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Background: Adjuvant radiotherapy (RT) is one of the most commonly used treatments
for de novo high-grade meningiomas (HGMs) after surgery, but genetic determinants of
clinical benefit are poorly characterized.

Objective: We describe efforts to integrate clinical genomics to discover predictive
biomarkers that would inform adjuvant treatment decisions in de novo HGMs.

Methods: We undertook a retrospective analysis of 37 patients with de novo HGMs
following RT. Clinical hybrid capture-based sequencing assay covering 184 genes was
performed in all cases. Associations between tumor clinical/genomic characteristics and
RT response were assessed. Overall survival (OS) and progression-free survival (PFS)
curves were plotted using the Kaplan–Meier method.

Results: Among the 172 HGMs from a single institution, 42 cases (37 WHO grade 2
meningiomas and five WHO grade 3 meningiomas) were identified as de novo HGMs
following RT. Only TERT mutations [62.5% C228T; 25% C250T; 12.5% copy number
amplification (CN amp.)] were significantly associated with tumor progression after
postoperative RT (adjusted p = 0.003). Potential different somatic interactions between
TERT and other tested genes were not identified. Furthermore, TERT alterations (TERT-alt)
were the predictor of tumor progression (Fisher’s exact tests, p = 0.003) and were
associated with decreased PFS (log-rank test, p = 0.0114) in de novo HGMs after RT.

Conclusion: Our findings suggest that TERT-alt is associated with tumor progression
and poor outcome of newly diagnosed HGM patients after postoperative RT.
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INTRODUCTION

Meningiomas are the most frequent tumors of the central nervous
system and are generally benign (1, 2). The World Health
Organization (WHO) defines three grades predictive of the risk
of recurrence (3). High-grade meningiomas (HGMs) (WHO grades
2–3) are rare but aggressive tumors with considerably poorer
prognosis than WHO grade 1 meningiomas (4, 5). The 5-year
progression-free survival (PFS-5) and overall survival (OS) rate for
HGM patients are 8%–68% and 35%–91%, respectively (4–8).

Patients with WHO grade 1 meningiomas are traditionally
managed in follow-up with surveillance imaging (9). However, a
standardized treatment approach to HGMs after resection has
not been established (4). The benefit to survival outcomes of
HGMs with adjuvant radiotherapy (RT) post-surgical resection
remains unclear. Retrospective series on adjuvant RT after gross
total resection led to differing results (4, 10, 11).

Meningiomas have a diverse genetic background that varies
with biologic behavior (12). Alterations in the tumor suppressor
gene NF2 were the first discovered genetic etiology of
meningiomas (13, 14). In NF2 wild-type meningiomas,
mutations in TRAF7, KLF4, AKT1, and SMO were noted (15–
17). In addition, several mutations have been described with
potential prognostic implications in HGMs (12, 14, 18). Data
published recently have also shown that activating TERT promoter
mutations, frequent inactivation of BAP1, deletions of CDKN2A/
B, and mutations in DMD are frequent in meningiomas with
malignant histological progression (18–21). These data suggest
that convergent gene-expression programs may underlie HGMs,
which could be leveraged to develop prognostic biomarkers.

Our previous work found that patients with de novo
anaplastic meningiomas benefit from adjuvant RT after surgery
(5, 22). However, the molecular factors associated with RT
efficacy in de novo HGMs are largely unknown. In the present
study, we describe efforts to integrate clinical genomics of 37
cases from 173 HGMs to address this issue.
METHODS

Patient Selection
Patients were identified for study through a review of the clinical
records of the Department of Neurosurgery, Huashan Hospital
of Fudan University, Shanghai, China. A total of 172 HGMs
(Supplementary Table S1) were included following study
approval by the Human Subjects Institutional Review Board at
Huashan Hospital, Fudan University (KY-2017-09). Clinical
characteristics including age, gender, tumor location, extent of
surgical resection, and outcome data were collected. In general,
adjuvant radiation was recommended to both atypical and
anaplastic meningioma patients, regardless of gross total
resection (GTR; Simpson grades I–III) or subtotal resection
(STR; Simpson grades IV–V). And the final decision was made
based on the negotiation with the relatives of patients. The details
of postoperative RT were described in our previous work (5).
Tumor pathological subtypes were reconfirmed by at least two
Frontiers in Oncology | www.frontiersin.org 2
experienced neuropathologists. Follow-up was conducted
routinely according to the guidelines of Huashan Neurosurgical
Center. Written informed consent was obtained from all patients
involved in our study.

A total of 172 patients with a confirmed diagnosis of HGMwho
met inclusion criteria (141 WHO grade 2 meningiomas and
31 WHO grade 3 meningiomas; Supplementary Table S1). Out
of 172 cases, 87 cases received RT after surgery. Among the
87 patients, 42 (48.3%) were de novo meningiomas, while the
remaining 45 patients presented with recurrent meningioma
following prior surgical resection. And finally, 37 de novo
meningioma samples with adequate quality of DNA concentration
were included for further next-generation sequencing.

Next-Generation Sequencing
Tumor genotyping was performed on formalin-fixed paraffin-
embedded (FFPE) tumor tissue by next-generation sequencing
(NGS) covering 184 genes, including common pathological
relevant genes of meningiomas (Supplementary Table S2)
(13–21, 23). Five DNA samples were excluded for sequencing
due to inadequate quality of concentration. High-throughput
sequencing was performed on Illumina miniseq platform by
KuoRan Biomedical Technology as previously described
(Supplementary Material) (24).

Sanger Sequencing
The TERT promoter mutations were evaluated using Sanger
sequencing. Genomic DNA was obtained from FFPE using the
HiPure FFPE DNA Kit (Magen, D3126-03) following
polymerase chain reaction-based amplification of the target
region (forward primer: GGATTCGCGGGC ACAGAC;
reverse primer: CAGCGCTGCCTGAAA CTC; details on PCR
conditions are available upon request).

Statistical Tests
The specific details of statistical tests are included in the figure
legends. A two-tailed Fisher’s exact test was used to calculate
statistical significance between different groups using a c2 2 × 2
table. Categorical variables were compared with the Fisher’s
exact tests, and continuous variables with the independent-
samples Student’s t-test (data with normal distribution) or
Mann–Whitney U-test (data with skewed distribution).
Continuous data were expressed as the mean ± standard
deviation (SD). Overall survival (OS) and progression-free
survival (PFS) curves were plotted using the Kaplan–Meier
method. Statistical analysis was performed using Statistical
Package for Social Sciences (SPSS, Version 20.0, Chicago, IL,
USA). Data were considered to be significant when p < 0.05.
RESULTS

Prevalence of Somatic Alterations in 37
De Novo High-Grade Meningiomas
We identified 172 patients with a confirmed diagnosis of HGM
who met inclusion criteria (141 WHO grade 2 meningiomas and
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31 WHO grade 3 meningiomas; Supplementary Table S1). Out
of 172 cases, 87 cases received RT after surgery, including
external beam radiation therapy (EBRT), stereotactic
radiosurgery (SRS), and cyber knife (CK). Among the 87
patients, 42 (48.3%) were de novo meningiomas while the
remaining 45 patients presented with recurrent meningioma
following prior surgical resection. Five of the 42 (11.9%)
meningiomas were excluded for sequencing due to inadequate
quality of DNA concentration. Thus, tumor genotyping covering
184 genes was performed on the 37 de novo meningioma cases
(Supplementary Tables S2, S3). In total of the 37 cases, 23 males
(62%) and 14 females (38%) with a median age of 45 years
(range: 34–73) harboring 31 atypical (83.8%), five anaplastic
(13.5%), and one atypical/chordoid coexisting (2.7%)
meningiomas were included. Tumors were located at the
convexity (n = 17, 45.9%), the falx/parasagittal (n = 13, 35.1%),
the skull base (n = 5, 13.5%), or in other locations (n = 2, 5.5%).
Among these patients, 28 (75.7%) were treated with EBRT, six
(16.2%) were treated with SRS, and three cases were treated with
CK (8.1%) (Figure 1).

In order to identify tumor mutations associated with efficacy
of postoperative RT, we determined the association between
recurrent mutations and tumor progression in the cohort of 37
patients (Figure 1). Of the 37 de novo HGMs following RT, 19
cases (51.4%) had tumor progression. Progression individuals
was defined as tumor regrowth within the radiation field based
on the criterion of Response Assessment in Neuro-Oncology
Working Group (RANO) radiologic criteria for meningiomas
Frontiers in Oncology | www.frontiersin.org 3
(25). Part of the genomic mutational landscape of 37 patients
with de novo meningioma is displayed in Figure 2. Nine
mutations met our predetermined recurrence frequency
threshold of >20% (Figure 2 and Supplementary Table S2).
Consistent with previous studies, high mutational rates of NF2
(n = 22; 59%) were discovered in this cohort. Additional
common pathological relevant genes of meningiomas, including
AKT1 (n = 3; 8%), CDKN2A (n = 2; 5%), SMO (n = 0; 0%), SUFU
(n = 0; 0%),POLR2A (n = 6; 16%),TRAF7 (n = 1; 3%), and SMARCB1
(n = 2; 5%), were observed as well (Supplementary Table S2). Besides,
the most frequently altered genes including ATRX (n = 13; 35%),
ARID1A (n = 11; 30%),ATM (n = 11; 30%),NF1 (n = 11; 30%),ROS1
(n = 10; 27%),KDM6A (n = 9; 24%), FAT1 (n = 8; 22%), andTERT (n
= 8; 22%) were observed (Figure 2).

TERT Mutations Predict Tumor
Progression of De Novo High-Grade
Meningiomas Following Radiotherapy
Strikingly, only TERT mutations were significantly associated
with tumor progression (n = 8, adjusted p = 0.031), and all these
mutations were present in tumors that progressed after RT
(Figure 3A). Of the TERT mutant cases, 87.5% (7/8) presented
with TERT promoter mutations (62.5% C228T variant and 25%
C250T variant; Supplementary Figure S1), and 12.5% (1/8)
harbored copy number amplification (CN amp.). As many tumor
driver genes are co-occurring or show strong exclusiveness in
their mutation pattern, we next explored the potential different
somatic interactions in the cohort. None of the gene mutations
FIGURE 1 | Study design.
October 2021 | Volume 11 | Article 747592
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presents co-occurring or mutually exclusive in HGM cases
(Supplementary Figure S2). Thus, TERT mutations appear to
be the dominant cause of tumor progression among mutations in
this cohort. Furthermore, we found that TERT mutation status
Frontiers in Oncology | www.frontiersin.org 4
(p = 0.003), as well as extent of resection (EOR) (p < 0.001), was
significantly associated with tumor progression by Fisher’s exact
tests (Table 1). Neither tumor location (p = 1.00) nor WHO
grade (p = 1.00) predicted tumor progression after postoperative
FIGURE 2 | Recurrent mutations in de novo high-grade meningioma (HGM) patients with and without progression after adjuvant radiotherapy (RT). Top 9 genes
with most frequent mutations are depicted. Each column corresponds to a single patient. The colors of bars are indicative of the type of mutation, with gray
indicating wild type. Barplot at the top of the figure represents the status a patient has. The vertical plot on the right of the figure represents the frequency of
mutations in each gene in a decreasing manner.
A B

FIGURE 3 | TERT mutations predict tumor progression of de novo high-grade meningiomas (HGMs) following radiotherapy (RT). (A) Association of recurrent
mutations with tumor progression. Fisher’s test was utilized to detect differentially mutated genes on top 9 most frequent mutation genes between two cohorts
(progression vs. non-progression). The point size in dotplot corresponds to the -log10(adj. p-val) value, together with the red color indicates the higher -log10(adj. p-
val) value, and blue indicates the lower value. Horizontal dash line marked the p-value 0.05. (B) Timing of tumor progression. Shown is the time to progression
(colored dots) or last progression-free scan (gray dots) for top 9 most frequent mutation genes in months. The average progression time was depicted in vertical line.
The average time to recurrence of TERT mutant meningiomas was less than other tumors (Wilcoxon rank sum test with continuity correction, W = 491, p = 0.0864).
Density plot of each subgroup’s progression is shown on the right, along with the mean (m), standard deviation (s), and number of progression (n).
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RT. After adjustment for multiple comparisons, these
associations were not significant. Importantly, TERT mutation
cases were more likely to have unfavorable time to recurrence
(TTR) over the entire cohort, with a mean observation time of
47.6 months (Figure 3B). However, no significant differences in
the average time to recurrence between TERT mutant and wild-
type cases were observed (Wilcoxon rank sum test with
continuity correction W = 491, p = 0.0864).

Meningioma with TERT alterations, regardless of WHO
grades or pathological subtypes, had a highly significant risk of
recurrence (26). To exclude the disruption to RT efficacy might
be caused by TERT-related malignant biological behavior, we
thus performed analysis on newly diagnosed HGMs depending
on TERT alterations only in progression group. Of the 19 cases in
the progression group, mitotic index (ki-67%) depending on
TERT alterations did not show any significantly difference
(unpaired t-test, p = 0.051; Supplementary Figure S3A).
Frontiers in Oncology | www.frontiersin.org 5
Additionally, TERT alterations of de novo HGMs had no
predictive effect on tumor recurrence in progression group
following postoperative RT (p = 0.074 with log-rank test;
Supplementary Figure S3B).

TERT Mutations Were Associated With
Decreased Progression-Free Survival and
Overall Survival in De Novo High-Grade
Meningiomas After Radiotherapy
With these findings, we next analyzed the effect of TERT
mutation status on PFS in patients with de novo HGMs after
RT. The primary endpoint of PFS, defined as time from surgery
to date of progression, was assessed on the basis of progression of
meningioma after initial surgery on imaging follow-up. The
median PFS of 75 months (range: 7–109 months) was
observed for the entire cohort. Subgroup analysis revealed a
median PFS of 25 months (range: 10–79 months) in TERT
mutant group and 77 months (range: 7–109 months) in TERT
wild-type group. TERT mutants were significantly associated
with decreased PFS in de novo HGM cases that underwent
postoperative RT (p = 0.0114 with log-rank test; Figure 4A).

The relationship between TERT mutations and OS was
analyzed using the log-rank test (Figure 4B). The median OS
of 84 months (range: 13–123 months) was observed for the entire
cohort. Subgroup analysis revealed a median OS of 66 months
(range: 13–123 months) in TERT mutant group and 85 months
(range: 24–109 months) in TERT wild-type group. Patients with
de novo HGMs after RT harboring TERT mutations had worse
OS (p = 0.0562; Figure 4B).
DISCUSSION

In this retrospective study, we investigated genetic predictors
that might inform the potential progressive risk in de novo
HGMs after postoperative RT. We found TERT-alt in HGMs
to be a significant predictor of tumor progression compared to
TERT wild-type cases. Although a merely descriptive finding, our
TABLE 1 | Analysis of progression factors in de novo HGM patients after RT.

Feature Progression Non-progression p-value

Patients, n (%) 19 (51.35) 18 (48.65)
Age, n (%)

<65 13 (68.42) 14 (77.78) 0.71
≥65 6 (31.58) 4 (22.22)

Gender, n (%)
Male 11 (57.89) 12 (66.67) 0.74

Female 8 (42.11) 6 (33.33)
Location, n (%)

Skull base 3 (15.79) 2 (11.11) 1.00
Non-skull base 16 (84.21) 16 (88.89)

WHO grade, n (%)
2 16 (84.21) 16 (88.89) 1.00
3 3 (15.79) 2 (11.11)

EOR, n (%)
GTR 14 (73.68) 1 (5.56) <0.001**
STR 5 (26.32) 17 (94.44)

TERT status, n (%)
TERT (+) 8 (42.11) 0 (0) 0.003*
TERT (-) 11 (57.89) 18 (100)
GTR, gross total resection; HGM, high-grade meningioma; RT, radiotherapy; STR,
subtotal resection; EOR, extent of resection.
*p < 0.05 and **p < 0.001 considered statistically significant.
A B

FIGURE 4 | TERT mutations were associated with decreased progression-free survival (PFS) and overall survival (OS) in de novo high-grade meningiomas (HGMs)
after radiotherapy (RT). Kaplan–Meier curves for (A) PFS and (B) OS in de novo HGMs with or without TERT mutation following RT.
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data have potential implications for the clinical management of
patients with TERT-alt de novo HGMs.

HGMs are rare but aggressive tumors with considerably
poorer prognosis than lower-grade meningiomas. Adjuvant RT
is the only nonsurgical standard of care treatment option for
these tumors (9). However, radiotherapeutic options for
meningioma are diverse, and there are no randomized trials to
identify individuals who are more likely to benefit from adjuvant
RT. Indeed, until recently, the evidence supporting postoperative
RT for meningioma, especially HGMs, was largely limited.
Moreover, no molecular prognostic markers have yet been
established for new diagnosed HGMs following RT. To our
knowledge, this study is the first to investigate predictive
biomarkers that would inform tumor progression in de novo
HGMs after postoperative RT.

Leveraging the next-generation sequencing techniques led to
advances in description of the mutational landscape of
meningiomas (15–17). In line with the previous findings, NF2-
mutant meningiomas represent the largest percentage (59%) of
cases in our study (14, 15). In large-scale genomic studies of
meningioma, HGMs were in some studies exclusively related to
pathogenic variants in NF2, associated with mutations in the
TERT promoter (27). In our study, high mutational rates of
ATRX, ARID1A, ATM, NF1, ROS1, KDM6A, FAT1, and TERT
were observed, indicating that these frequently altered genes
might play a role in HGMs. Of note, other common pathological
relevant genes of meningiomas, including AKT1 (n = 3; 8%),
CDKN2A (n = 2; 5%), SMO (n = 0; 0%), SUFU (n = 0; 0%),
POLR2A (n = 6; 16%), TRAF7 (n = 1; 3%), and SMARCB1 (n = 2;
5%), were detected as well. However, we did not observe
previously described mutational rates of some of these genes
due to limited cases.

Among the 184 sequenced genes, only TERT alterations were
significantly associated with tumor progression (n = 8, adjusted
p = 0.031), and all these mutations were present in tumors that
progressed after RT. TERT-alt comprise, but are not limited to,
promoter mutations, gene translocations, and DNA
amplifications (28). We found 87.5% (7/8) of the TERT mutant
cases presented with TERT promoter mutations (62.5% C228T
variant and 25% C250T variant). As reported, the most common
alterations occur in specific “hotspots” of the promoter (TERTp)
region known as C228T and C250T (29). These C>T transition
mutations lead to maintenance of the telomere length, as binding
of E-twenty six (ETS)-transcription factors is involved in the
upregulation of TERT expression (28, 30).

TERT alterations, specifically TERT promoter mutations,
have been identified in a subset of HGMs with progression
from low-grade meningioma (31–34). In the present study, we
found that TERT-alt was associated with decreased PFS and OS
in de novo HGMs after RT. Besides, our data have shown
decreased time to progression among TERT-alt de novo HGMs
as well. TERT gene is transcriptionally inactive in most non-
neoplastic cells (28). TERT gene alterations (TERT-alt) may
enforce cell immortalization by counteracting telomere
shortening, thus promoting growth (28). Several studies have
provided evidence that TERT-alt mutations are associated with
Frontiers in Oncology | www.frontiersin.org 6
rapid recurrence and malignant progression in meningioma (26,
31, 35). In addition, TERTp meningiomas have been found to
have a worse PFS and OS, though not many cases have been
reported (18). Activating TERT gene mutations in the upstream
promoter allows overexpression of this enzyme and is
responsible for immortalization of tumor cells in many cancers
(12). Thus, we have excluded that the disruption to RT efficacy
might be caused by TERT-related malignant biological behavior
in this study. As results, the TERT-alt status and progressive
variables did not show any relevance in progression group.

The Simpson grade of EOR has long been used to guide
clinical expectations after resection of meningiomas (9); our
results support the relevance of EOR in recurrence of HGMs
as well (p < 0.001). The literature widely recognizes the role that
EOR plays in determining HGM prognosis (36, 37). However,
Cox regression analysis failed to identify any factor with
significant association with the progression of de novo HGMs
following RT. Thus, a larger cohort or multicenter clinical trial is
needed to investigate the effect of RT in this subgroup.

In summary, our data identified TERT alterations, especially
TERTp mutation, are associated with tumor progression and poor
outcome of newly diagnosed HGM patients after postoperative RT.
Several limitations of this study warrant consideration. Firstly, our
findings on a discovery series were not substantiated by any
independent validation series due to the limited available samples.
Prospective studies are clearly needed to validate TERT-alt status of
radiation response in de novoHGMs. Another important limitation
in this study is its observational nature, which could have led to
selection bias. It would be useful to repeat these analyses in cohorts
from other institutions in the future.
CONCLUSION

In summary, examining a cohort of de novo HGMs following
adjuvant RT, we find TERT alteration to be strongly associated
with tumor progression and poor outcome of HGM patients
included in this study.
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Supplementary Figure S1 | Pie chart fraction of TERT alterative subtypes
occurring in TERT-alt HGMs.

Supplementary Figure S2 | Heatmap of mutually exclusive or co-occurring set
of genes in the mutation pattern of de novo HGMs following RT. Pairwise Fisher’s
exact tests were performed to detect significant pairs of genes, mutually exclusive
or co-occurring set of genes which colored by brown or green can be detected
using the somaticInteractions function in R/Bioconductor package ‘maftools’.

Supplementary Figure S3 | The TERT-alt status and progressive variables did
not show any relevancy in progression group.
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