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Abstract
Background: This is the first large-scale longitudinal study of children that describes the temporal trajectories of an extensive collection of met-
abolic measures that are relevant for lifelong cardiometabolic risk. We also provide a comprehensive picture on how metabolism develops into 
mature adult sex-specific phenotypes.
Methods: Children born in 1962–92 were recruited by three European studies (n¼ 20 377 eligible). Biochemical data for ages 0–26 years were 
available for n¼14 958 participants (n¼ 8385 with metabolomics). Age associations for 168 metabolic measures (6 physiological traits, 6 clinical 
biomarkers, and 156 serum metabolomics measures) were determined by using curvilinear regression. Puberty effects were calculated by us-
ing logistic regression of biological sex for pre- and post-pubertal age strata.
Results: Age-specific concentrations were reported for all measures. Nonlinear age associations were typical, including insulin (R2 ¼ 20.7% ± 
0.6% variance explained ±SE), glycerol (13.3% ±1.3%), glycoprotein acetyls (40.3% ±1.5%), and branched-chain amino acids (19.5% ±1.6%). 
Apolipoprotein B was not associated with age (0.7% ±0.4%). Multivariate modeling indicated that boys diverged from girls metabolically during 
ages 13–17 years. Puberty effects were observed for large high-density lipoprotein cholesterol (P¼ 8.5 × 10−288), leucine (P<2.3 × 10−308), glu-
tamine (P< 2.3 × 10−308), albumin (P¼ 1.7 × 10−161), docosahexaenoic acid (P¼ 5.2 × 10−50), and sphingomyelin (P¼ 4.4 × 10−90).
Conclusion: Novel associations between emerging cardiometabolic risk factors, such as amino acids and glycoprotein acetyls, and growth and 
puberty were observed. Conversely, apolipoprotein B was stable, which favors its utility for early assessments of lifetime cardiovascular risk.
Keywords: children; puberty; metabolism; longitudinal; cardiovascular risk factor; lipids; amino acids; insulin; inflammation; apolipoprotein B. 
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Introduction
Cardiometabolic risk factors (insulin, glucose, and lipopro-
tein lipids) vary in human populations [1–8] and metabolic 
stratification in childhood is associated with adverse health 
consequences in adulthood [9–11]. It is thus important to de-
scribe the temporal trajectories of metabolic measures from 
birth through to adulthood so that successive generations can 
be assessed for health risks and early societal interventions 
developed where necessary. In particular, accurate analyses 
on the dominant effect of age are necessary to achieve better 
health outcomes [12].

New high-throughput technologies that quantify a large 
number of biochemical traits have emerged recently, notably 
nuclear magnetic resonance (NMR) metabolomics, which 
have had a profound impact on large-scale epidemiological 
studies of cardiometabolic risk factors, including those in 
children [7, 8, 13–17]. However, robust information about 
the temporal early-life patterns of many new measures 
remains limited compared with the established clinical bio-
markers. For example, branched-chain amino acids and gly-
coprotein acetyls are predictive of adverse cardiometabolic 
outcomes [18–22] and previous studies have revealed associa-
tions with childhood obesity [13] but there is less information 
about the temporal trajectories associated with growth and 
maturation. The goal of this study is to provide a comprehen-
sive picture on how metabolism develops in children as seen 
through circulating biomarkers and how the concentrations 
diverge between boys and girls during puberty.

We analyse biochemical data from 14 958 participants across 
three European cohorts. We start from established biomarkers 
such as insulin and clinical lipids, as they are proven indicators 
of overall metabolic health status and relevant for the obesity 
pandemic and high cardiovascular risk. Next, we provide novel 
information on metabolic measures, obtained by using NMR 
metabolomics, that have been identified as cardiometabolic risk 
factors in epidemiological studies [14, 18, 20, 23]. Lastly, we 
use regression modeling to summarize which metabolic meas-
ures are the most distinctive of adult vs. prepubertal sex dimor-
phism and therefore require age-appropriate reference ranges 
for children if incorporated into public health workflows.

Methods
The Special Turku Coronary Risk Factor Intervention Project 
(STRIP) was a randomized–controlled trial that was started in 
1990 to investigate whether a favorable diet improved cardio-
metabolic risk factors [24, 25]. Initial recruitment was 1880 
infants aged 5 months (data available from 1105), of whom 
1062 went through randomization and 532 remained at age 

14 years. In this study, biochemical data collected up to age 
26 years are included (standard biochemistry: n¼ 457–923 per 
visit, 20 visits; metabolomics: n¼444–584 per visit, 7 visits).

The Cardiovascular Risk in Young Finns Study (YFS) 
recruited 3596 children across six peer groups in 1980 in five 
cities in Finland [26]. In this study, biochemical data mea-
sured up to 24 years of age were used. To mitigate batch 
effects, data were calibrated by using a previously published 
algorithm [27]. In total, n¼3583 participants spread across 
nine age points were included, with n¼284 metabolomics 
measurements at age 24 years.

The Avon Longitudinal Study of Parents and Children 
(ALSPAC) is a birth cohort from the South West of England 
[28–31]. The initial number enrolled in 1991 and 1992 was 
13 988, with 913 added to the final sample size of 14 901 
(alive after the first year). This study utilizes biochemical data 
that were collected from before October 2021 (biochemistry 
n¼ 489–5253 per visit, 8 visits; metabolomics: n¼ 2682– 
5247 per visit, 4 visits). The study website contains details of 
data that are available through a searchable data dictionary 
(URL: http://www.bristol.ac.uk/alspac/researchers/our-data/).

A proportion of participants were lost to follow-up or had 
incomplete data. The exact numbers for a given variable and 
time point are provided in Supplementary Table S1 and the 
overall dataset structure is illustrated in Supplementary Fig. 
S1 (see online supplementary material for color versions of 
the figure and table). Height, weight, waist, and blood pres-
sure were obtained by using standard techniques and total tri-
glycerides, total cholesterol, high-density lipoprotein (HDL) 
cholesterol, insulin, glucose, and C-reactive protein were 
quantified from blood samples according to standard clinical 
laboratory techniques [24, 26, 28]. One hundred and fifty-six 
additional biochemical traits were quantified from blood by 
using a high-throughput NMR metabolomics platform [15].

We have previously addressed biochemical batch effects in 
the YFS [27] and in UK Biobank [32]. Here, a batch refers to 
the samples that were collected from a specific scheduled sur-
vey of the cohort. Batch effects create artificial differences be-
tween consecutive visits. They arise from variation in sample 
storage time, handling protocols, and changes in measure-
ment assays. We observed substantial batch effects in the 
ALSPAC (Supplementary Fig. S2; see online supplementary 
material for a color version of this figure). Hence, we used 
the ALSPAC only for investigating sex differences to cancel 
out the confounding effect.

Statistical analyses
We used the nroPreprocess() function in Numero R package 
[33] with default settings to log-transform skewed variables 

Key Messages 
� Maturation of childhood metabolism into adult sex-specific metabolic profiles was investigated by using biochemical time-series data of 

the same individuals from infancy to young adulthood. 
� Novel information on the temporal trajectories of lipoprotein subclasses, glucose metabolism intermediates, branch-chain amino acids, 

and glycoprotein acetyls was published along with new population-based longitudinal descriptions of clinically important cardiometabolic 
biomarkers such as insulin, low-density lipoprotein cholesterol, and apolipoprotein B. 

� This study highlights the importance of age- and sex-specific considerations for predicting future population disease trends from 
childhood metabolomics data and it provides a new resource for assessing the metabolic health of individual children at different 
developmental stages. 
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and to standardize data to zero mean and unit variance. 
Robust means for data subsets were calculated from the 
standardized values and then reverted back to the original 
scale and location by using the nroPostprocess() function. 
Descriptive statistics and regression coefficients were calcu-
lated within a bootstrapping framework in which random 
subsets of the data were repeatedly drawn with replacement 
and the statistical analysis was repeated for each subset. After 
bootstrapping, the preprocessing pipeline was applied in re-
verse to restore the samples to their original value spaces. 
Confidence intervals and P-values were calculated from the 
restored bootstrap samples. The threshold P<0.0001 was 
chosen to highlight the most robust findings.

Curvilinear regression was used for calculating how much of 
metabolic trait variance was explained by age (Supplementary 
Fig. S3; see online supplementary material for a color version 
of this figure). Model fit was confirmed by using visual inspec-
tion of the residuals. In some situations, the youngest (or the 
oldest) age stratum had an outsized influence on the model if 
the stratum deviated from the rest. The data were insufficient 
to ascertain how much of the influence was due to biological or 
batch effects. To solve the problem, we incorporated a cross- 
validation scheme that added variation from random batch 
effects into the regression model (Supplementary Fig. S3 cap-
tion; see online supplementary material for a color version of 
this figure). Confidence intervals and P-values were calculated 
within the bootstrapping framework described above.

We applied projections to latent structures to quantify sex 
dimorphism according to the biochemical and metabolomics 
data at different ages (Supplementary Fig. S4; see online sup-
plementary material for a color version of this figure). This 
approach allowed us to leverage the ALSPAC data without 
confounding from batch effects. The age-specific models 
were adjusted for differences in the ratio of males and 
females. Confidence intervals were calculated under the 
aforementioned bootstrapping framework.

To identify which metabolic variables exhibited sex diver-
gence due to puberty, we used univariate regression modeling 
for each metabolic measure separately, and before and after pu-
berty. Two sets of logistic regression models of male sex were 
created for those participants who were ≤13 years old and for 
those ≥17 years old. We denote the regression coefficient for a 
metabolic variable as α for the younger and β for the older 
group. Usually, α is close to zero, as young boys and girls are 
similar, but the magnitude of β is typically larger due to promi-
nent sex differences in adults (negative if women have a higher 
measurement than men or positive when vice versa).

Results
Table 1 is an overview of the results and the age effects are 
listed in Fig. 1 and Supplementary Fig. S5 (see online supple-
mentary material for a color version of this figure). In the text, 
we highlight associations that satisfy P<0.0001 unless other-
wise indicated (exact P-values are shown in Supplementary 
Table S2; see online supplementary material for a color ver-
sion of this table). The intervention in the STRIP caused dif-
ferences in specific variables (Supplementary Fig. S6; see 
online supplementary material for a color version of this fig-
ure). The models were adjusted for the treatment arm.

Physical growth and development were evident 
(Supplementary Fig. S7; see online supplementary material 
for a color version of this figure). Age explained 96% of the 

body height variance, between 12% and 41% of the blood 
pressure measures, and 72% of creatinine variance (Fig. 1A 
and J). Forty percent of the variance in glycoprotein acetyls 
was explained by age (Fig. 1B). Energy metabolism was asso-
ciated with growth and development (Fig. 1C): 21% of insu-
lin was explained by age and notable percentages were found 
for glycerol (13%), citrate (17%), and pyruvate (26%).

Of the clinical lipids (Fig. 1D), HDL cholesterol exhibited 
the strongest association with age (20%). The association be-
tween apolipoprotein B and age was close to zero (1%, 
P¼ 0.0047; Fig. 1E). Triglycerides in very-low-density lipo-
protein (VLDL) and low-density lipoprotein (LDL) subclasses 
(Fig. 1F) changed with age but the effect size was modest 
(≤11%). Intermediate-density lipoprotein (IDL) and LDL 
cholesterol associations were closer to zero (typically <5%). 
The smaller HDL subclasses were more age-dependent than 
the larger (e.g. 8% explained of extra large HDL cholesterol 
vs. 20% of small HDL cholesterol). Polyunsaturated lipids, 
particularly omega-6 (17%) and linoleic acid (25%), were 
partly explained by age (Fig. 1G).

Branched-chain amino acids were age-dependent, including 
28% of isoleucine variance explained by age (Fig. 1I; see also 
sex difference in Supplementary Fig. S5; see online supple-
mentary material for a color version of this figure). Alanine 
(11%), phenylalanine (10%), and histidine (5%) showed 
modest associations with age. Glutamine was different be-
tween the sexes, with a stronger association in males (56%) 
but a weaker age effect in females (12%), and an overall ef-
fect of 34%.

Temporal trajectories of circulating molecular 
concentrations
Age- and sex-stratified geometric means and 95% confidence 
intervals for insulin are shown in Fig. 2A and numerical 
results are provided in Supplementary Table S1 (see online 
supplementary material for a color version of this table). The 
highest values were observed between ages 13 and 15 years 
for girls [max 11.1 insulin units (IU) across cohorts] and be-
tween 16 and 18 years for boys (max 9.5 IU); note the differ-
ence between the STRIP and the YFS. Females tended to have 
higher values across ages (median difference 0.42 IU). As 
shown in Fig. 2B and C, inflammatory markers were also 
higher in females and increased with age. There was a sex di-
vergence in branched-chain amino acids that resulted in a 
22% higher concentration in men at age 24–26 years 

Table 1. An overview of the cohort participants. The table contains the 
total numbers of individuals with at least one biochemical measurement 
that was included in the statistical analyses. Please note that the 
numbers vary for specific analyses; see Supplementary Tables S1–S4 for 
further details (see online supplementary material for color versions of 
these tables).

Variable ALSPAC STRIP YFS

Males 5178 (50.4%) 565 (51.2%) 1755 (49.0%)
Females 5094 (49.6%) 538 (48.8%) 1828 (51.0%)
Age range (years) 0–25.4 0.7–26 3–24
Mean ±SD number  

of visits per  
participant

2.4 ± 1.5 11.5 ± 7.1 2.7 ± 1.0

ALSPAC, Avon Longitudinal Study of Parents and Children; SD, standard 
deviation; STRIP, Special Turku Coronary Risk Factor Intervention Project; 
YFS, Cardiovascular Risk in Young Finns Study.
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(Fig. 2D; see also Supplementary Fig. S8; see online supple-
mentary material for a color version of this figure). 
Glutamine and histidine increased in both sexes; however, 
the rate was faster in men despite a lower starting point 
(Fig. 2E and F).

Glucose was higher in males (Fig. 3A; median difference 
0.19 mmol/L). Citrate followed a u-shaped pattern with a 

maximal gap of 8.7% between a higher value in boys com-
pared with girls at age 15 years (Fig. 3B). Pyruvate followed a 
consistent trend upward with age in both sexes (Fig. 3D). 
Acetate showed no sex difference in children but higher val-
ues in adult males compared with females (Fig. 3E; difference 
of 4.9% at age 24–26 years). The temporal pattern of acetate 
peaked at age 17 years when citrate was the lowest.

Figure 1. Summary of age associations for 168 metabolic measures. The numbers on the circle indicate percent variance explained by age. The subplot 
labels refer to the inner circle, except Plot F, which covers the entire outer arc of lipoprotein subclass measures. For most measures, data from the 
STRIP cohort covered seven time points between the ages of 9 and 26 years. Height, weight, waist, and standard clinical chemistry measures (c) of 
insulin, glucose, triglycerides, cholesterol, and HDL cholesterol were also available from the YFS cohort and from early childhood onward. Apo, 
apolipoprotein; BCAA, branched-chain amino acids; BP, blood pressure; DHA, docosahexaeonic acid; FA, fatty acid; GlycA, glycoprotein acetyls; HDL, 
high-density lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; PUFA, polyunsaturated fatty acids; STRIP, Special Turku 
Coronary Risk Factor Intervention Project; VLDL, very-low-density lipoprotein; YFS, Cardiovascular Risk in Young Finns Study; lipoprotein subclass lipids: 
L, total lipid; TG, triglycerides; C, cholesterol; CE, cholesterol esters; PL, phospholipids; pc, particle concentration; lipoprotein subclass sizes: L, large; M, 
medium; S, small; XS, extra small; XL, extra large; XXL, extremely large.
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Total cholesterol (Fig. 4A) was higher in females (median 
difference 0.18 mmol/L). A similar undulating trajectory was 
observed for HDL cholesterol but with a puberty-induced sex 
divergence (Supplementary Fig. S7; see online supplementary 
material for a color version of this figure). The same pattern 
was visible for apolipoprotein A1 (Fig. 4B). Apolipoprotein B 
was higher in girls (Fig. 4C; median difference 0.041 g/L at 
age 7–18 years); however, there was a simultaneous increase 
in young men and a decrease in young women after puberty 
(lower in females, −0.017 g/L at age 24–26 years). Fatty acids 
were typically higher in females than in males (Fig. 4E and F, 
and Supplementary Fig. S9; see online supplementary mate-
rial for a color version of this figure).

Emergence of adult male and female 
metabolic phenotypes
To eliminate batch effects, we focused on the emergence of 
sex dimorphism as an alternative indicator of age-dependent 
metabolic traits. The data from all three study cohorts were 
divided into two groups by using age cutoffs based on multi-
variate modeling (Supplementary Fig. S4; see online 

supplementary material for a color version of this figure). 
The coefficients for logistic models of male sex are shown in 
Supplementary Fig. S10 and full numerical results are pro-
vided in Supplementary Table S3 (see online supplementary 
material for color versions of the figure and table). For clar-
ity, we defined the relative sex divergence score (against 
height) based on the regression results to illustrate associa-
tions between puberty and specific metabolic variables (Fig. 5 
and Supplementary Table S4; see online supplementary mate-
rial for a color version of this table). Height (100%), pulse 
pressure (60%), and creatinine (59%) are classic examples of 
puberty-induced sex dimorphism (Fig. 5A and H).

Glycoprotein acetyls were not associated with puberty- 
induced sex divergence (1%, P¼ 0.35) (Fig. 5B) despite over-
all lower values in males and an association with age 
(Fig. 1B). Insulin showed the same temporal stratification 
pattern without sex divergence (Figs 1C and 5C). Neither 
glycerol nor pyruvate diverged between sexes during puberty, 
but were associated with age (Figs 1C and 5C).

HDL cholesterol was age-dependent (Fig. 1D) and substan-
tially lower in males after metabolic puberty transition (35%) 
(Fig. 5D). Lipoprotein subclass data revealed how IDL and 

Figure 2. Robust mean values and 95% confidence intervals for selected circulating metabolic measures. The results are calculated separately for each 
cohort and for males and females. The filled symbols indicate a statistical difference that satisfies the single-test threshold of P < 0.0001. The plots 
consist of two subplots; the lower subplot shows the results from the ALSPAC centered on the mean values of the peer groups. ALSPAC, Avon 
Longitudinal Study of Parents and Children; IU, insulin unit; STRIP, Special Turku Coronary Risk Factor Intervention Project; YFS, Cardiovascular Risk in 
Young Finns Study.
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LDL subclasses were the least affected by puberty, except for 
their triglyceride content (scores between 14% and 36%) 
whereas large HDL lipids were sensitive indicators of the 
maturation of sex differences (36–48%) (Fig. 5F). 
Docosahexaenoic acid (19%), sphingomyelin (28%), and 
cholines (28%) were also divergent (Fig. 5G and H).

Circulating amino acids were substantially changed be-
tween the sexes during puberty (Fig. 5I). Leucine (63%) and 
glutamine (60%) diverged during puberty to the same degree 
as creatinine (59%) and body weight (51%), as was hinted at 
by their strong age-dependence in men (Supplementary Fig. 
S5; see online supplementary material for a color version of 
this figure). Other amino acids such as tyrosine—that were 
less affected by age per se (Fig. 1I)—diverged into higher val-
ues in young men compared with women (29%) (see also 
Supplementary Fig. S10; see online supplementary material 
for a color version of this figure).

Discussion
We conducted rigorous analyses of biochemical time series 
from 14 958 individuals over two decades across three 

cohorts with careful consideration for batch effects that are 
inherent to longitudinal datasets. We observed that insulin, 
glycerol, and glycoprotein acetyls changed with age and were 
lower in males, but did not exhibit sex divergence during 
puberty. Substantial sex divergence was observed pre- vs. 
post-puberty for creatinine, glutamine, HDL subclasses, poly-
unsaturated fatty acids, and branched-chain amino acids. 
Neither apolipoprotein B nor LDL cholesterol was associated 
with age. Overall, metabolic differentiation into adult males 
and females took place between the ages of 13 and 17 years.

Apolipoprotein B and LDL cholesterol are causal predic-
tors of cardiovascular disease in adults [34–36] and may indi-
cate lifetime risk from birth [4]. Apolipoprotein B appears to 
be lower in infants and then stable in children [37–39] with 
some sex divergence towards adulthood [40]. Our longitudi-
nal analyses revealed stable values in girls aged 9–17 years 
that then flipped into lower values in adult females vs. males; 
however, temporal changes were small compared with differ-
ences between individuals. Based on our new large-scale 
results on lipoprotein subclasses, we speculate that the sex 
flip reflects both a sex-specific increase in apolipoprotein B 
numbers that come from VLDL particles (VLDL particle 

Figure 3. Robust mean values and 95% confidence intervals for selected circulating metabolic measures. The results are calculated separately for each 
cohort and for males and females. The filled symbols indicate a statistical difference that satisfies the single-test threshold of P < 0.0001. The plots 
consist of two subplots; the lower subplot shows the results from the ALSPAC centered on the mean values of the peer groups. ALSPAC, Avon 
Longitudinal Study of Parents and Children; STRIP, Special Turku Coronary Risk Factor Intervention Project; YFS, Cardiovascular Risk in Young 
Finns Study.
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concentrations increase faster in males throughout child-
hood) and changes in LDL metabolism between adult men 
and women (Fig. 5F and Supplementary Figs S10 and S11; 
see online supplementary material for color versions of these 
figures). From a practical point of view, LDL cholesterol is 
also stable and therefore additional information from apoli-
poprotein B may be limited. Nevertheless, these new results 
across multiple cohorts and previous tracking analyses [41] 
support apolipoprotein B as an early indicator of lifelong car-
diovascular risk.

Insulin resistance increases in puberty and manifests as 
higher circulating insulin [3, 42]. Our data indicate that the 
insulin peak occurred earlier in girls compared with boys, and 
earlier in the STRIP (launched in 1990) compared with the 
YFS (born before 1980). These observations are compatible 
with the historical trend of earlier puberty in younger genera-
tions [43] and they imply that insulin resistance in adolescence 
may be too variable to work as a robust predictive risk factor. 
We also saw a dip in 3-hydroxybutyrate at age 15 years when 
insulin resistance was the highest, which is the opposite of 
what happens in adults [44]. Acetate—another key molecule 

in energy metabolism [45] that may increase insulin sensitiv-
ity [46]—peaked at age 17 years, possibly indicating the cul-
mination of biomass accumulation towards the end of the 
growth spurt.

Increased lipolysis from excess adiposity promotes glycerol 
release into circulation in obese adolescents [47] and in adults 
[48]. Our new results show that insulin increased without 
any change in glycerol at age 13 years (no association) fol-
lowed by lower insulin and higher glycerol at age 17 years 
(adult-like association). This complex pattern suggests that 
the regulatory mechanisms between insulin and lipolysis may 
be different in children compared with adults, possibly due to 
the energy demands from growing.

Citrate metabolism is important for adult health [49] but less 
is known about citrate in children. A previous metabolomics 
study reported lower concentrations in boys at age 12 years [7]. 
We observed higher serum concentrations in boys at age 
15 years whereas another study found lower urinary citrate ex-
cretion in boys of the same age [50]. It is possible that the 
higher need for citrate for bone formation during the male 
growth spurt may explain the higher availability in blood [51].

Figure 4. Robust mean values and 95% confidence intervals for selected circulating metabolic measures. The results are calculated separately for each 
cohort and for males and females. The filled symbols indicate a statistical difference that satisfies the single-test threshold of P < 0.0001. The plots 
consist of two subplots; the lower subplot shows the results from the ALSPAC centered on the mean values of the peer groups. ALSPAC, Avon 
Longitudinal Study of Parents and Children; STRIP, Special Turku Coronary Risk Factor Intervention Project; YFS, Cardiovascular Risk in Young 
Finns Study.
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Elevated branched-chain amino acids in adults are risk fac-
tors for cardiometabolic diseases such as type 2 diabetes [18, 
52] and differences between adults and children have been 
observed [7]. Our data show that amino acids (especially 

leucine and glutamine) are among the strongest indicators of 
metabolic maturation into adult sex. Notably, isoleucine and 
leucine returned to prepubertal concentrations in females af-
ter the insulin peak whereas the pubertal increase became 

Figure 5. Overview of how sex dimorphism in metabolic measures changed between younger children (age ≤13 years) and young adults (age ≥17 years) 
in the combined dataset from the STRIP, YFS, and ALSPAC. We defined the sex divergence score ΔS as the absolute difference between the α and β 
coefficients from the logistic regression modeling of sex differentiation (ΔS ¼ jα − βj, see Methods and Supplementary Figure S10; see online 
supplementary material for a color version of this figure). A high ΔS indicates that there was a large change in the association between sex and a specific 
metabolic measure, i.e. puberty affected one sex differently compared with the other. The maximum score was observed for height and it was used as 
the reference to calculate relative percentages. The exact percentages are written next to the variable names in the figure and the P-values are available 
in Supplementary Table S4 (see online supplementary material for a color version of this figure). The subplot labels refer to the inner circle, except Plot F, 
which covers the entire outer arc of lipoprotein subclass measures. Apo, apolipoprotein; ALSPAC, Avon Longitudinal Study of Parents and Children; 
BCAA, branched-chain amino acids; BP, blood pressure; DHA, docosahexaeonic acid; FA, fatty acid; GlycA, glycoprotein acetyls; HDL, high-density 
lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; PUFA, polyunsaturated fatty acids; STRIP, Special Turku Coronary Risk 
Factor Intervention Project; VLDL, very-low-density lipoprotein; YFS, Cardiovascular Risk in Young Finns Study; lipoprotein subclass lipids: L, total lipid; 
TG, triglycerides; C, cholesterol; CE, cholesterol esters; PL, phospholipids; pc, particle concentration; lipoprotein subclass sizes: L, large; M, medium; S, 
small; XS, extra small; XL, extra large; XXL, extremely large.
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permanent in males. This, together with the lack of sex differ-
ence in adult insulin, suggests that the regulatory network be-
tween insulin and amino acids was rewired to a greater 
extent in males compared with females. We speculate that the 
rewiring reflects the need to maintain the higher muscle-to- 
fat ratio in men and may contribute to sex differences in the 
epidemiology of insulin resistance [53].

In adults, elevated glycoprotein acetyls indicate chronic in-
flammation [20] and are associated with a wide variety of 
diseases [22]. Our study revealed that glycoprotein acetyls 
were stable before puberty (higher in girls), then increased by 
40%, and then remained elevated in adults. C-reactive pro-
tein behaved similarly, as expected [54]; however, C-reactive 
protein was higher in adult females (possibly due to contra-
ception [55, 56] or menstruation [57]) whereas the sex differ-
ence in glycoprotein acetyls disappeared after puberty. These 
temporal associations are substantial and may require age- 
and sex-specific reference ranges if glycoprotein acetyls are 
incorporated into metabolic assessments of children and 
adolescents.

The strengths of this study include high statistical power, 
multiple cohorts, and a long follow-up from early childhood 
to young adults. Furthermore, our results replicate earlier 
findings for those biomarkers for which longitudinal studies 
were available [2, 5, 54, 58]. The study is limited by the 
young age of the participants that prevents direct analyses of 
incident disease end points. We caution against extrapolating 
the results into other ethnic groups and there are inherent 
technical challenges of long-term follow-up studies that may 
reduce the accuracy of the results. Nevertheless, the overall 
picture is clear: most metabolic traits exhibited meaningful 
associations with the growth and development of children, 
including emerging cardiometabolic risk factors such as 
branched-chain amino acids and glycoprotein acetyls. 
Conversely, apolipoprotein B and LDL cholesterol were sta-
ble, which indicates their potential utility for early assess-
ments of lifetime cardiometabolic risk.
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