
RESEARCH ARTICLE

Functional form estimation using oblique

projection matrices for LS-SVM regression

models

Alexander CaicedoID
1*, Carolina VaronID

2,3, Sabine Van Huffel2,3, Johan A. K. Suykens2

1 Department of Applied Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics,

Universidad del Rosario, Bogota, Colombia, 2 Department of Electrical Engineering ESAT-STADIUS Center

for Dynamical Systems, Signal Processing, and Data Analytics/KU Leuven, Belgium, 3 imec, Leuven,

Belgium

* alexander.caicedo@urosario.edu.co

Abstract

Kernel regression models have been used as non-parametric methods for fitting experimen-

tal data. However, due to their non-parametric nature, they belong to the so-called “black

box” models, indicating that the relation between the input variables and the output, depend-

ing on the kernel selection, is unknown. In this paper we propose a new methodology to

retrieve the relation between each input regressor variable and the output in a least squares

support vector machine (LS-SVM) regression model. The method is based on oblique sub-

space projectors (ObSP), which allows to decouple the influence of input regressors on the

output by including the undesired variables in the null space of the projection matrix. Such

functional relations are represented by the nonlinear transformation of the input regressors,

and their subspaces are estimated using appropriate kernel evaluations. We exploit the

properties of ObSP in order to decompose the output of the obtained regression model as a

sum of the partial nonlinear contributions and interaction effects of the input variables, we

called this methodology Nonlinear ObSP (NObSP). We compare the performance of the

proposed algorithm with the component selection and smooth operator (COSSO) for

smoothing spline ANOVA models. We use as benchmark 2 toy examples and a real life

regression model using the concrete strength dataset from the UCI machine learning reposi-

tory. We showed that NObSP is able to outperform COSSO, producing stable estimations of

the functional relations between the input regressors and the output, without the use of

prior-knowledge. This methodology can be used in order to understand the functional rela-

tions between the inputs and the output in a regression model, retrieving the physical inter-

pretation of the regression models.

Introduction

Non-parametric regression is an important field of data analysis. These non-parametric mod-

els use some observations of the input data and the desired target to estimate a function and
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make predictions [1, 2]. However, generally, these models focus on the prediction of the target

variable of interest and not on the model interpretability. In this manuscript, we will refer to

interpretability as the property of a model to express the output in additive terms of the partial

nonlinear contributions of the input variables and their interaction effects. In several applica-

tions interpretability plays an important role in the construction of prediction models. In such

cases, the main goal is not the prediction of the response of a system but to determine the

underlying mechanisms and the relationship between the inputs and the output. For instance,

in medical applications, this information can be used in order to identify treatment targets,

support diagnosis, and facilitate the introduction of these models in clinical practice. As an

example, Van Belle et al. proposed the use of a color code to enhance the interpretability of

classification models for the clinicians [3].

Interpretability of black box models has already been addressed for classifiers and regres-

sion models using different strategies. On the one hand, Van Belle et al. proposed a clinical

interpretable classification model based on a least squares support vector machine (LS-SVM)

using the radial basis function (RBF) kernel [4]. In that work, the authors retrieved the

interpretability of the classifiers by using a truncated multinomial expansion of the RBF kernel.

On the other hand, for regression models, interpretability has been tackled by using sparse

additive models [5], and functional ANOVA models [6, 7]. In these models the target observa-

tions are modeled as a sum of a constant term, main effects, and interaction effects. In this con-

text, the main effects refer to the direct relation between each input variable and the output,

considering both the linear and nonlinear contributions of an input regressor on the output,

while the interaction effect refers to the combined effect of 2 or more input variables on the

output [6]. These models retrieve interpretability similarly to the case of generalized linear

models [8], where a direct link between the contribution of each input in the output is esti-

mated explicitly. However, these models require the use of prior knowledge in terms of which

variables should be included in the regression models, as well as which interaction effects are

of importance. This can only be achieved if the designer has a profound knowledge of the pro-

cess and mechanisms underlying the changes in the target variable. To address this problem,

some methodologies have been developed in order to select components that are relevant for

the regression model in an automatic way, [9–11]. In particular, in the work from Lin et al., a

new method for model selection and fitting in non-parametric regression models using

smoothing spline ANOVA is proposed [11]. This method is referred as the Component Selec-

tion and Smoothing Operator (COSSO). This methodology is able to produce a model that is

accurate in the prediction of the target variable, and it retrieves some of the interpretability by

accurately identifying the components and functional forms of the relation between the input

variables and the output. Nevertheless, it requires to specify a-priori if the user is interested in

finding only main effects or interaction effects as well. More importantly, the solution of both

problems does not converge, since the common terms in both cases are not the same. This is

due to the fact that both problems, computing the main effect or including the interaction

effects, lead to different cost functions with the same objective, fit the observed output. Addi-

tionally, this method has been developed for smoothing spline ANOVA models (SS-ANOVA)

and, to the best of our knowledge, it has not been extended to other kernel based regression

models.

From a geometry point of view, interpretability of non-parametric regression models can

be addressed as the decomposition of a target observation vector into additive components

[12]. Each of these components should lie in the subspaces that are spanned by the respective

input regressors. If a basis for the subspaces of each individual input regressor and their inter-

action effects can be found, then appropriate projection matrices can be constructed in order

to retrieve the interpretability of the models. This idea has been previously exploited in the
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case of linear models, where we have proposed to use a Hankel expansion of the input variables

to construct a basis for their subspaces, and construct oblique subspace projectors in order to

effectively decouple the dynamics of undesired input variables, representing the output as a

sum of the partial linear contributions of each input [13]. Oblique projectors are particularly

powerful when the variables that want to be decoupled are not orthogonal [14]. They have

been applied as a preprocessing step in different hyper-spectral imaging [15], decoding [16],

and biomedical applications [13].

Considering non-linear regression models using LS-SVM, due to the geometry of the RBF

kernel, the subspaces spanned by the nonlinear transformation of the input regressors are not

likely to be orthogonal [17]. Therefore, in order to decompose the output into interpretable

additive components, oblique projectors should be used. In this paper we address this issue, by

formulating a nonlinear extension to oblique subspace projections. We show how to create a

basis for the subspaces spanned by the nonlinear transformation of the input regressors, main

effects as well as interaction effects, using kernel evaluations. In addition, we suggest how to

construct appropriate oblique projectors in order to effectively decompose the output of a ker-

nel based regression model into interpretable additive components.

The manuscript is structured as follows, in section 1 we briefly describe an LS-SVM regres-

sion model. In section 2 we describe how to construct oblique subspace projectors and we

present the proposed algorithm. In section 3 we evaluate the performance of the proposed

algorithm using 2 toy examples and an application using the concrete strength dataset from

the UCI machine learning repository. In section 4 we discuss the results and the potential use

of the proposed algorithm, and we finalize with some concluding remarks in section 5.

Throughout this manuscript we will use the following notation: we will refer to scalars as

italic letters (x), vectors will be represented as lowercase bold variables (x), matrices will refer

to capital bold variables (Ω), subspaces will be represented by calligraphic capital letters (V),

and spaces will be represented by blackboard bold capital letters (R). With some abuse of nota-

tion, we will refer to the projector matrix onto the subspace of the lth input regressors, along

the subspace spanned by the other regressors as Pl/(l), where the subindex l represents the sub-

space of the regressor where the output will be projected, the subindex (l) represents all the

input regressors excluding the lth, and the symbol / represents the oblique projection.

1 LS-SVM for nonlinear regression

LS-SVM is a kernel based methodology that can be used to solve nonlinear classification and

regression problems [18]. Due to its flexibility to manage different kind of problems and pro-

duce an adequate mathematical model, LS-SVM has been used successfully in different appli-

cation fields such as: the prediction of electricity energy consumption [19], estimation of water

pollution [20], forecasting of carbon price [21], and the prediction of meteorological time

series [22], among others. However, its applications have been hampered due to its black-

box model nature.

Let’s consider the following nonlinear regression model:

ŷðxÞ ¼ wTφðxÞ þ b; ð1Þ

where ŷ 2 R represents the output of the model, x 2 Rd
, and x = [x(1); . . .; x(d)], represents the

input vector, x(l) is the entry for the lth input regressor, φð�Þ : Rd ! Rp represents the nonlin-

ear mapping of x into a possibly infinite-dimensional feature space, w are the weigths, and b is

the bias term. Given the following training data fxi; yig
N
i¼1

, the LS-SVM regression problem

Nonlinear oblique subspace projections (NObSP)
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can be formulated as follows:

min
w;e;b

Jðw; eÞ ¼
1

2
wTw þ g

1

2

XN

i¼1

e2

i

s:t: yi ¼ wTφðxiÞ þ bþ ei; i ¼ 1; . . . ;N;

ð2Þ

where γ represents the regularization constant, e = [e1; . . .; eN] is the error vector with ei the

error related to the ith observation. By taking the Lagrangian and solving for the Karush-

Kuhn-Tucker conditions for optimality, the solution is given by:

0 1N
T

1N Ωþ 1

g
I

" #
b
α

� �

¼
0

y

� �

ð3Þ

where y = [y1; . . .; yN], 1N = [1; . . .; 1], Ωij = φ(xi)
T φ(xj) = K(xi, xj) is the ij–th entry of the ker-

nel matrix Ω, K(�, �) is the kernel function, and α = [α1; . . .; αN] are the Lagrange multipliers,

and b is the bias term.

The matrix form of the solution, for the training points, is then given by:

ŷ ¼ Ωα þ b; ð4Þ

with ŷ ¼ ½ŷ1; . . . ; ŷN �, and Ωij = K(xi, xj).

Since the algorithm that is proposed in this paper makes use of projection matrices, it is

important that the data that is projected is centered. This means, that the bias term in the

regression model should be eliminated, as well as the mean value of the nonlinear transforma-

tion of the input regressors should be removed. These modifications lead to the following solu-

tion in matrix form [23]:

ŷ ¼ ΩCα: ð5Þ

where ΩC = MΩM, is the centered kernel matrix, and M ¼ I � 1N1
T
N=N is a centering matrix.

The ij–th entry of the centered kernel matrix is given by ΩCij
¼ ðφðxiÞ � mφÞ

T
ðφðxjÞ � mφÞ.

2 Nonlinear regression decomposition using ObSP

In this section we present the propossed decomposition algorithm, which is a nonlinear exten-

tion to oblique subspace projections (NObSP). NObSP is not a regression method but an algo-

rithm that allows to decompose the output of a regression model, using LS-SVM regression,

into additive components that represent the partial nonlinear contributions of the input

regressors on the output, and their interaction effects. NObSP uses oblique subspace projec-

tions to extract the partial contribution of an input regressor, while nullifying the contribu-

tions from other regressors. We will first introduce the concept of oblique subspace

projections, then we will proposed their extention for nonlinear regression models.

2.1 Oblique subspace projections

Oblique subspace projection (ObSP) is a generalization of orthogonal projectors, where a

given vector is projected onto a target subspace following the direction of a reference subspace

[24]. Oblique subspace projectors can be used in order to decompose a signal into the partial

contributions of some regressors, even when the signal subspaces of the different input regres-

sors are not orthogonal [13, 16]. An algorithm for the use of ObSP in signal decomposition for

linear regression models has been proposed in [13]. Briefly, the algorithm is summarized as

follows. Let’s define V � RN
as the subspace spanned by a matrix A = [Al A(l)], with

Nonlinear oblique subspace projections (NObSP)
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A 2 RN�p
, Al 2 R

N�q
the partition of A that spans the subspace Vl � V, and AðlÞ 2 R

N�ðp� qÞ
the

partition of A that spans the subspace VðlÞ � V, VðlÞ � SpanðAðlÞÞ, such that V ¼ Vl � VðlÞ.
Now, let’s consider V ¼ V1 � V2 � :::� Vd, with� being the direct sum operator, and d rep-

resents the number of signal subspaces embedded in A satisfying d� p; then the oblique pro-

jector onto Vl along VðlÞ ¼ V1 � :::� Vl� 1 � V lþ1:::� Vd, denoted by Pl/(l), is given by:

Pl=ðlÞ ¼ AlðA
T
l QðlÞAlÞ

yAT
l QðlÞ; ð6Þ

where † represents the generalized inverse, and Q(l) is the orthogonal projector onto Null

ðAT
ðlÞÞ � V?

ðlÞ, which is computed as:

QðlÞ ¼ IN � PðlÞ; ð7Þ

where PðlÞ ¼ AðlÞðA
T
ðlÞAðlÞÞ

yAT
ðlÞ is the orthogonal projector onto VðlÞ [24].

2.2 Nonlinear oblique subspace projection (NObSP)

Let’s consider the following nonlinear regression problem:

yðxÞ ¼
Xd

l¼1

flðx
ðlÞÞ þ

Xd

l¼1

Xd

h>l

flhðx
ðlÞ; xðhÞÞ þ GðxÞ þ e; ð8Þ

where e is the error term, fl(x(l)) represents the partial contribution, linear and non-linear, of

the lth input variable x(l) on the output, flh(x(l), x(h)) represents the partial contribution of the

interaction between the variables x(l) and x(h) on the output, the term G(x) represents the

partial contribution of all the other higher order interactions between the input variables, with

x = [x(1); . . .; x(d)], and d the number of input variables.

From Eq (8), it can be seen that the partial contributions of each input variable, their second

order interactions, and the higher order interactions can be found if an appropriate projection

matrix can be created. Such projection matrix will span the subspace of the nonlinear transfor-

mation of the (input signal)/(interaction effects) of interest, whilst its null subspace contains

the nonlinear transformation of the other remaining input variables and their interactions.

More especifically, if we define Pi/(i) as the oblique projection matrix onto the subspace

spanned by the nonlinear transformation of the ith input variable, along the direction defined

by the other variables, then by multiplying Eq (8) by this projection matrix, we obtain:

Pi=ðiÞyðxÞ ¼ Pi=ðiÞ

Xd

l¼1

flðx
ðlÞÞ þ Pi=ðiÞ

Xd

l¼1

Xd

h>l

flhðx
ðlÞ; xðhÞÞ þ Pi=ðiÞGðxÞ þ Pi=ðiÞe: ð9Þ

Since the oblique projection matrix nullifies all the nonlinear contributions of the input var-

iables, except the ith input variable, then Eq (9) reduces to:

Pi=ðiÞyðxÞ ¼ yðiÞðxÞ ¼ fiðxðiÞÞ þ eðiÞ; ð10Þ

where fi(x(i)) is the partial contribution of the ith input variable on the output, and e(i) is an

error term obtained by multiplying the original error by the projection matrix.

In the case of functional ANOVA models, it is assumed that these subspaces are orthogonal

[6, 11]. This leads to orthogonal projection matrices. However, there is no evidence to support

this claim, especially when using kernel regression models. In such cases, an oblique projector

will be more appropriate. The problem now lies in finding a basis for the signals subspaces that

are required to construct the oblique projector operator.

Nonlinear oblique subspace projections (NObSP)
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In a kernel regression framework, the output of the regression model can be expressed as a

linear combination of kernel evaluations, i.e. ŷðxÞ ¼
PN

i¼1
aiKðx; xiÞ þ b. Therefore, the kernel

matrix spans the column space of the nonlinear transformation of the input variables. In order

to see this, lets consider the nonlinear regression problem for the centered data in matrix

form, y = ΦC ω + e, where ΦC = [φT(x1) − μφ; . . .; φT(xN) − μφ], to solve that problem using

least squares, the solution leads to the hat, or projection, matrix PC = ΦC(ΦC
T ΦC)−1 ΦC

T,

thereby ŷ ¼ Py. The projection matrix can also be written using the centered kernel matrix

ΩC, in this case the projection matrix has the form PC = ΩC(ΩC
T ΩC)−1 ΩC

T, To prove this we

can replace in the previous equation ΩC ¼ ΦCΦ
T
C, which after some algebraic manipulation

leads to PC = ΦC(ΦC
T ΦC)−1 ΦC

T. Taking this into account, if we consider the matrix ΦCl rep-

resenting the centered nonlinear transformation of the lth input regressor and defined as

ΦC l ¼ ½φð0; . . . ; xðlÞ1 ; . . . ; 0Þ
T
� mφ; . . . ; φð0; . . . ; xðlÞN ; . . . ; 0Þ

T
� mφ�, then, the projection matrix

onto its subspace is given by PCl = ΦCl(ΦCl
TΦCl)

−1ΦCl
T, since the nonlinear transformation is

not known, we cannot directly compute PCl but we propose to use kernel evaluations as

follows:

Proposition 1. Let y = ΦC w + e, whereΦC = [φ(x1)T − μφ; . . .; φ(xN)T − μφ] is a matrix con-
taining the centered nonlinear transformation of the regressor variables xi ¼ ½x

ð1Þ

i ; . . . ; xðdÞi �.

Using LS-SVM the solution to this problem is given by ŷ ¼ ΩCα, withΩ(i, j) = K(xi, xj), K(�, �)

the kernel function, ΩC = MΩM, and M ¼ I � 1N1
T
N=N. Then, the kernel matrixΩCl, formed

using K(x(l), x), with x(l) = [0; . . .; x(l); . . .; 0] a vector containing only the lth element of the vector
x for l 2 {1, . . ., d}, spans the subspace of the centered nonlinear transformation of the lth input
regressor.

Proof. Consider ΦCl ¼ ½φð0; . . . ; xðlÞ1 ; . . . ; 0Þ
T
� mφ; . . . ; φð0; . . . ; xðlÞN ; . . . ; 0Þ

T
� mφ� with

PC l ¼ ΦC lðΦC l
TΦC lÞ

� 1ΦC l
T the projection matrix onto the subspace defined by the centered

nonlinear transformation of the lth regressor variable. Defining ΩC l ¼ ΦC lΦC
T , and using

PC l ¼ ΩC lðΩC
T
l ΩC lÞ

� 1ΩC
T
l , this leads to PC l ¼ ΦC lΦC

TðΦCΦC
T
l ΦC lΦC

TÞ
� 1ΦCΦC

T
l . Using the

SVD decomposition of the matrix ΦC, ΦC = UΛVT, and replacing in the definition of PC l we

obtain PC l ¼ ΦC lðUΛV
TÞ

T
ðUΛVTΦC

T
l ΦC lðUΛV

TÞ
T
Þ
� 1
ðUΛVTÞΦC l, which after some algebraic

manipulations leads to PC l ¼ ΦC lðVΛU
TÞðVΛUTÞ

� 1
ðΦC

T
l ΦC lÞ

� 1
ðUΛVTÞ

� 1
ðUΛVTÞΦC l, and

reducing we finally obtain PC l ¼ ΦC lðΦC l
TΦC lÞ

� 1ΦC l
T .

In the same way we can use K(x([l]), x), with x([l]) = [x(1); . . .; x(l−1); 0; x(l+1); . . .; x(d)] to form

the kernel matrix ΩC(l) which can be used as a basis for the subspace spanned by the centered

nonlinear transformation of all the other input regressor variables, excluding the l–th input

regressor, as well as their interaction effects. It is important to notice that the subspace spanned

by the nonlinear transformation of more than one input regressor will contain their interac-

tion effects as well as their individual contribution, or main effect. Hence, if the interest is to

find solely the interaction effect between 2 variables on the output, their individual contribu-

tions should be found first and subtracted. For instance, if we define Pij/(ij) as the oblique pro-

jection matrix onto the subspace spanned by the nonlinear transformations of the ith and jth

input variables, along the direction defined by the other variables, then by multiplying Eq (8)

by this projection matrix, we obtain:

Pij=ðijÞyðxÞ ¼ Pij=ðijÞ

Xd

l¼1

flðx
ðlÞÞ þ Pij=ðijÞ

Xd

l¼1

Xd

h>l

flhðx
ðlÞ; xðhÞÞ þ Pij=ðijÞGðxÞ þ Pij=ðijÞe: ð11Þ

Nonlinear oblique subspace projections (NObSP)
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which reduces to:

Pij=ðijÞyðxÞ ¼ yðijÞðxÞ ¼ fiðxðiÞÞ þ fjðxðjÞÞ þ þfijðxðijÞÞ þ eðijÞ; ð12Þ

where fi(x(i)) and fj(x(j)) are the partial contribution of the ith and jth input variables on the out-

put, fij(x(ij)) is the nonlinear contribution of the interacion effect of the ith and jth input vari-

able, and e(ij) is an error term obtained by multiplying the original error by the projection

matrix. Therefore, in order to obtain only the interaction effect, the individual partial contri-

butions should be subtracted.

Once the basis for the main contributions, and interaction effects, of given input regressors

have been found, the output of an LS-SVM regression model can be decomposed into additive

components using Algorithm I.

2.3 Out-of-sample extension

In Algorithm I we presented a way to derive the main and interaction effect contributions

using training data. This idea can be extended to data that has not been seen during training,

however some considerations need to be taken into account. Since the algorithm that is pre-

sented in this paper is based on projection matrices, it is important to notice that a proper set

of basis vectors are needed in order to construct reliable projection matrices. For instance, if

while training the algorithm, it is found that the dimensions of the subspace where the data lies

is Nd, then at least Nd basis vectors are needed to construct a proper projection matrix. In addi-

tion, the number of data points used to evaluate the model will define the size of the kernel

matrix, which defines the maximum number of basis vectors that can be obtained from it.

Therefore, in order to construct projection matrices for data-points outside the training set,

and considering Nd as the dimension of the subspace of interest, then at least Nd new data

points are needed in order to properly decompose the output into the nonlinear partial contri-

butions. In practice, while decomposing the training data, the dimension of each one of the

subspaces that represent the nonlinear transformation of the input variables, as well as the

interaction effects, should be computed. The maximum dimension of such subspaces can be

taken as the minimum number of evaluation points that are needed in order to produce a

proper decomposition. The steps needed to evaluate NObSP using new data points are sum-

marized in the Algorithm II.

Algorithm I. Nonlinear oblique subspace projections (NObSP)

Input: regressor matrix X 2 RN�d, output vector y 2 RN, estimated output
vector ŷ 2 RN.
Output: ŷðlÞ 2 RN, and yðlÞ 2 RN main effect and interaction effect contri-
butions from given input regressors using the estimated output from
the model and the real measured output, respectively.
1. Normalize the input regressors.
2. Train an LS-SVM regression model using the training input/output
data {X, y}.
3. Compute the kernel matrices Ωl and Ω(l), representing the subspaces
spanned by the regressor(s) of interest, as explained in Proposition
1.
4. Center the Kernel matrices as follows: ΩC = MΩM, where M = I − 1N
1N

T / N is a centering matrix, with I the identity matrix, 1N a column
vector of ones, and N the number of training data points.
5. Compute the oblique projector as in Eq (6) using the centered Ωl and
Ω(l), Pl=ðlÞ ¼ ΩlðΩ

T
l QðlÞΩlÞ

yΩT
l QðlÞ, with QðlÞ ¼ IN � ΩðlÞðΩ

T
ðlÞΩðlÞÞ

yΩT
ðlÞ.

6. Compute the corresponding partial contribution to the output as
ŷðlÞ ¼ Pl=ðlÞŷ, or y(l) = Pl/(l)y with l = 1, . . ., d.

Nonlinear oblique subspace projections (NObSP)
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The output from both algorithms can be used in order to determine which input regressor

(s) and/or interaction effects are of importance in the output of the model, by computing the

percentage of power that each one of these contributions provide to the output.

3 Applications

In this section we present results from the proposed algorithm using 2 simulation examples, as

well as a real life example using data from the Concrete Compressive Strength Data Set in the

UCI machine learning repository [25]. In the first toy example we compare NObSP with the

results given by COSSO, using the same example proposed in [11], where only main effects are

included. Additionally, we evaluate the performance of NObSP to select relevant components,

and we test the effect of the kernel selection in the decomposition. In the second example, we

create an artificial dataset that includes interaction effects, we test for the robustness of the pro-

jections and the regression model by means of bootstrapping, we present the results in terms

of their mean solution and 95% confidence intervals, in this example we also evaluated the per-

formance of the model to unseen test data. In the third example we demonstrate the potential

use of NObSP in a real life example.

Algorithm II. Out-of-Sample Extension for NObSP

Input: regressor matrix with training samples Xtrain 2 R
Ntrain�d, output vec-

tor for training data ytrain 2 R
Ntrain, regressor matrix with test samples

Xtest 2 R
Ntest�d, with Ntest ⩾ Nd, with Nd the largest dimension of the sub-

spaces representing the nonlinear transformation of the input data.
Output: partial contribution and interaction effects from given input
regressors in the test set ŷðlÞtest 2 RNtest.
1. Normalize the input regressors, Xtrain and Xtest.
2. Train an LS-SVM regression model using the training input/output
data {Xtrain, ytrain}.
3. Compute the kernel matrices for the test set ΩðtestÞl and ΩðtestÞðlÞ , by evalu-
ating the kernel function using samples from the test set, with
ΩðtestÞl ði; jÞ ¼ KðxðlÞtestðiÞ; xtrainðjÞÞ the ij–th element of the kernel matrix, where
xðlÞtestðiÞ 2 R1�d is the i–th row of Xtest where all elements are zero except
the l–th component, and xtrainðjÞ 2 R

1�d is the j–th row of Xtrain. These
matrices will represent the subspaces spanned by the regressor(s) of
interest, as explained in Proposition 1.
4. Evaluate the output of the model, ŷðtestÞ using Eq (5).
5. Center the Kernel matrices as follows:
ΩðtestÞC ¼ ΩðtestÞ � M1Ω

ðtestÞ
� ΩðtestÞM2 þM1Ω

ðtestÞM2, where 1Ntest
is a column vector of

ones, M1 ¼ 1Ntest
1T

Ntest
=Ntest 2 R

Ntest�Ntest is a centering matrix, M2 ¼ 1Ntrain
1T

Ntrain
=Ntrain 2

RNtrain�Ntrain is a centering matrix, Ntrain is the number of training samples
used, and Ntest is the number of test samples used.
6. Compute the oblique projector as in Algorithm I, using the centered
ΩðtestÞl and ΩðtestÞðlÞ .
7. Compute the corresponding partial contribution in the output as
ŷðlÞtest ¼ Pl=ðlÞŷðtestÞ, with l = 1, . . ., d.

3.1 Simulation study: Toy example I

In order to compare the performance of NObSP with COSSO, we use the first example pre-

sented in [11], where an additive model in R10
is considered. The regression function is

defined by f(x) = 5g1(x(1)) + 3g2(x(2)) + 4g3(x(3)) + 6g4(x(4)), where: g1(x) = x, g2(x) = (2 x − 1)2,

g3ðxÞ ¼
sin ð2pxÞ

2� 2 sin ð2pxÞ, and g4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin2(2πx) + 0.4 cos3(2πx) +
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0.5 sin3(2πx). The model contains 4 main effects, no interaction effects, and no influence from

the inputs x(5) until x(10). We generated the input data, x, as uniformly distributed random

numbers in [0, 1]. Additionally, we added noise such that the signal-to-noise ratio is 3: 1 as in

[11]. In contrast with the original example, we also imposed a correlation between the input

variables of 0.8 in order to increase the complexity of the problem. To impose this correlation

we used another uniformly distributed variable u, and the following formula xðiÞn ¼
xðiÞþtu

1þt ,

where t ¼
ffiffiffiffiffiffi
r

1� r

q
and ρ is the desired correlation value that will be impossed on the variables.

Since we are using uniformly distributed data, due to the central limite theorem, the resulting

input variables will be closer to a normal distribution and will not be uniformly distributed.

We use COSSO in 2 ways, first to find only the main effects in the regression, i.e. decompose

the output only in additive terms of the partial nonlinear contributions of the input regressors,

we will refer to this as COSSO-I. Second, we also computed the output using COSSO for the

second order interactions, retrieving not only the main effects but also the interaction effect, to

compare if both approaches for COSSO converge to the same result. We refer to this as

COSSO-II.

The results for the decomposition are shown in Fig 1. The results from NObSP are pre-

sented in a solid gray line, COSSO-I in a black dashed line and COSSO II in a black dotted

line. The true output is shown as a black solid line. As can be seen in the Fig, the proposed

algorithm is able to approximately retrieve the functional form for the contribution of each

input regressor variable, with a performance similar to the one provided by COSSO. It is also

possible to observe that the output provided by COSSO-I and COSSO-II are not the same. In

addition, in contrast with COSSO, NObSP is not able to retrieve a response equal to zero

for the contribution of the input variables that are not included in the final model. This is

Fig 1. Results from the decomposition of the output for the toy example I using NObSP (gray solid line), COSSO I dashed

black line, and COSSO II in a black dotted line. The solid black line represents the true component.

https://doi.org/10.1371/journal.pone.0217967.g001
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expected, since the proposed algorithm does not include any sparsity or feature selection crite-

ria, instead it is solely based on the output of an existing regression model. However, the mag-

nitude of the contribution of those regressors to the output is smaller than the contribution of

the variables that are effectively included in the original model.

In Fig 2, the strength of the nonlinear contributions of the input variables and the interac-

tion effects are shown. To compute this strength, first we computed the total power of the

decomposed signal as the sum of the root mean squared values from all the components

obtained in the decomposition model. Once this is obtained, the strength of each component

is computed as the ratio between its root mean squared value and the total power of the

decomposed signal. To visualize the magnitude of the main nonlinear contributions and the

interaction effects, we present these values in a matrix form. In this matrix the diagonal repre-

sents the strength of the contributions for each input variable, and the upper triangular ele-

ments represent the strength of the contribution for second order interactions for the

corresponding input regressors, which are indicated in the rows and columns of the matrix.

The lower triangular elements are not taken into account since they represent redundant

information. Finally, the fields in the matrix that belong to the contributions with a larger

influence on the output are colored in black.

From Fig 2 we can observed that COSSO-I only the diagonal produces elements different

from 0, since it only retrieves main effects, while COSSO-II and NObSP produce a total of 55

components. It can be seen that the results from NObSP indicate that the first 4 components

have a higher contribution to the output than the other components, with a contribution

between [4.13%—18.20%] of the total power, compared to [12.48%—43.01%] produced by

COSSO-II. COSSO-I also produces components with a larger magnitude in the first 4 compo-

nents with a root mean square value of [12.51%—44.47%] and 0 in the other components. In

contrast with NObSP, COSSO-I and COSSO-II produce components with a contribution

equal to zero, due to its sparsity properties. Since NObSP does not include sparsity, most of its

components contribute to the output. This results in lower strength values for the components

with a higher influence in the output for NObSP. However, by selecting an appropriate thresh-

old, these components can be selected. For this example the threshold was set to 4% by visual

inspection of the components.

In Fig 3 the results from the decomposition using NObSP with different kernels are shown.

It can be seen that the linear kernel only produces the linear approximation of the nonlinear

contributions of the input regressors on the output. Additionally, the contributions of the

interaction effects, in the linear model, are equal to zero, which is expected since the interac-

tion effects in linear models are given by a sum of the contribution of each input variable on

Fig 2. Percentage of the contributions of the input regressors, and their interaction effects, on the output. The components with

a larger contribution in the final model are indicated by a black square.

https://doi.org/10.1371/journal.pone.0217967.g002
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the output. Therefore, by identifying such contributions and subtracting from the interaction

effect the resulting component should be equal to zero. The performance of the polynomial

kernel and the RBF kernel is quite similar, in both cases the decompositions were able to

approximate the desired functional forms.

In Table 1 the root mean square errors for the regression, and the estimation of the func-

tional forms using COSSO-I, COSSO-II and NObSP are shown. The simulations were per-

formed 100 times and the values are presented as median [min-max]. It can be seen that

COSSO-I and COSSO-II in general produced a lower error in the estimation of the overall

function, with COSSO-I producing the lowest error. However, when estimating the functional

forms of the main effects, NObSP, using the RBF kernel, outperforms the results from COSSO.

3.2 Simulation study: Toy example II

For the second toy example, we use the following additive model inR3:

y ¼ sin ð2px1Þ þ 1:4ex2 þ cos ð4pðx1 � x2ÞÞ þ Z; ð13Þ

Fig 3. Output of NObSP using different kernels, in black dashed line for the linear kernel, in black dotted line for the

polynomial kernel, and in gray solid line for the RBF kernel. The black solid line represents the true contribution.

https://doi.org/10.1371/journal.pone.0217967.g003

Table 1. Root mean square error for regression models and the estimation of the true functional forms using NObSP with three different kernels, COSSO-I, and

COSSO-II. Values are expressed as median [min-max].

Fx Fx1
Fx2

Fx3
Fx4

Fx5
Fx6

Fx7
Fx8

Fx9
Fx10

COSSO-I 1.40[1.33-

1.47]

0.25[0.15-

0.55]

0.53[0.41-

0.78]

0.34[0.17-

0.43]

1.30[1.08-

1.40]

0[0-0] 0[0-0.91] 0[0-0.54] 0[0-0.40] 0[0-0.20] 0[0-0]

COSSO-II 1.55[1.39-

1.59]

0.41[0.15-

1.05]

0.54[0.51-

0.63]

0.67[0.27-

0.86]

1.49[1.26-

1.57]

0[0-0] 0[0-1.02] 0[0-0.52] 0[0-0.71] 0[0-1.04] 0[0-0]

NObSPLinear 3.30[3.24-

3.46]

0.39[0.16-

0.47]

0.56[0.54-

0.72]

0.97[0.91-

1.00]

2.46[2.44-

2.48]

0.31[0.15-

0.50]

0.55[0.34-

0.68]

0.20[0.04-

0.25]

0.28[0.16-

0.46]

0.02[0-

0.19]

0.03[0-

0.26]

NObSPPoly 2.78[2.65-

2.78]

0.18[0.11-

0.22]

0.24[0.16-

0.35]

0.48[0.45-

0.55]

1.27[1.21-

1.29]

0.15[0.07-

0.35]

0.25[0.16-

0.37]

0.20[0.06-

0.26]

0.20[0.08-

0.31]

0.16[0.12-

0.20]

0.26[0.11-

0.48]

NObSPRBF 2.26[2.09-

2.45]

0.16[0.07-

0.28]

0.19[0.12-

0.27]

0.28[0.24-

0.35]

0.86[0.84-

0.88]

0.18[0.13-

0.38]

0.19[0.05-

0.25]

0.14[0.09-

0.34]

0.14[0.05-

0.20]

0.17[0.10-

0.31]

0.16[0.08-

0.33]

https://doi.org/10.1371/journal.pone.0217967.t001
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with, x1, x2, x3 2 [0, 1], and η is a Gaussian noise with a variance such that the signal-to-noise

ratio on the output variable is equal to 4db. No contribution from x3 was included. In addition,

a correlation of 0.8 was imposed in the input signals.

We computed 400 realizations of the model. From this data, we extracted 1000 different

training datasets using random sampling with replacement. For each generated dataset a

model using LS-SVM was computed and tuned using 10-fold cross-validation. The partial con-

tributions of the input variables and their second order interactions were calculated using

NObSP and COSSO-II [11]. From the output of the 1000 randomizations, the mean and the

95% confidence intervals were computed. Additionally, we computed the output of the model

for unseen data using Algorithm II. For this, we first found the rank for the different kernels

obtained using Algorithm I, the maximum rank obtained was 45. Based on that rank we run

simulations using a test set size from 1 data point up to 45 × 5 data points. For each test set size

we generate 100 random sets. In order to identify the convergence of the error in the decom-

position with respect to the test set size, we plotted the errors in terms of their mean and 95%

confidence interval.

In Fig 4 the results from NObSP using Algorithm I are shown. The gray area in the Fig rep-

resents the 95% confidence intervals, the dotted black line represents the mean value for the

regression, while the black solid line represents the true component used as reference. This

same convention will be used for the rest of the Fig. It is important to notice that the mean

Fig 4. Output from NObSP, the black solid line represents the true component, the dotted black line represents the mean for the estimations using NObSP, and the

gray area represents the 95% confidence interval obtaining using bootstrap.

https://doi.org/10.1371/journal.pone.0217967.g004
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values plotted in the Figs do not represent the output of one decomposition of the regression

models, but just the mean value of the output for that specific input value. This gives the

impression that the models produce noisy estimates, but that is not the case. In the Fig it can

be seen that NObSP is able to approximately retrieve the functional form of the simulated

model. In addition, the contribution from the input x3 is small in amplitude compared to the

other components, indicating that this variable does not contribute largely on the output. The

second-order interactions appear to produce larger confidence intervals, indicated by the gray

area. However, NObSP was still able to retrieve the approximate functional form of the sec-

ond-order interaction between the variables x1 and x2, while producing a small output for the

components that were not present in the original model.

Fig 5 shows the results from the smoothing spline ANOVA models using COSSO-II. It can

be seen that COSSO-II, in this case example, is not able to retrieve the desired functional

forms. But, when looking at the error in the complete regression model the LS-SVM regression

produce a root mean square error of 0.09 [0.02-0.11], while COSSO-II produce an error of

0.04 [0.03-0.05], indicating that COSSO II was able to fit better the model than NObSP. Here it

is important to notice that NObSP is not a regression method, but just an algorithm that allows

to decomposse the results from a regression model, using LS-SVM, into the partial nonlinear

contributions of the input variables on the output, as well as their interaction effects. In con-

trast with NObSP, COSSO is embedded within the cost function of funtional ANOVA models.

Therefore, COSSO migth lead to a better fit than the LS-SVM regression. However, this

Fig 5. Output of the model for the decomposition of the measured output into the main and interaction effect contributions using COSSO-II in smoothing spline

ANOVA models for second-order interactions. The black solid line represents the true component, the dotted black line represents the mean for the estimations using

NObSP, and the gray area represents the 95% confidence interval obtained using bootstrap.

https://doi.org/10.1371/journal.pone.0217967.g005
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example shows that, enventhough the overal fit is worse, NObSP is able to retreive the fun-

tional form of the nonlinear partial contributions of the input variables on the output, while

COSSO fails.

In order to evaluate whether the problem with the estimation was caused by the correla-

tion between the input variables, we repeated the simulation using an input with uncorre-

lated inputs. The results are shown in Fig 6. It can be seen that COSSO-II now is able to

retrieve, approximately, the functional forms for the variables x1 and x2, it also identifies

that x3, as well as some interaction effects, do not have a contribution in the model. But, it

still fails to identify the second-order interaction that was present in the original model. The

output for the LS-SVM model using NObSP for this case is shown in Fig 7. The Fig shows

that in this case NObSP can still retrieve the approximate functional forms, as shown

previously.

Additionally, the output for NObSP using the unseen test set can be seen in Fig 8 using 250

data points. The Fig shows that NObSP is able to retrieve the functional forms of the relation-

ship between the input and the output of the model using new data samples. Furthermore, in

Fig 9 we can see that the errors for the estimation of the functional components decrease as the

size of the test set increases. This error converges around 45 samples, which is the maximum

rank that was needed in order to construct appropriate projection matrices to decompose the

output of the model.

Fig 6. Output of the model for the decomposition using COSSO-II and non-correlated inputs. The black solid line represents the true component, the dotted black line

represents the mean for the estimations using NObSP, and the gray area represents the 95% confidence interval obtaining using bootstrap.

https://doi.org/10.1371/journal.pone.0217967.g006
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3.3 Simulation study II: Concrete compressive strength dataset

In this section we used data from the concrete compressive strength database from the UCI

machine learning repository. We tested the performance of NObSP and compared with COS-

SO-II. In this dataset there are 8 different input variables that are used in order to predict the

strength of the concrete samples. The input variables are: the amount of cement, blast furnace

slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate, and the age of the

cement in days. In total, the dataset contains 1030 samples. More information about the char-

acteristics of the dataset can be found in [25]. For the simulations, we computed 100 realiza-

tions of the regression models, using random sampling with replacement. We express the

output in terms of the mean and 95% confidence intervals.

Fig 10 shows the results from NObSP. The Fig displays not only the decomposition but also

the general performance for the regression model. Based on the magnitude of the responses,

the elements that contribute the most to the strength of the concrete samples are: amount of

cement, furnace slag, ash, and water. Other elements, such as superplasticizer, course and fine

aggregate, do not contribute strongly to the final strength of the concrete sample.

4 Discussion

We have proposed an algorithm to decompose the output of an LS-SVM regression model

into the sum of the partial nonlinear contributions, as well as interaction effects, of the input

Fig 7. Output of the model for the decomposition using NObSP in the LS-SVM regression model with non-correlated inputs. The black solid line represents the true

component, the dotted black line represents the mean for the estimations using NObSP, and the gray area represents the 95% confidence interval obtaining using

bootstrap.

https://doi.org/10.1371/journal.pone.0217967.g007
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Fig 8. Results provided by NObSP using unseen data. The size of the test set was 250 samples. the samples were obtained in the

same way as the training samples were produced. The solid line represents the reference functional forms, while the dots represent

the output of the decomposition scheme.

https://doi.org/10.1371/journal.pone.0217967.g008

Fig 9. Convergence of the error between the real functional form and the estimated output provided by NObSP for different test set sizes. The solid line represents

the median value and the shade area represents the 25 and 75 percentiles of the error. For each test set size 100 random simulations were performed. The red dashed line

indicates the maximum rank obtained for the kernel matrices during training, which in this particular case was 45.

https://doi.org/10.1371/journal.pone.0217967.g009
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regressors. We have demonstrated that the functional form of the relation between the inputs

and the output can be retrieved using oblique subspace projections. We have also shown that

through appropriate kernel evaluations it is possible to find a proper basis for the subspace rep-

resenting the nonlinear transformation of the input regression variables.

In contrast with other methodologies, the proposed algorithm does not require to define a-

priori the model contributions for the decomposition. NObSP starts with a normal LS-SVM

regression model, which solution, in terms of the kernel parameters, is used in order to imple-

ment the decomposition strategy. Other methodologies, such as COSSO, require to define a-

priori whether the user is interested to decompose the output in terms of the main effects, or

also to include second-order interactions. This might lead to different functional forms since

there is no guarantee that both approaches will converge to the same solution. This was dem-

onstrated in section 3.1 where COSSO-I and COSSO-II produced different outputs. In NObSP

this is not a problem since the decomposition scheme does not require to solve an additional

optimization problem.

The basis for the subspace spanned by the nonlinear transformation of the data, which is

computed using kernel evaluations, can be seen as an N–dimensional approximation of the

true subspace, which might be embedded in a much larger space. When using a linear kernel,

it can be seen that the subspaces of the nonlinear transformations, as expected, cannot be prop-

erly constructed, resulting just in linear approximations of the true nonlinear model, as shown

in Fig 3. When using a polynomial kernel, the decomposition scheme performs better than the

linear case, being able to produce a better estimation of the nonlinear influences of the input

Fig 10. Model fitting, presented in the top plot, and estimation of the functional form of the contribution of the input variables in the concrete strength dataset

from the UCI machine learning repository. In the top plot, the black line represents the measured strength of the cement mix, and in gray the estimated value using an

LS-SVM model. For the contributions, the gray area represents the 95% confidence interval, obtained using bootstrap, and the solid black line the mean value of the

contribution.

https://doi.org/10.1371/journal.pone.0217967.g010
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regressors. However, as shown in section 3.1, the best results were obtained using the RBF ker-

nel. This might be explained by the fact that the RBF kernel can be considered as an universal

kernel, which is able to approximate the responses produced by any other kernel by changing

its bandwidth.

In the second toy example, it was shown that NObSP was able to approximately identify the

functional forms for the main effects, and second-order interaction effects on the output, in

both cases when the input variables were correlated and uncorrelated. COSSO-II was only able

to retrieve the main effects when the variables were not correlated. However, COSSO-II was

able to identify more accurately the components that are not part of the original model.

When considering the concrete strength example, it can be seen that the decomposition

scheme using NObSP produces results with small confidence intervals in most of the compo-

nents. More importantly, the results provided seem to agree with the literature, where the

strength of the concrete sample is expected to increase with increasing amounts of cement and

decreasing amount of water, and it increases during the first days [25, 26]. Conversely, NObSP

indicates that by increasing the amount of furnace slag, the strength of the cement increases,

while Yeh et al., have reported the opposite [26]. However, the datasets used in both analyses

are different, which might lead to different decompositions. In addition, it is important to

notice that their analysis is done considering that several variables are kept constant, while in

our case this restriction was not applied.

One of the main drawbacks of NObSP, in contrast with COSSO, is that it does not provide

a closed form for the estimation of the nonlinear contributions and the interaction effects.

However we have shown that it is possible to evaluate the decomposition scheme when a suffi-

cient number of test samples are available. This is due to the fact that the decomposition is

based on the projection of the observed data onto the respective subspace. Therefore, it is

important that an adequate number of basis vectors is used in order to construct proper pro-

jection matrices. We have shown that the number of data points that are required in order to

construct this projector is equal to the maximum rank of the kernel matrices that are created

during training. In case that a closed form is required, one solution can be to introduce a mul-

tiple kernel learning problem similarly to the one proposed in [27]. This is out of the scope of

this paper and will be addressed in future studies.

Additionally, there are some numerical issues that should be considered. Since kernel evalu-

ations are needed to create a basis for the subspace spanned by the nonlinear transformation

of a given variable, when using too many input regressors, it is possible that the computation

of the Euclidean distances produce values close to machine precision. This is caused by the fact

that in such cases several variables are set to 0, leaving only the variable of interest intact. In

such cases, the results provided by NObSP are not reliable. Another problem that may arise is

when the partial contribution of one variable on the output is much samaller than the contri-

butions from other input variables or interaction effects. This will cause that this nonlinear

contribution will not be found during the decomposition, since it will be absorved by the other

components. In order to mitigate the impact of these issues we recommend to perform an ini-

tial input selection. In this way NObSP will be applied in a reduced set of input variables, this

will not only select variables that might have a larger impact on the output, but will also reduce

the risk of having numerical issues. Additionally, we also recommnd to normalize the input

regressors to guarantee that the estimation of the distances is not biased by the magnitude of

only one input variable.

We also performed simulations including a third order interaction component. The results

from these simulation show that eventhoug NObSP was able to still retrieve the main effects

and second order interaction effects, it failed to retrieve the third order interaction component.

It produced results that were too noisy. This might be caused by the accumulation of errors
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when decomposing the target signal. It was not possible to compare the results from this simu-

lation with other methods, since COSSO can only retrieve up to second oder interaction

effects.

In summary, the advantages and disadvantages of NObSP and COSSO can be summarized

as follows:

• NObSP does not require the define a priori the kind of relations of interest between the

input regressors and the output. COSSO does require to define if the user is interested in the

main effects or also in the interaction effects.

• NObSP converge to the solution whether the user is interested in finding the main and inter-

action effects. COSSO produces different results.

• NObSP is able to retrieve the functional forms even in the presence of correlated input

regressors.

• COSSO produce models that are sparse. NObSP does not include sparsity in its definition.

• COSSO is able to retrieve close forms for the evaluation of new samples. NObSP, requires to

construct projection matrices which require the evaluation of a minimum amount of points

to produce a proper output.

• In contrast with COSSO, NObSP suffers of numerical issues due to the evaluation of kernel

functions with vectors that contain a considerable amount of zeros.

NObSP can also be extended to the analysis of dynamical systems. For instance, NObSP

can be introduced naturally for the nonlinear identification of dynamical systems using sub-

space identification techniques such as the one proposed in [28]. In the actual formulation, the

relation between the input variables and the output in the regression model is considered

static. However, by using as input variables a Hankel expansion, or any other expansion, of the

input regressors, it is possible to consider a dynamic nonlinear model, introducing this frame-

work in the field of system identification.

Finally, it is interesting to notice that NObSP relies only on the tuning of a kernel in order

to decompose the output in the partial nonlinear contributions of the input and the interaction

effects. This provides insights about the geometry of the regression models using kernels, by

linking the space where the original data is embedded and the subspaces generated by the non-

linear transformation of the data. This also indicates that this methodology is not limited to

the use in LS-SVM model, but it can be adapted to any kind of kernel-based regression models,

where the output can be represented as a linear combination of kernel evaluations, like in

equation Eq (4). Such models include kernel principal component regression [29, 30], kernel

partial least squares [31], and kernel ridge regression [32].

5 Conclusions

In this manuscript we proposed a decomposition scheme using oblique subspace projections,

called NObSP, which is able to retrieve relevant information about the input variables and

their relationship with the output in an LS-SVM regression model, facilitating its interpreta-

tion. The performance of the proposed model was demonstrated using 2 different toy exam-

ples as well as a practical example from a public database. This methodology has a huge

potential in many fields, including biomedical applications. For instance, it can be used for the

study of the interactions between different physiological signals, providing extra information

for the understanding of some underlying regulatory mechanisms, and supporting clinical

diagnosis and treatment.
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