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Purpose. Ivabradine has emerged as a new antiarrhythmic agent that could compete with the traditional ones, such as beta-
blockers. )is experimental study aims to ascertain whether ivabradine directly interferes with the myocardial contractility in an
in vitro environment. Methods. Myocardial tissues from the right atrial appendages of patients undergoing cardiac surgery were
dissected to obtain 40 specimens from 20 patients (length: 3mm), which were exposed to electrical impulses at a frequency of
75 bpm for 30min to reach a steady state. Specimens were then categorised into four groups (each including five patients).)e first
group was the control, whereas the second, third, and fourth were treated with 60 nM, 200 nM, and 2 μM ivabradine, respectively.
We assessed five different contraction parameters before and after a 15min treatment and calculated their relative changes, which
were then compared to the control group. Results. Ivabradine has affected the force of contraction significantly in vitro (p � 0.009).
However, force of contraction decreased in both the control group (93.5± 4.7%) and the second group (94.1± 4.5%, p � 0.8) and
force of contraction remained unchanged in the third group (101.0± 4.1%, p � 0.24) and increased significantly in the fourth
group (108.9± 11.6%, p � 0.008).)ere was no change in other contraction parameters, such as passive tension force (97.1± 5.1%,
p � 0.368), duration of contraction (99.1± 4.3%, p � 0.816), time to peak (96.6± 3.0%, p � 0.536), and time to relaxation
(101.2± 7.0%, p � 0.564). Conclusions. Ivabradine did not interfere with the contractile behaviour of human atrial tissue when it
was used in therapeutic dosages in vitro. However, it increased the contractility slightly, when it was used in
supratherapeutic dosage.

1. Introduction

Heart rate reduction (HRR), a cornerstone of the modern
heart failure therapy [1–3], enhances the balance between
the cardiac oxygen demand and supply by augmenting the
coronary blood flow through a longer diastolic phase and
decreasing the oxygen consumption owing to lowering the
frequency. In addition, the heart rate decline leads to a better
ventricular filling through an extended diastolic phase and
an enhanced diastolic function because of better myocardial
oxygen supply. Reportedly, in humans, as well as animals,
the HRR enhances also the cardiac function in the long run
by improving coronary collateralization [4–6].

Despite the acknowledged benefits of the HRR,
its achievement remains complicated, as traditional

antiarrhythmic agents still display their drawbacks. For
example, beta-adrenoceptor blockers exert a negative
inotropic effect and may cause undesirable side effects
such as depression and lung function worsening [7–11].
In cardiac surgery, especially, a controlled reduction in
the heart rate without interfering with the systolic car-
diac function is needed frequently.

Ivabradine, an HCN (hyperpolarization-activated cyclic
nucleotide-gated cation channel) blocker, was first approved
for medical use by the European Medicines Agency in 2005
and by the United States Food and Drug Administration in
2015 and remains, to date, as the only clinically approved
selective HCN-blocker. HCN-channels [12] underlie the
“funny current” to induce the spontaneous depolarization of
the pacemaker cells in the sinoatrial node, atrioventricular
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node, and Purkinje fibers [13–15]. By blocking these
channels, ivabradine can exert a selective negative chro-
notropic effect upon the heart without interfering with the
systolic function [16].

1.1. Aim of the Study. )is study aims to investigate the
effect of ivabradine on the cardiac contractility in-
dependently from the HRR. It used a well-established in
vitro model to analyse the contractility of human atrial
cardiac tissues in the presence and absence of ivabradine.

2. Materials and Methods

2.1. Ethical Approval. )is study was conducted after
obtaining clearance from the Ethics Board of Rhineland-
Palatinate, Germany. We obtained individual written con-
sent from patients for the use of disposed tissue arising from
the surgical procedures, with the assurance of anonymity.
No personal information was collected in this study.

2.2. Experimental Tissue and Preparation. )e edges of the
right atrial appendages that were routinely removed and
discarded from patients undergoing cardiac surgery during
the cardiopulmonary bypass were collected. Tissues were
excluded in the presence of the following condition: age >90
or <18 years; severe cardiomyopathy, defined as an ejection
fraction (EF) ≤30%; inflammatory or infective cardiac dis-
ease (e.g., endocarditis); congenital malformation; surgery
for pathologies involving the right atrium (e.g., tricuspid
regurgitation); digitalis therapy; and history of atrial fi-
brillation or flutter. Standard cardiovascular anesthesia was
applied using total intravenous protocols with propofol and
remifentanil. Noradrenaline, physiological solutions for
volume substitution, and atropine were frequently used as
required.

Samples were transported immediately after the surgical
excision to the laboratory in a cold (4°C) modified
Bretschneider’s solution (prepared by the pharmacy of the
University Medical Center of the Johannes Gutenberg
University, Mainz, Germany), which contained 15mM
NaCl, 10mM KCl, 4mM MgCl.(H2O)6, 18mM histidi-
ne.HCl.H2O, 180mM histidine, 2mM tryptophan, 30mM
mannitol, and 0.015mM CaCl2.(H2O)2 and had a pH value
of 7.2 (25°C). After that, trabeculae were manually prepared
under the microscope to yield muscle specimens measuring
about 3× 0.5× 0.6mm3 (see Figure 1). Furthermore, these
specimens were stored in dark cold (4°C) oxygenated
Bretschneider’s solution for 1–24 h, before being used in
experiments.

2.3. Tissue Preparation. At the start of each experiment,
every specimen was washed and warmed for approximately
10 minutes with Krebs–Henseleit buffer, which contained
118mM NaCl, 25mM NaHCO3, 4.6mM KCl, 1.2mM
KH2PO4, 1.2mM MgSO4, 1.3mM CaCl2, and 11mM glu-
cose. Trabeculae were then mounted horizontally between
two tweezers of the muscle investigation system (modified

“Standard System for Muscle Investigation,” SH Heidelberg,
Heidelberg, Germany) and exposed to a continuous flow of
warm (35°C) Krebs–Henseleit buffer, gassed with a mix of
95% oxygen and 5% carbon dioxide at a rate of 0.5ml/min,
which kept the pH value at about 7.4. After a precise baseline
length measurement, they were stretched to 110% of their
slack length. Next, electrical stimulation was applied at a
frequency of 75 bpm. )e voltage was gradually increased
from 1V to a maximum of 10V, until the maximal force of
contraction (CF) of the specimen was reached. )ereafter,
they were left to stabilize for 30min to reach a steady state
before starting the experiments.

2.4. Study Design. Four groups of experiments were con-
ducted. )e first group was kept in with Krebs–Henseleit
buffer only (without ivabradine) and served as control. )e
second, the third, and the fourth groups were kept in 60 nM,
200 nM, and 2 μM ivabradine, respectively. Each group
included five different patients. Two experiments, using two
samples, were studied from each patient, and the average was
used to minimize the error.

Exposure to ivabradine/Krebs–Henseleit buffer lasted 15
minutes. Contraction parameters were measured twice:
before applying ivabradine/Krebs–Henseleit buffer (paraX1)
and after (paraX2). Each measurement lasted 3 minutes, and
the average of the 3× 75 bpm contractions was used for
calculation. )en, the relative change in the contraction
parameters (X%) was calculated according to the following
equation:

paraX% � 100 × paraX2/paraX1. (1)

Figure 1 explains the design of this study.
)e following contraction parameters were measured:

force of contraction in millinewton (CF), passive tension
force in millinewton (TF), duration of contraction in mil-
lisecond (DC), time to peak tension inmillisecond (Ttp), and
time of relaxation in millisecond (Ttr). Figure 2 explains how
we calculated these parameters.

2.5. Source of Stock Solution of Ivabradine. We obtained
ivabradine from Sigma-Aldrich, 3050 Spruce Street, St.
Louis, MO 63103, USA, as ivabradine hydrochloride powder;
this powder was used to prepare aqueous solutions in a
concentration of 6 μM, 20 μM, and 200 μM, which were then
stored at − 20°C. Next, we added these aqueous solutions
directly to the Krebs–Henseleit buffer at a dilution of 1/100
to attain the required concentrations (60 nM, 200 nM, and
2 μM) before conducting the experiments on the same day.

2.6. Data Acquisition and Statistical Analysis. Statistical
analyses were performed using IBM-SPSS Statistics (version
23.0.0.0). Categorical variables were presented by frequen-
cies and rates, and quantitative variables were described by
their arithmetic means.

Owing to the versatility of the muscle specimens, they
displayed wide differences in their baseline CF. As this study
focused on the change in the contractility induced by the
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treatments rather than contractility itself, we analysed the
relative change in the contraction parameters, instead of their
absolute values. One-way analysis of variance (ANOVA) was
then used, considering the “group” as an independent vari-
able. )e post hoc multiple comparison Dunnett’s test was
finally utilized to compare the three treatment groups against
the control group. Notably, the Dunnett’s test was two-tailed,
and α� 0.05 was chosen for the significance level.

3. Results

A total of 40 experiments were conducted, in tissues from 20
patients (5 patients/group, average age: 63.7± 11 years).
Table 1 summarizes their patients’ profile.

)ere was no change in other contraction parameters,
such as passive tension force (97.1± 5.1%, p � 0.368), du-
ration of contraction (99.1± 4.3%, p � 0.816), time to peak
(96.6± 3.0%, p � 0.536), and time to relaxation
(101.2± 7.0%, p � 0.564). Table 2 and Figure 3 show these
results.

4. Discussion

)is study confirms the lack of a relevant inotropic effect of
ivabradine, when it is used in therapeutic concentration. At a
high concentration of 2 μM, ivabradine exhibits a weak
positive inotropic effect in this in vitro model.

Various effects of ivabradine on myocardial contractility
have been reported before. Boldt et al. [17], for example, used
an experimental setup similar to ours to assess the inotropic
effects of ivabradine on both murine and human atrial
cardiomyocytes; using a fixed contraction rate, they reported
a concentration-dependent negative inotropic effect of
ivabradine in 7 out of 10 subjects, while a concentration-
dependent positive inotropic effect was observed in the
remaining three subjects, as well as in murine car-
diomyocytes. Both negative and positive inotropic effects in
this trial were obtained in experimental concentrations
between 10 and 100 μM, which exceeded not only the
concentrations used in clinical settings but also the maxi-
mum concentration in our trial. Furthermore, a negative
inotropic effect resulting from application of ivabradine in
concentrations above 10 μM was reported by Pérez et al. in
isolated guinea pig cardiac preparations [18]. Remarkably,
Boldt et al. successfully blocked the positive inotropic effect
of ivabradine by pretreating their samples with verapamil
[17], suggesting an interaction between ivabradine and L-
type calcium channels. Likewise, this effect is also reported
by Bois et al., who demonstrated that ivabradine would block
HCN channels at a concentration of 2 μM, whereas it would
block L-type calcium channels and the delayed outward
potassium current at concentrations exceeding 10 μM [16].
As such, it explains the paradoxical results of Boldt et al. [17].
It is essential to keep in mind that the concentrations needed
to attain these effects exceed by far those used in clinical
practice. Hence, it can be asserted that ivabradine exerts no
relevant effect on the human myocardial contractility if
applied in standard doses.

It might seem inappropriate to obtain samples from
cardiac surgery patients comprising elderly individuals with
various cardiac morbidities, but these patients precisely

Illustration of the experiment design with a continuous recording of
force of contraction (CF)
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Figure 1: Experimental design. (a) Preparing the samples: specimens are left to stabilize and reach a steady state, before starting the
experiment. (b) )e first measurement: contraction parameters are recorded over a period of 3min. (c) Application of ivabradine/placebo:
ivabradine/placebo is applied over a period of 15min during the continuous electrical stimulation. (d) )e second measurement: con-
traction parameters are recorded again over a period of 3min.
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Table 1: Summary of the medical profiles and medications of the patients.

Donor
Nr. Group Age

(years) Gender BMI
(kg/m2) Diseases Cardiac

function Surgery Medications

D 001 Control 63 m 23 CAD, AHT, DM Normal Isolated CABG ASA, bisoprolol, amlodipine

D 002 Control 66 f 26 CAD, AHT, ND,
gout Normal Isolated CABG ASA, bisoprolol, furosemide,

amlodipine, vitamin D

D 004 Control 64 f 39 CAD, AHT Normal Isolated CABG
ASA, clopidogrel, bisoprolol,
simvastatin, furosemide,

amlodipine
D 005 Control 59 f 24 CAD, AHT, ND Normal Isolated CABG ASA, ramipril

D 006 Control 49 m 31 CAD, AHT, ND,
psoriasis Normal Isolated CABG ASA, bisoprolol, simvastatin,

amlodipine
D 008 2 μMol 71 m 29 CAD, IBS Normal Isolated CABG ASA, clopidogrel, simvastatin

D 009 2 μMol 60 f 22 CAD, AVS,
PAD

Moderately
reduced CABG+AVR ASA, clopidogrel, furosemide,

amlodipine, ramipril

D 010 2 μMol 75 m 33 CAD, DM, ND Normal Isolated CABG ASA, simvastatin, furosemide,
metformin

D 011 2 μMol 69 f 28 CAD, AHT Normal Isolated CABG ASA, clopidogrel, bisoprolol,
simvastatin

D 012 2 μMol 74 f 36 CAD, DM Normal Isolated CABG ASA, bisoprolol, metformin,
amlodipine

D 013 200 nMol 67 m 31 CAD, AHT,
DM, ND Normal Isolated CABG

clopidogrel, bisoprolol,
furosemide, metformin,
amlodipine, lorazepam

D 015 200 nMol 62 f 43 CAD, AHT, ND Normal Isolated CABG ASA

D 021 200 nMol 69 m 26 CAD, AHT, ND,
PAD Normal Isolated CABG ASA, clopidogrel, simvastatin

D 022 200 nMol 55 m 34 CAD, AVS,
MVI, AHT Normal CABG+AVR+MVR ASA, bisoprolol, furosemide,

vitamin d
D 023 200 nMol 27 m 24 AVS, ND Normal Isolated AVR ASA

D 027 60 nMol 77 m 25 CAD, AHT,
DM, dN Normal Isolated CABG ASA

D 028 60 nMol 77 m 30 CAD, AHT,
DM, ND, dN Normal Isolated CABG ASA, metoprolol, ramipril

D 029 60 nMol 59 f 38 CAD, AHT, DM Normal Isolated CABG ASA, bisoprolol, simvastatin,
amlodipine

D 030 60 nMol 71 m 27 CAD, AVS,
AHT, PAD Normal Isolated AVR ASA, bisoprolol, amlodipine,

phenprocoumon

D 031 60 nMol 65 f 34 CAD, MVI,
AHT Normal Isolated CABG ASA, bisoprolol, amlodipine

CAD: coronary artery disease, AHT: arterial hypertension, DM: diabetes mellitus, ND: nicotine dependency, IBS: irritable bowel syndrome, AVS: aortic valve
stenosis, PAD: peripheral artery disease, MVI: mitral valve insufficiency, dN: diabetic nephropathy, ASA: acetylsalicylic acid. Ivabradine has affected the force
of contraction significantly in vitro (p � 0.009). However, force of contraction decreased in both the control group (93.5± 4.7%) and the second group
(94.1± 4.5%, p � 0.8), force of contraction remained unchanged in the third group (101.0± 4.1%, p � 0.24), and force of contraction increased significantly in
the fourth group (108.9± 11.6%, p � 0.008).

Table 2: Contraction parameters.

Number
of trials

Force of contraction before
the treatment (mN)

Force of
contraction (%)

Passive tension
force (%)

Duration of
contraction (%)

Time to
peak (%)

Time to
relax (%)

G0: control 5× 2 1.3± 0.6 93.5± 4.7 95.5± 4.3 97.7± 7.9 95.4± 2.5 99.0± 12.6
G1: ivabradine
(60 nM) 5× 2 1.2± 0.5 94.1± 4.5 99.3± 8.1 99.3± 3.3 96.1± 4.5 102.1± 5.0

G2: ivabradine
(200 nM) 5× 2 1.1± 0.2 101.0± 4.1 94.6± 3.8 100.5± 1.6 96.7± 1.6 104.6± 3.2

G3: ivabradine
(2 μM) 5× 2 1.5± 0.9 108.9± 11.6∗ 99.0± 1.6 98.8± 2.7 98.2± 2.9 99.2± 3.1

Total/average 20× 2 1.3± 0.6 99.4± 9.1 97.1± 5.1 99.1± 4.3 96.6± 3.0 101.2± 7.0
)e averages of the measured force of contraction (CF) before the treatment in all groups and with the relative changes all contraction parameters. ∗A
statistical relevance. Values were reported as mean± standard deviation.
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represent the targeted group of patients for the HHR
therapy, and therefore, the use of these samples is ad-
vantageous. In addition, a broad range of heterogeneity
existed between the patients, as well as between the per-
formances of their samples. To counter that, we performed
several experiments, enrolled patients strictly based on the

inclusion and exclusion criteria, repeated the measure-
ments twice for each patient, and analysed the change in the
contractility under ivabradine rather than the contractility
itself. Using a fixed rate of 75 bpm, which we consider the
therapeutic heart rate in most heart failure patients,
could be deemed misleading in a study considering a
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chronotropic agent, but because this study primarily aims
to identify any effect that ivabradine exhibits on myocardial
contractility and because the HRR effect of ivabradine has
already been comprehensively discussed in literature
[15, 16, 19, 20], we limited the framework of this study to
observing the contractility under a physiological frequency.
)ere are known differences between atrial and ventricular
myocardium such as an approximately 15% smaller atrial
cell volume yielding higher surface-area-to-volume ratio;
smaller amplitude of systolic Ca2+ transients; accelerated
rates of decline of systolic Ca2+; more sarcoplasmic re-
ticulum- (SR-) mediated Ca2+ uptake; higher SR Ca2+
content, and a higher density of mitochondria in the
ventricles [21, 22]. However, both possess similar con-
tractile apparatuses and receptors [23, 24]. Hence, it is
legitimate to hypothesize that whatever effect ivabradine
has on myocardial contractility would be present, probably
to different extents, in both atrial and ventricular car-
diomyocytes and using higher concentrations of ivabradine
facilitates the detection. Administration of 10mg ivabra-
dine (therapeutic dosage) causes a maximum plasma
concentration of almost 60 nM [25–29]; therefore, we
applied this concentration in our first experimental setup.
)e two higher concentrations, 200 nM and 2 μM, would
unveil any subtle effects not detectable when using the
therapeutic dosage.

5. Conclusions

)is study emphasises the lack of inotropic effect of ivab-
radine on the myocardial contractility when administered in
therapeutic dosage. Ivabradine exhibits a small inotropic
effect when used in higher concentrations.
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