT, fibroblast proliferation and differentiation,
TGF-β signaling, and ECM gene expression (Type-1-collagen)
(COL1) are also taken into consideration. Finally, the review
concludes with suggestions on strategies for testing miRNAs
that could lead to the development of new clinical tools in IPF
therapy.

miRNAs: BIOGENESIS AND BIOLOGICAL
FUNCTIONS

MicroRNAs are encoded in the genomes of plants and animals
either by intergenic or intragenic locations. miRNA biogenesis
begins in the nucleus, where they are initially transcribed by
RNA polymerase II or, in a few cases by RNA polymerase III
as a capped and polyadenylated transcript, known as primary
miRNA (pri-miRNA) (Du and Zamore, 2007). Pri-miRNAs
are processed by the RNase III endonuclease, Drosha, and
its cofactor, DiGeorge syndrome critical region 8 (DGCR8)
into 60–100 nt stem-looped structures known as precursor
miRNAs (pre-miRNAs) (Denli et al., 2004; Han et al., 2004).
Pre-miRNAs are then transported to the cytoplasm by Exportin-
5, where they are further processed by a second RNase III,
Dicer, producing 25 nt mature miRNA duplexes (miRNA–
miRNA+) (Murchison and Hannon, 2004; Chendrimada et al.,
2005). The miRNA+ strand is degraded, whereas the miRNA-
strand is preferentially retained and loaded into the RNA-
induced silencing complex (RISC) containing enzymes of the
Argonaute (AGO-2) family. The enzyme complex binds to the
3′-untranslated region (UTR) of target mRNA, depending on
the degree of complementarity, gene silencing occurs through
either inhibition of translation or degradation of its target
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TABLE 1 | Dysregulated microRNAs (miRNAs) in lungs of patients with idiopathic pulmonary fibrosis (IPF).

S.
NO

Upregulated miRNA Downregulated miRNA Validation
method

Tissue/cell type Reference

1 miR-409-3p, miR-92b, miR-376a,
miR-205, miR-31, miR-765, miR-199b,
miR-198, miR-622, miR-330, miR-379,
miR-659, miR-182, miR-487b,
miR-299-5p, miR-127, miR-296,
miR-509, miR-557, miR-134, miR-491,
miR-132, miR-155, miR-99a,
miR-324-3p, miR-214, miR-199a,
miR-320

let-7d, miR-125a, miR-126, miR-138,
miR-17-3p, miR-184, miR-197,
miR-203, miR-224, miR-26a,
miR-30a-3p, miR-30a-5p, miR-30b,
miR-30c, miR-30d, miR-338, miR-362
and miR-92

microRNA
micro arrays

Lungs Pandit et al., 2010

2 miR-21 In situ
hybridization

Lungs Liu et al., 2010b

3 miR-21 miR-200c In situ
hybridization
and qRT-PCR

Alveolar type II cells
of lungs

Yamada et al., 2013

4 miR-200a and c qRT-PCR Lungs Yang et al., 2012

5 miR-31, miR-31∗, miR-493∗, miR-76a,
miR-382, miR-127-3p, miR-410,
miR-376c, miR-432, miR-377,
miR-654-3p, miR-409-3p, miR-381,
miR-299-5p, miR-1, miR-487b,
miR-133b, miR-370, miR-513c,
miR-299-3p, miR-543, miR-369-5p,
miR-154, miR-1225-5p, miR-409-5p,
miR-379, miR-650, miR-143∗,
miR-495, miR-513a-5p, miR-143,
miR-214∗ , miR-411, miR-199b-5p,
miR-199a-5p, miR-199b-3p,
miR-376a∗ , miR-27b, miR-539,
miR-585, miR-509-5p, miR-10a∗ and
miR-509-3-5p

miR-33a∗ , miR-151-3p, miR-361-3p,
miR-181a, miR-374b, miR-425,
miR-222, miR-532-3p, miR-17, let-7d,
miR-668, miR-30c-1∗, miR-548c-3p,
miR-532-5p, miR-362-5p, miR-342-5p,
miR-181b, miR-885-5p, miR-181a∗,
miR-517b, miR-520g, miR-628-3p,
miR-340∗ , miR-744∗ , miR-652,
miR-502-3p, miR-29b-1∗ , miR-30a∗ ,
miR-30a, miR-30d, miR-7-1∗,
miR-500∗ , miR-181d, miR-210,
miR-30c-2∗ , miR-224, miR-30b∗,
miR-223, miR-221∗, miR-126,
miR-502-5p, miR-375, miR-522,
miR-598, miR-326, miR-489,
miR-223∗ , miR-30b, miR-203,
miR-338-3p and miR-184

microRNA
micro arrays

Lungs Milosevic et al., 2012

6 miR-29 qRT-PCR Lungs Montgomery et al., 2014

7 miR-375 qRT-PCR Lungs Wang et al., 2013

8 miR-199a-5p qRT-PCR and
In situ
hybridization

Selectively
increased in fibrotic
foci of lungs

Lino Cardenas et al., 2013

9 miR-17 ∼ 92 cluster qRT-PCR and
In situ
hybridization

Lungs and
fibroblasts

Dakhlallah et al., 2013

10 miR-326 qRT-PCR Lungs Das et al., 2014

11 miR-96 qRT-PCR and
In situ
hybridization

Lungs and
fibroblasts

Nho et al., 2014

12 miR-338-3p, miR-126-3p, miR-30d-5p,
miR-203a, miR-30b-5p, miR-30a-5p,
miR-101-3p, miR-126-5p, miR-375,
miR-218-5p, miR-92a-3p, miR-222-3p,
miR-26b-5p, miR-125a-5p,
miR-138-5p, miR-184, miR-26a-5p,
miR-326, miR-211-5p, miR-598-3p,
miR-452-3p, miR-643, miR-621,
miR-512-5p, miR-569, miR-33a-3p,
miR-581, miR-517b-3p, let-7d-5p and
let-7g-5p

MicroRNA
micro arrays

Lungs Berschneider et al., 2014

(Continued)
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TABLE 1 | Continued

S.
NO

Upregulated miRNA Downregulated miRNA Validation
method

Tissue/cell type Reference

13 miR-26a qRT-PCR Lungs Liang et al., 2014b

14 miR-382, miR-449a, miR-642,
miR-205, miR-31, miR-34b, miR-376b
and miR-376c

miR-378, miR-422a, miR-425,
miR-497, miR-500, miR-660, miR-663,
miR-744, miR-92a, miR-93, miR-101,
miR-103, miR-106a, miR-106b,
miR-1271, miR-130a, miR-130b,
miR-138, miR-141, miR-150, miR-15a,
miR-15b, miR-17, miR-181b,
miR-181c, miR-181d, miR-184,
miR-185, miR-18a, miR-191,
miR-193b, miR-194, miR-197,
miR-19a, miR-19b, miR-203, miR-20a,
miR-20b, miR-22, miR-221, miR-222,
miR-223, miR-23a, miR-24, miR-25,
miR-26a, miR-27a, miR-29a, miR-29b,
miR-29c, miR-30a, miR-30b, miR-30c,
miR-30d, miR-30e, miR-320a,
miR-320b, miR-320c, miR-320d,
miR-335, miR-345 and miR-375

microRNA
micro arrays

Lungs Liang et al., 2014a

15 miR-210 In situ
hybridization

Lungs Bodempudi et al., 2014

∗ indicates passenger strand.

TABLE 2 | miRNAs linked to pulmonary fibrosis in animal models.

S. NO miRNA Model Species Putative
role

Reference

1 Let-7d Inhibition Mouse Anti-fibrotic Pandit et al., 2010

2 miR-21 Bleomycin Mouse Pro-fibrotic Liu et al., 2010b

3 miR-200c Bleomycin Mouse Anti-fibrotic Yang et al., 2012

4 miR-29 Bleomycin Mouse Anti-fibrotic Xiao et al., 2012;
Montgomery et al.,
2014

5 miR-17 ∼ 19
cluster

Bleomycin Mouse Anti-fibrotic Dakhlallah et al., 2013

6 miR-145 Bleomycin Mouse Pro-fibrotic Yang et al., 2013a

7 miR-326 Bleomycin Mouse Anti-fibrotic Das et al., 2014

8 miR-26a Bleomycin Mouse Anti-fibrotic Liang et al., 2014a,b

9 miR-98 Bleomycin Rat Anti-fibrotic Gao et al., 2014

mRNAs (Bartel, 2009). While miRNAs are generally considered
as repressors of gene expression, they have exceptionally been
reported to stimulatemRNA translation. For instance, Vasudevan
et al. (2007) showed that humanmiR-369-3 directs an association
of Argonaute (AGO) and fragile X mental retardation-related
protein 1 (FXR1) with AU-rich elements (AREs) of tumor
necrosis factor alpha (TNF-α) to initiate translation upon cell
cycle arrest. Further, two miRNAs, namely let-7 and the synthetic
microRNA miRcxcr4 likewise induce translation upregulation
of target mRNAs upon cell cycle arrest. Similarly, Henke
et al. (2008) reported that miR-122 induced translation of
hepatitis C viral RNA, suggesting the requirement of more
research to understand the miRNA-mediated regulation of
translation.

miRNAs IN IDIOPATHIC PULMONARY
FIBROSIS: HUMANS AND ANIMAL
MODELS

This section deals with the expression of dysregulated miRNAs
in patients with IPF (see summary in Table 1) as well as the
role of specific miRNA in the pathogenesis of pulmonary fibrosis
in animal models (see summary in Table 2). In animal models,
although several agents such as bleomycin, silica, fluorescein
isothiocynate, radiation and viral vectors (Degryse and Lawson,
2011) are used to recapitulate human IPF, each has its own
merits and demerits (Degryse and Lawson, 2011). Bleomycin-
induced pulmonary fibrosis has been widely used and is a well

Frontiers in Pharmacology | www.frontiersin.org 4 November 2015 | Volume 6 | Article 254

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Rajasekaran et al. miRNAs in pulmonary fibrosis

characterized model in rodents to understand the molecular
mechanisms involved in fibrogenesis and for the evaluation of
potential therapies (Moore and Hogaboam, 2008). Moreover,
some of the histological features of human IPF, including collagen
deposition and myofibroblast differentiation are comparable to
bleomycin-induced pulmonary fibrosis in mice. Hence, most
of the published literature described herein used bleomycin-
induced lung injury in a mouse model for studying the role of
miRNAs in experimental settings.

The let-7 family of miRNAs was one of the first discovered
(Reinhart et al., 2000) and extensively studied in metastasis.
Pandit et al. (2010, 2011) for the first time reported the
implication of a member of the let-7 family in a non-
tumor disease. They found that let-7d expression was mainly
localized to the alveolar epithelium in normal lungs, but was
significantly decreased in IPF lungs. They also established
that let-7d inhibition caused a significant downregulation of
epithelial markers such as E-cadherin (E-CAD), and tight
junction protein-1 (TJP-1) and a significant upregulation in the
expression of mesenchymal markers such as COL1, non-histone
chromosomal high-mobility group 2 (HMGA2), and α-SMA
in bleomycin-induced lung injury mice model. Similarly, miR-
21 was first identified as an oncogenic miRNA in targeting
many tumor suppressor genes, including phosphatase and tensin
homolog (PTEN) (Pan et al., 2010). However, its expression
is found to be highly upregulated in myofibroblasts of IPF
lungs (Liu et al., 2010b). Whereas, Yamada et al. (2013)
reported the upregulated expression of miR-21 occurred in
the lung epithelial cells as well as in the cells surrounding
fibrotic foci of human IPF lungs. It was also observed that
miR-21 antisense probes attenuated collagen deposition as
well as fibronectin (FN), α-SMA and COL1 expression in
mice with bleomycin-induced pulmonary fibrosis (Liu et al.,
2010b).

Several studies showed that miR-200 promotes EMT
in cancerous cells (Gregory et al., 2008; Park et al., 2008;
Yang et al., 2011). Recent investigation on the role of
miR-200 family members in pulmonary fibrosis provided
evidence that miR-200a and miR-200c were significantly
downregulated in the lungs of mice with experimental
pulmonary fibrosis and in the lungs of patients with IPF
(Yang et al., 2012). In support of the above findings, Yamada
et al. (2013) illustrated decreased expression of miR-200c
in the lungs of IPF patients. Introduction of miR-200c
into the mice lungs diminished experimentally induced
pulmonary fibrosis as elicited by lowered lung collagen
content and α-SMA expression, suggesting its anti-fibrotic
role (Yang et al., 2012). Further, a recent study using miRNA
microarray expression revealed that several miRNAs were
differentially expressed in the lungs of IPF patients when
compared to that of the control lungs (Milosevic et al., 2012).
Among 43 over expressed miRNAs, 24 were localized to
the microRNA cluster on chromosome 14q32, and 13 of
them were members of the miR-154 family (Milosevic et al.,
2012). Although the role of miR-154 in the animal models
of pulmonary fibrosis is unknown, the pro-fibrotic role of
miR-154 family was confirmed in vitro by analyzing the

proliferation and differentiation of lung fibroblasts (Milosevic
et al., 2012).

Downregulation of miR-29 family members correlated with
many types of cancer and fibrosis (Calin et al., 2005; Cushing
et al., 2011; Roderburg et al., 2011). However, Xiao et al.
(2012) established the therapeutic potential of miR-29 for
pulmonary fibrosis. The Sleeping Beauty (SB) transposon-
mediated gene transfer of miR-29b prevented bleomycin-
induced pulmonary fibrosis in mice as demonstrated by
reduced Masson’s trichrome staining, hydroxyproline content,
COL1, type-3-collagen (COL3) and FN expression. Further,
miR-29b was able to suppress major fibrotic factors such as
TGF-β1 and connective tissue growth factor (CTGF) as well
as phosphorylation of SMAD3. In support of this finding,
Montgomery et al. (2014) observed a comparable decline in the
levels of miR-29 family members (miR-29a, miR-29b, and miR-
29c) in the lung biopsies of patients with IPF and also a significant
decrease in hydroxyproline content and reduced trichrome
staining in miR-29b mimic-treated mice when compared to
bleomycin-instilled mice. These data indicated that miR-29
mimic could be a potent therapeutic miRNA for treating
pulmonary fibrosis.

miR-375 is a pancreatic islet-specific miRNA as it regulates
insulin secretion and pancreatic islet development (Kloosterman
et al., 2007; Liu et al., 2010a). Recently, lowered expression
of miR-375 was observed in severe human IPF lungs when
compared with less severe IPF and control samples (Wang
et al., 2013). However, the role of miR-375 in animal models of
pulmonary fibrosis is unknown. Previously, miR-199-5p has been
linked to the inner ear hair cell development and chondrogenesis
and also in tumor progression (Friedman et al., 2009; Lin et al.,
2009). In the context of lung fibrosis, high expression of miR-199-
5p was selectively observed in fibrotic foci of human IPF lungs
(Lino Cardenas et al., 2013). This finding was further confirmed
by performing miRNA microarray assay in bleomycin-treated
mice lungs. In addition, in situ hybridization assay performed in
bleomycin-injured lungs revealed, selective expression of miR-
199-5p in myofibroblasts. Ectopic expression of miR-199-5p
promoted the pathogenic activation of pulmonary fibroblast
including proliferation, invasion, migration and differentiation.
Thus, due to its selective overexpression in fibrotic foci,
miR-199-5p could be considered as a potential target in the
development of novel therapies to treat pathological lung
fibrosis.

The miR-17∼92 cluster is critical for lung epithelial cell
homeostasis and development. Mice lacking this cluster have
only few epithelial cells and die from asphyxia at birth
(Ventura et al., 2008). miR-17∼92 expression was lower in the
lung biopsies from patients with IPF when compared to the
control patients (Dakhlallah et al., 2013). Its expression was
also lower in the lungs of bleomycin treated mice. However,
treatment with 5′-aza-2′-deoxycytidine, a demethylating agent
significantly enhanced the expression of miR-17∼92 cluster
leading to significantly reduced Masson’s trichrome staining
for collagen and expression of fibrotic genes such as COL1a1,
collagen-13a1 (COL13a1), vascular endothelial growth factor
(VEGF), CTGF, and DNA methyltransferases -1 (DNMT-1).
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This study also suggested the existence of a novel epigenetic
feedback loop between miR-17∼92 and DNMT-1 in lung
fibrosis.

Yang et al. (2013a) compared the development of bleomycin-
induced lung fibrosis in wild-type and miR-145−/− mice
and found that miR-145−/− mice lungs had diminished
collagen deposition, reduced expression of α-SMA and increased
expression of kruppel-like factor 4 (KLF4), a negative regulator
of α-SMA, suggesting pro-fibrotic role of miR-145. miR-
326 was the first identified miRNA with high expression
in neurons with anti-neuronal effects (Nye et al., 1994).
In the context of IPF, its expression was found to be
downregulated in IPF patients when compared to control
samples (Das et al., 2014). Further, miR-326 administration
to mice with bleomycin-induced pulmonary fibrosis caused a
significant downregulation of TGF-β1, matrix metalloproteinase-
9 (MMP-9), ETS-1 (v-ets avian erythroblastosis virus E26
oncogene homolog 1), and SMAD3 phosphorylation and
a significant increase in SMAD7 expression (Das et al.,
2014). These results suggested that miR-326 plays an anti-
fibrotic role by regulating TGF-β1 and other pro-fibrotic gene
expression.

Nho et al. (2014) demonstrated the occurrence of miR-
96 positive cells in the fibroblastic foci in IPF patients.
miR-96 is reported to directly bind to 3′-UTR of FOXO3a
(Forkhead box O3) mRNA and subsequently inhibits its
translation. However, the role of miR-96 on experimentally
induced pulmonary fibrosis are yet to be explored. Similarly,
Berschneider et al. (2014) reported that 30 miRNAs were
significantly downregulated in IPF tissue specimens. Previous
report suggested that WINT1-inducible signaling pathway
protein 1 (WISP1) is a highly expressed pro-fibrotic mediator
in IPF (Konigshoff et al., 2008). Overexpression of miR-30a/d
and miR-92 downregulate TGF-β1-induced WISP1 expression
in human lung fibroblasts without any effect on the expression
of fibrotic genes such as COL1 and FN. However, in vivo role
of miR-92 in animal models of pulmonary fibrosis remains
unknown.

miR-26 is reported to play a significant role in growth,
development, cell differentiation, tumor and non-tumor diseases
(Gao and Liu, 2011). However, the expression of miR-26a
was found to be downregulated in the lungs of mice with
experimental pulmonary fibrosis and in IPF patients (Liang
et al., 2014b). In mice, intratracheal instillation of miR-26a
prior to bleomycin administration, significantly alleviated the
exaggerated deposition of collagen, hydroxyproline content and
expression of genes such as COL1, COL3, metalloproteinase-
2 (MMP-2), MMP-9, CTGF and SMAD4. Following the above
findings, the same research group showed that the inhibition of
miR-26a induced mesenchymal markers expression, including
vimentin (VIM) and α-SMA following bleomycin instillation
(Liang et al., 2014a), confirming that the loss of function of
miR-26a could facilitate lung epithelial cells to transform into
myofibroblasts and induce pulmonary fibrosis in mice. miR-
210 is a unique hypoxamir and regulates many vital functions
including cell proliferation in response to hypoxia (Fasanaro
et al., 2008). Increased miR-210 expression was observed in

patients with rapidly progressive IPF (Bodempudi et al., 2014).
The direct role of miR-210 on experimentally induced pulmonary
fibrosis in vivo need to be investigated. Finally, the role of
miR-98, another member of let-7 family was established in
bleomycin-induced pulmonary fibrosis in rats (Gao et al., 2014).
The study revealed that miR-98, can regulate STAT3-related
signals and expression of genes such as α-SMA, COL1 and
apoptotic factors (BAX/BCL2) thereby preventing pulmonary
fibrosis. Thus, the above studies are indicative of the profound
role of miRNAs in the onset and progression of pulmonary
fibrosis.

ROLES OF miRNAs ON
PRO-INFLAMMATORY MEDIATORS IN
EXPERIMENTAL PULMONARY FIBROSIS

In the development of IPF, innate and adaptive immune systems
appear to play vital roles (Luzina et al., 2008; Lafyatis and
Farina, 2012). Cells of the innate or non-specific immune
system (e.g., macrophages, neutrophils) are predominant but
T-cells (adaptive, or specific immune system) are also major
constituent in most IPF patients (Harrison et al., 1991; Wynn,
2008). Macrophages are activated by Th1 cytokine interferon-
γ (INF-γ) and also by Th2 cytokines interleukin-4 (IL-4) and
interleukin-13 (IL-13), acquiring pro-fibrotic phenotype (Capelli
et al., 2005). When pulmonary inflammation and fibrosis occur,
excessive accumulation of T-lymphocytes are diffusely present
throughout the lung (Chizzolini, 2008). There is evidence that
molecules derived from pathogenic organisms, paracrine signals
derived from activated lymphocytes as well as autocrine factors
produced by fibroblasts can cooperate to initiate and maintain
myofibroblasts activation (Wynn, 2008). In animal models of
fibrosis also proved that T-cells that lack CD28, a central
constimulatory cell surface molecule that is necessary for full
T-cell activation, revealed significantly diminished pulmonary
fibrosis (Okazaki et al., 2001). Similarly, B-cells have also been
implicated in the pathogenesis of pulmonary fibrosis, either by
secreting interleukin-6 (IL-6) or by producing autoantibodies
(Hasegawa et al., 2005).

Further, analysis of serum samples and lung biopsies from
IPF patients contained more inflammatory cytokines such as
TNF-α and in addition, mice that overexpress this cytokine
in the lungs developed pulmonary fibrosis (Miyazaki et al.,
1995). According to the current literature, a total of 9 miRNAs
has been related to animal pulmonary fibrosis (see summary
in Table 2) out of which only miR-29b has been shown to
regulate the innate immune response in vivo (Montgomery et al.,
2014). Significantly lower concentrations of interleukin-12 (IL-
12), interleukin-14 (IL-14), and granulocyte colony-stimulating
factor (G-CSF) were found in bronchoalveolar lavage (BAL)
fluids from the lungs of mice treated with a combination of
bleomycin and miR-29b mimic when compared to mice treated
just with bleomycin. Additionally, bleomycin-induced elevation
of BAL inflammatory cells was also brought down by miR-29b
mimic treatment, indicating the inhibitory effect of miR-29b on
the immune response.

Frontiers in Pharmacology | www.frontiersin.org 6 November 2015 | Volume 6 | Article 254

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Rajasekaran et al. miRNAs in pulmonary fibrosis

TABLE 3 | Effects of miRNAs in lung epithelial cells.

S. NO miRNA Cell type Species Regulation on notable
target genes and
validation method

Putative role Reference

1 let-7d A549, RLE-6TN and
NHBE

Human and rat ↓ HMGA2 (qRT-PCR) Attenuates EMT Pandit et al., 2010

2 miR-21 Primary alveolar type-2
epithelial cells

Mouse ↑ Zeb1 and Zeb2
(qRT-PCR)

Promotes EMT Yamada et al., 2013

3 miR-200 RLE-6TN Rat ↓ Zeb1, Zeb2 and Gata3
(qRT-PCR)

Attenuates EMT Yang et al., 2012

4 miR-29b A549 Human ↓ Col1αl and Col3αl
(qRT-PCR)

Attenuates EMT Montgomery et al., 2014

5 miR-326 A549 and NHBE cells Human ↓ TGF-β1 (qRT-PCR and
ELISA)

Attenuates EMT Das et al., 2014

6 miR-26a A549 and mice lungs Human and mouse ↓ HMGA2 (Western blot
and luciferase assay)

Attenuates EMT Liang et al., 2014a

7 miR-27b A549 Human ↓ Gremlin 1 (qRT-PCR and
western blot)

Attenuates EMT Graham et al., 2014

8 miR-98 A549 Human ↓ pStat3 and Stat3
(Western blot)

Attenuates EMT Gao et al., 2014

9 miR-424 A549 Human ↓ Smurf2 (Western blot) Promotes EMT Xiao et al., 2015

ROLES OF miRNAs ON
TGF-β1-MEDIATED FIBROGENIC
SIGNALING IN LUNG EPITHELIAL CELLS
AND FIBROBLASTS

Lung epithelial cells and fibroblasts take a central role in
the development of lung fibrosis by undergoing EMT and
differentiation, respectively, in response to pro-fibrotic stimuli,
resulting in enhanced synthesis of ECM proteins (Sakai and
Tager, 2013). TGF-β1, being a prototypical factor for the
induction of EMT and fibroblast differentiation, has been
extensively used to study the role of miRNAs in lung epithelial
cells and fibroblasts. Therefore, this section is focused on the
role of miRNAs in lung epithelial cells (see summary in Table 3)
and fibroblasts (see summary in Table 4) upon fibrotic stimuli.
Simultaneously, we highlight those miRNAs that are targeting
TGF-β signaling events (see Figure 1), α-SMA (see Figure 2),
and COL1 (see Figure 2) gene expression during the fibrogenic
activity of epithelial cells and fibroblasts.

EFFECTS OF miRNAs IN LUNG
EPITHELIAL CELLS

Pandit et al. (2010) reported that let-7d inhibition induced
a significant increase in the expression of mesenchymal
markers such as N-cadherin (N-CAD), VIM, and α-SMA
in A549, RLE-6TN and normal human bronchial epithelial
(NHBE) cells. Overexpression of miR-200 family in RLE-
6TN cells, particularly miR-200b and miR-200c, attenuated
TGF-β1-induced morphological changes and expression of
mesenchymal cell markers, including α-SMA, and VIM (Yang
et al., 2012). Further, miR-200 inhibits EMT in RLE-6TN cells by

downregulating the expression of EMT promoting transcription
factors such as trans-acting T-cell-specific transcription factor
GATA-3 (GATA3), and zinc finger E-box-binding homeobox
1/2 (ZEB1 and ZEB2) (Yang et al., 2012). Later, Yamada et al.
(2013) reported that the inhibition of miR-21 also attenuated
TGF-β1-induced EMT in mouse primary alveolar type II
epithelial cells and prevented the expression of VIM, α-SMA and
ZEB1/2.

Recently, miR-29b mimic treatment was found to inhibit
collagen induction in A549 cells, confirming the ability of miR-
29b to block phenotypical changes (Montgomery et al., 2014).
Similarly, treatment of A549 and NHBE cells with miR-326
mimics caused a significant downregulation in TGF-β1, which
was apparently due to the degradation of TGF-β1 transcripts (Das
et al., 2014). Further, anti-miR-326 induced TGF-β1 production
and promoted EMT as indicated by increased expression of
mesenchymalmarker, VIM and decreased expression of epithelial
marker, cytokeratin 14 (Das et al., 2014). These results indicate
that miR-326 is capable of enforcing epithelial phenotypes by
inhibiting TGF-β1.

As miR-26a suppresses HMGA2, a key positive regulator of
EMT by binding to its 3′-UTR sequence, inhibition of miR-26a
caused the elevation of EMT phenotype in A549 cells and in
mice lungs (Liang et al., 2014a,b). These results suggested that
loss of miR-26a function could facilitate the transformation of
lung epithelial cells into myofibroblasts. Functional screening
using a library of miRNA inhibitors identified miR-27b as a
direct regulator of COL1 in A549 cells and its inhibition caused
a significant increase in COL1 expression (Graham et al., 2014).
Subsequently, miR-27b was found to directly target Gremlin 1 by
binding to its 3′-UTR and reducing its mRNA levels (Graham
et al., 2014). However, TGF-β1 treatment decreased miR-27b
expression and caused a corresponding increase in Gremlin
1 level and EMT process, suggesting that TGF-β1 regulates
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TABLE 4 | Roles of miRNAs in lung fibroblasts.

S. NO miRNA Cell type Species Regulation on notable target
genes and validation method

Putative role Reference

1 miR-21 MRC-5 Human ↓ Smad 7 (Western blot) Promotes fibroblast
transdifferentiation

Liu et al., 2010b

2 miR-29 IMR-90 Human ↓ ECM genes (Col5A1, Col5A2,
FBN1, LOXL2, FSTL1, PDGFC and
SERPINH1), BM related genes
(SPARC and Col4A1), Intergrins
(ITGA5 and ITGAV), Genes involved
in proteolysis and ECM remodeling
(ADAM12, ADAM19 and BMP1)
and IL-1 pathway (IL1RAP) (mRNA
array analysis)

Negative regulators of
fibrotic phenotype

Cushing et al., 2011

3 miR-200b,
200c

Primary normal
and IPF lung
fibroblast

Human and
mouse

No specific target defined Attenuates fibroblast
transdifferentiation

Yang et al., 2012

4 miR-154 Primary normal
and IPF lung
fibroblast

Human WNT/β-catenin pathway (↑ FZD5,
CTNNB1,FZD4,FZD6,KREMEN1,
LRP5, WISP1 and β-catenin)
(qRT-PCR and western blot)

Promotes proliferation and
migration

Milosevic et al., 2012

5 miR-199a-
5p

MRC-5 Human ↓ Caveolin-1 (qRT-PCR and
western blot)

Pathogenic activation of
fibroblast

Lino Cardenas et al., 2013

6 miR-17 ∼
19 cluster

IPF fibroblast Human ↓DNMT-1 (Methyl-Profiler DNA
Methylation qPCR Primer Assays)

Reverse fibrotic phenotype Dakhlallah et al., 2013

7 miR-145 MRC-5 and
lung fibroblast

Human and
mouse

↓ KLF4 (Western blot) Promotes fibroblast
transdifferentiation

Yang et al., 2013a

8 miR-29 IMR90 Human ↓ PI3K-Akt pathway (Western blot) Reverse fibrotic phenotype Yang et al., 2013b

9 miR-326 NIH/3T3 Mouse ↓ TGF-β1, SMAD3 and Ets; ↑
(SMAD 7) (ELISA and western blot)

Attenuates fibroblast
proliferation and fiobrotic
related genes

Das et al., 2014

10 miR-92a Primary Lung
fibroblast

Human ↓ WISP1 (qRT-PCR and ELISA) Suppresses pro-fibrotic
mediator

Berschneider et al., 2014

11 miR-96 Normal and IPF
fibroblast

Human ↓ Fox03 (qRT-PCR and western
blot)

Promotes proliferation and
maintains fibrotic
phenotype

Nho et al., 2014

12 miR-26a MRC-5 Human ↓ pSmad3 and CTGF (Western blot
and luciferase assay)

Attenuates fibroblast
transdifferentiation

Liang et al., 2014b

13 miR-29b Primary IPF
lung fibroblast

Human No specific target defined Reverse fibrotic phenotype Montgomery et al., 2014

14 miR-210 IPF fibroblast Human ↓ MNT (Western blot) Promotes proliferation Bodempudi et al., 2014

15 miR-26a Primary fetal
lung fibroblast

Human ↓ Cyclin D2, TGF-βR1 and TGF-β2
(qRT-PCR and western blot)

Suppresses proliferation Li et al., 2014

16 Let-7d Primary fetal
lung fibroblast

Human ↓ HMGA2, SLUG, ID1 and ID2
(Micro array and qRT-PCR)

Reverse fibrotic phenotype Huleihel et al., 2014

Gremlin1 level by partly modulating the expression of miR-27b
(Graham et al., 2014).

A549 cells treated with TGF-β1 morphologically tended to
reverse into epithelial cells after intervention with miR-98 (Gao
et al., 2014). The expression of α-SMA in miR-98-treated A549

cells was downregulated, whereas the expression of E-CAD
was increased, which confirmed the participation of miR-98 in
the process of TGF-β1-induced EMT (Gao et al., 2014). The
authors also determined that miR-98 treated A549 cells showed
significantly reduced STAT3 and p-STAT3 expression following
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FIGURE 1 | Mechanisms through which microRNAs (miRNAs) implicated in the TGF-β signaling pathway in the lung epithelial cells and fibroblasts.
The majority of TGF-β is in a latent form and kept inactive by the latency-associated peptide (LAP) in the extracellular milieu. Upon release from LAP, TGF-β dimers
then associate with the type II TGF-β receptor, that in turn associates with the type I receptor, leading to the activation of the receptor heterodimer and initiation of a
variety of signaling pathways. Both Smad-mediated and non-Smad mediated pathways are involved, leading to activation of target genes involved in epithelial
mesenchymal transition (EMT), differentiation, proliferation, migration, pro-fibrotic activity and ECM. miRNA targeting components of TGF-β signaling are shown
(Green color indicates enhancer, whereas red color indicates suppressor).

TGF-β1 treatment, which indicated that miR-98 controls TGF-
β1-mediated EMT process by regulating STAT3 and p-STAT3
levels in STAT3 pathway.

Upon TGF-β1 treatment, miR-424 expression was found to be
increased in A549 cells, which in turn led to increased α-SMA
expression (Xiao et al., 2015). miR-424 targets SMAD specific
E3 ubiquitin protein ligase 2 (SMURF2), a negative regulator of
TGF-β signaling. The combination of miR-424 overexpression
and TGF-β1 treatment increased α-SMA and CTGF expression
further when compared with the treatment of TGF-β1 alone
or miR-424 over-expression alone. The above studies thus
suggest that the specific suppression of upregulated miRNAs,
such as miR-21 and miR-424, or the specific overexpression of
downregulated miRNAs, such as let-7d, miR-200, miR-29b, miR-
326, miR-26a, miR-27b and miR-98, may be a viable approach in
blocking the excessive EMT process in the fibrotic lungs.

ROLES OF miRNAs IN LUNG
FIBROBLASTS

Transfection of TGF-β1 treated human primary fibroblast cell
line, MRC5 with miR-21 precursors induced the transcription
of FN and α-SMA, and SMAD2 phosphorylation and decreased
SMAD7 expression (Liu et al., 2010b). Thus, miR-21 appears to
enhance TGF-β1 signaling events to promote fibrotic phenotype
in fibroblasts. Knocking down of miR-29 in TGF-β1 treated
human fetal lung fibroblasts (IMR-90) cells upregulates the
expression of several collagens, a large number of previously
unrecognized ECM-associated and remodeling genes, thus,
suggesting the regulatory role of miR-29 over fibrotic related
genes in fibroblasts (Cushing et al., 2011). Later, Yang et al.
(2013b) observed that treatment of IMR-90 cells with TGF-β1
increased cell proliferation, colony formation and upregulation
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FIGURE 2 | The role of miRNAs on the genes associated with myofibroblasts phenotype in the lungs. In response to specific stimuli. epithelial cells can
give rise to fibroblasts/myofibroblasts in the lung through a process of EMT. In addition, myofibroblasts can also be derived from resident fibroblasts. Myofibroblasts
are characterized by the presence of α-SMA and their ability to produce ECM genes, including type-1-collagen. Green color indicates enhancer, whereas red color
indicates suppressor of genes involved in the pathogenic nature of myofibroblasts.

of COL1. They also concluded that miR-29 mediates anti-
fibrogenic effects through downregulation of TGF-β1-induced
activation of PI3K-Akt phosphorylation. Consistent with these
studies, transfection of miR-29b mimic in IPF fibroblasts was
found to control the expression of COL1, in both TGF-β1
treated as well as baseline conditions (Montgomery et al., 2014),
further underscoring the anti-fibrotic potential of miR-29 in
lung fibroblasts. Further, overexpression of miR-200, particularly
miR-200b and miR-200c, markedly attenuated TGF-β1-induced
expression of FN and α-SMA in MRC-5 cell line and in lung
fibroblasts isolated from mice with experimental pulmonary
fibrosis (Yang et al., 2012). In addition, miR-154 was also shown
to significantly decrease TGF-β1-induced proliferation of normal
human lung fibroblasts (NHLF) and IPF fibroblasts through
activation of theWNT/β-catenin pathway (Milosevic et al., 2012).

Further, miR-199a-5p was found to bind to the 3′-UTR
of Caveolin 1 (CAV1) mRNA, a negative regulator of TGF-
β signaling (Lino Cardenas et al., 2013). In MRC-5 cells,
silencing of miR-199a-5p strongly inhibited TGF-β1-mediated
differentiation of fibroblasts into myofibroblasts, wound repair
and SMAD signaling (Lino Cardenas et al., 2013). These findings
demonstrated that miR-199a-5p promotes pathogenic activation
of fibroblasts in response to TGF-β1 by regulating CAV1 (Lino
Cardenas et al., 2013). Introduction of miR-17∼19 cluster into
the fibroblasts derived from IPF patients was found to reduce
actin staining to levels similar to the normal fibroblasts and in
addition, reduced the expression of several fibrotic related genes
such as VEGF, CTGF, COL1a1, and COL13a1 when compared to
the vector transfected cells (Dakhlallah et al., 2013). In addition,
seed sequences for miR-17, miR-19b, miR-20a, and miR-92a
were identified in the 3’-UTR of DNMT-1 mRNA. DNMT-1
expression was found to be increased in IPF fibroblasts when
compared to normal fibroblasts. Hence, enhancement of miR-
17∼19 cluster expression through suppression of DNMT-1 in IPF
fibroblasts could be a novel therapeutic strategy to reverse the
fibrotic phenotype (Dakhlallah et al., 2013).

miR-145 was found to promote fibroblast differentiation and
its expression was found to be upregulated in TGF-β1-treated

human lung fibroblasts (Yang et al., 2013a). Overexpression
of miR-145 in human lung fibroblasts increased α-SMA
expression, enhanced contractility, and promoted the formation
of focal and fibrillary adhesions. It was observed that TGF-
β1 upregulates miR-145, which targets KLF4, a known negative
regulator of α-SMA, suggesting that miR-145 plays an important
role in the differentiation of fibroblasts. On the other hand,
miR-326 was found to control TGF-β1 expression, and
proliferation and downregulates the expression of pro-fibrotic
genes such as ETS1, SMAD3 and MMP-9 in NIH/3T3
cells (Das et al., 2014). It upregulates antifibrotic genes
such as SMAD7 in the presence of interleukin-13 (IL-13)
and interleukin-1β (IL-1β). These results for the first time
suggested that miR-326 acts as an anti-fibrogenic agent in
lung fibroblasts. WISP1 has been demonstrated to contribute
to IPF pathogenesis and this gene is found to contain target
sites for miR-92a in the 3′-UTR region and introduction
of miR-92a decreased TGF-β1-induced WISP1 expression
(Berschneider et al., 2014). These findings indicated the
regulatory role of miR-92a on WISP1 expression in reversing
fibrotic phenotype.

FOXO3a is suppressed in IPF fibroblasts, which allows
them to expand in this diseased condition. Further, inhibition
of miR-96 expression induced FOXO3a mRNA and protein
expression, and its target proteins such as p21, p27, and
BIM in IPF fibroblasts, resulting in suppression of IPF
fibroblast proliferation and promoting their cell death (Nho
et al., 2014). Nho et al. (2014) reported the increased
expression of miR-96 in IPF fibroblasts inhibits FOXO3a
function, causing IPF fibroblasts to maintain their pathological
phenotype.

Likewise, anti-fibrogenic role of miR-26a on lung fibroblasts
has been established by two recent reports (Li et al., 2014;
Liang et al., 2014b). In MRC-5 cells, miR-26a abolished TGF-
β1-induced secretion of collagen, and suppressed the expression
of fibrotic genes such as COL1, COL4 (type-4-collagen), COL3,
α-SMA, SMAD4, and CTGF. In addition, miR-26a inhibited
TGF-β1-mediated nuclear translocation of pSMAD3 by directly
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targeting SMAD4, which determines the nuclear translocation
of pSMAD2/SMAD3. As miR-26a blocks the G1/S phase
transition through degrading mRNA expression of cyclin-D2
(CCND2) by directly targeting 3′-UTR of cyclin-D2 (CCND2),
inhibition of endogenous miR-26a was found to promote
proliferation of human lung fibroblasts (Li et al., 2014). These
results suggested that miR-26a could suppress TGF-β1-induced
proliferation and differentiation of lung fibroblasts. In hypoxia,
HIF-2α regulates miR-210 expression and miR-210-mediates
proliferation of IPF fibroblasts via repression of its downstream
target MNT, a negative regulator of c-MYC (Bodempudi et al.,
2014). Hence, hypoxia promotes IPF fibroblast proliferation
via stimulating miR-210 expression, which in turn worsens
hypoxia.

Lastly, Huleihel et al. (2014) found that let-7d transfection into
the lung fibroblasts induced decreased mesenchymal markers
expression, phenotypical changes such as reduced proliferation,
motility, and a delay in wound healing. Combined let-7d
transfection and TGF-β1 treatment resulted in significantly
attenuated HMGA2 protein induction by TGF-β1. These results
demonstrated that administration of let-7d significantly affects
the mesenchymal phenotypic properties of lung fibroblasts. Thus,
the above studies clearly demonstrate pro-fibrotic and anti-
fibrotic roles of miRNAs on the lung fibroblasts.

CONCLUSION AND FUTURE
PERSPECTIVES

Our review outlines the current knowledge on dysregulated
miRNAs in the lungs of human IPF as well as their role in
animal models of pulmonary fibrosis. In addition, miRNAs that
directly regulate pro-inflammatory mediators, EMT, fibroblast
proliferation and differentiation, TGF-β signaling (see Figure 1),
and ECM gene expression (Type-1-collagen) (COL1) (see
Figure 2) are also discussed. However, there is still plenty of room
for improving our understanding about miRNAs and the role that
each miR could play in lung pathophysiology.

From the earliest descriptions of patients with pulmonary
fibrosis, histological analysis of lung has shown the accumulation
of various inflammatory cells such as macrophages, neutrophils,
eosinophils and lymphocytes in the interstitium of the lung
(Scadding and Hinson, 1967; Crystal et al., 1976). The role of
inflammation in IPF has been questioned and de-emphasized
over the past few years (Selman et al., 2001; Horowitz and
Thannickal, 2006). Although the precise role of inflammation
is still unclear, IPF continued to be viewed as a chronic
inflammatory disease of the lung parenchyma (Crystal et al.,
2002; Barnes and Adcock, 2009; Homer et al., 2011; Wynn,
2011). Due to the influence of miRNA in regulating various
cellular functions, attention should be given to understand the
role of miRNAs on inflammatory events that drive the onset and
progression of pulmonary fibrosis.

Results of in situ labeling analysis from several studies have
demonstrated the presence of numerous apoptotic epithelial
cells in the lung tissues from patients with IPF and in murine
models of pulmonary fibrosis (Uhal et al., 1998; Plataki et al.,

2005), which is associated with the development of pulmonary
fibrosis (Thannickal and Horowitz, 2006). Furthermore, IPF
is considered as an age-related disease because two–thirds
of IPF patients are older than 66 years at the time of
diagnosis (Raghu et al., 2006; Collard, 2010). Thus, IPF is
likely to share common pathophysiologic mechanisms of aging
such as senescence, deficiencies in DNA repair pathways,
telomere shortening, an alteration in DNA methylation pattern,
autophagy, mitochondrial dysfunction, stem cell exhaustion
and an altered intercellular communication (Thannickal, 2013).
Therefore, the interactions between miRNAs and hallmarks of
aging that occur in IPF need to be elucidated.

Further, in the lungs of IPF patients, apoptotic positive
alveolar epithelial cells colocalize with α-SMA-positive
myofibroblasts of foci, indicating the ability of injured epithelial
cells to affect the local fibroblast behavior in a paracrine fashion
(Uhal et al., 1998). In vitro studies have shown that several
mediators are responsible for this ability of injured epithelial
cells, including TGF-β1 (Morishima et al., 2001), CTGF (Pan
et al., 2001) and sonic hedgehog (SHH) (Urase et al., 1996).
Similarly, activated fibroblasts are reported to amplify the
epithelial apoptosis although the initial cause for epithelial injury
in IPF remains elusive. In vitro experiments demonstrated that
mediators such as angiotensin II and hydrogen peroxide (H2O2)
appear to activate this paracrine action (Uhal et al., 1995; Wang
et al., 1999). Hence, further studies are needed to identify the
involvement of miRNAs on paracrine interactions of these two
cell types in the development of pulmonary fibrosis.

Although the participation of miRNAs in pulmonary fibrosis
is evident, the factors that regulate miRNAs in pulmonary
fibrosis remain elusive. Pandit et al. (2010) showed that TGF-
β1 inhibits let-7d expression, which is mediated through binding
of SMAD3 to the let-7d promoter. A recent study revealed the
binding of SMAD3 to position 391 bp upstream of the miR-
154 gene in TGF-β1 treated cells, but not in the unstimulated
cells (Milosevic et al., 2012). In addition, binding of SMAD3 at
the 322 bp site upstream of pre-miR-154 was evident either in
the presence or absence of TGF-β1 stimulation (Milosevic et al.,
2012). However, the mechanisms by which miRNAs are being
down or upregulated during IPF warrant more investigations.
Furthermore, identifying regulators of miRNA is difficult as more
than one mediator or pathways participate in regulating miRNA
expression. It is also important to investigate the crosstalk among
miRNAs as multiple miRNAs are altered during IPF. Another
problem to fully understand target genes of miRNA is that a
single miRNA can control hundreds of distinct target genes that
potentially affect various cellular pathways. All these unsolved
questions require to have additional investigations.

The identification of specific circulating biomarkers for
IPF is emphasized in recent time for the potential clinical
implications in order to facilitate diagnosis and prediction of
disease progression (Yang et al., 2015). The importance of having
such biomarkers in IPF was recently reviewed by Cicchitto and
Sanguinetti (2013). Several reports suggested that miRNAs are
secreted as micro vesicles or exosome and apoptotic bodies, and
hence they are stable and abundant and can be readily detected
in the circulation (Rayner and Hennessy, 2013). In the context
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of miRNAs as circulating biomarkers, indeed, in mice, Huang
et al. (2012) reported that miR-125b-5p, miR-128, miR-30e, and
miR-20b were significantly altered in the lung tissue and in
plasma of smoking-induced pulmonary fibrosis. Li et al. (2013)
reported that serum miR-21 expression was significantly higher
in IPF patients than in healthy controls and is associated with
the severity of tissue damage as indicated by Forced vital capacity
(FVC) and radiologic examinations. Further, Wang et al. (2014)
identified plasma miR-1229-3p, miR-145-5p, miR-338-3p, mIR-
3620-3p, miR-4485, miR-4707-3p, and miR-636 as promising
biomarkers of chronic obstructive pulmonary disease (COPD).
Hence, given the important roles of miRNAs in IPF, identification
of more circulatory miRNAswill likely increase the use of miRNA
as potential biomarkers for the early diagnosis of pulmonary
fibrosis.

Regarding the use of miRNA as a target for therapeutic tool,
several approaches may be used to control pathological miRNA
dysregulation. The upregulated miRNAs could be optimally

managed through the usage of antagomirs, locked nucleic acid
(LAN) anti-miR, miRNA sponge, and miR-masks. Conversely,
the low expressed miRNAs could be restored through molecular
strategies such as mimic miRNA or adenovirus associated vectors
(AAVs) carrying miRNA encoding gene. Furthermore, use of
miRNAs as in vivo therapeutic agents is attractive, but faces
considerable challenges, including non-specific targets, tissue-
specific delivery, and activation of the innate and adaptive
immune responses. However, future efforts may lead to the
development of novel therapeutic approaches targeting miRNAs
for this incurable and often devastating disorder.
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