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Abstract: We use the definition of statistical symmetry as the invariance of a probability distribution
under a given transformation and apply the concept to the underlying probability distribution of
stochastic processes. To measure the degree of statistical asymmetry, we take the Kullback–Leibler
divergence of a given probability distribution with respect to the corresponding transformed one and
study it for the Gaussian autoregressive process using transformations on the temporal correlations’
structure. We then illustrate the employment of this notion as a time series analysis tool by measuring
local statistical asymmetries of foreign exchange market price data for three transformations that
capture distinct autocorrelation behaviors of the series—independence, non-negative correlations and
Markovianity—obtaining a characterization of price movements in terms of each statistical symmetry.

Keywords: statistical symmetry; Kullback–Leibler divergence; stochastic process; autoregressive
model; time series analysis

1. Introduction

A basic definition of symmetry is invariance under transformation. The concept of symmetry
is fundamental in mathematics, and it is readily evoked in Euclidean geometry, where a shape is
symmetric if it remains unchanged after applying an operation such as a rotation about a point or a
reflection with respect to a line [1].

The above definition of symmetry accounts for the exact invariance of an object under
transformation. However, there are situations in which the transformed object is not exactly identical
to the original on, but its statistical properties remain invariant. In this case, we qualify the symmetry
as statistical. For instance, in the fractal geometry context, a deterministic fractal has the property
of self-similarity associated with the scale symmetry: a fractal object is mapped to itself under an
appropriate scale transformation. However, we can add stochastic elements in the construction of
the object, and the scale symmetry is now statistical; it is a statistical fractal [2,3]. Naturally, fields
using fractal models can also apply the concept of statistical (scale) symmetry, e.g., geosciences [4],
atmospheric sciences [5] and physiology [6].

In previous studies, the term ‘statistical symmetry’ (or ‘average symmetry’) has been used to
designate quantities that remain invariant on average [7–9]. Following [10], we use a more restrictive
definition of statistical symmetry, requiring the invariance of the whole probability distribution under
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some transformation. Given a transformation T, we say that the probability distribution P is symmetric
if the transformed distribution is equal to the original one:

T[P] = P, (1)

and an object governed by the probability distribution P has the statistical symmetry corresponding to
the transformation T.

Considering a stochastic process as a mathematical object whose evolution is controlled by an
underlying probability distribution, we can use statistical symmetries to characterize it. According to
the type of symmetry we select, i.e., which transformation we use, information on different aspects of
the process can be obtained.

Here, we propose the characterization of stochastic processes by measuring their degree of
statistical asymmetry for certain transformations. We begin by specifying the statistical asymmetry
measure as the Kullback–Leibler divergence of the probability distribution with respect to the
transformed one, followed by the characterization of the Gaussian autoregressive process. Such a
stochastic process is governed by a multivariate Gaussian distribution only specified by a covariance
matrix and has a simple expression for the statistical asymmetry measure. Using this model as a
linear approximation for the foreign exchange market price data, we exemplify the use of statistical
symmetries to analyze real time series.

2. Measuring Statistical Asymmetry

Consider the transformation T on the probability distribution P, T[P], assumed to be also a
probability distribution. If P is not symmetric with respect to T, then we have that T[P] 6= P.
We would like to have a quantity that reflects the degree of this asymmetry. As in [10], we find a
suitable candidate in information theory, the Kullback–Leibler divergence (or relative entropy) [11–14].
The Kullback–Leibler divergence between P and T[P], with the possible events X in the sample space
Ω, is given by:

D(P||T[P]) = ∑
X∈Ω

P(X) log
P(X)

T[P(X)]
. (2)

The Kullback–Leibler divergence between P and T[P] can be understood as a measure of the
amount of change in P after applying T, and then, D(P||T[P]) can be interpreted as a measure of
asymmetry of P with respect to the transformation T. This quantity is only zero when T[P] = P,
i.e., only for a symmetric distribution the measure of asymmetry is zero. Other measures of similarity
between probability distributions exist, e.g., the Jensen–Shannon divergence [15–17], and they could
also be used to measure statistical asymmetry. However, by using the Kullback–Leibler divergence we
recover some quantities from information theory and statistical physics, as we exemplify next.

As a first example, we consider the total independence transformation, taking a probability
distribution to the product of its marginal probability distributions. In the bivariate case, we have:

T[P(x1, x2)] = P(x1)P(x2). (3)

Then:

D(P||T[P]) = ∑
x1,x2

P(x1, x2) log
P(x1, x2)

P(x1)P(x2)
, (4)

which is the definition of the (bivariate) mutual information, measuring the dependence between the
two random variables [12]. In the general case, for n arbitrary number of random variables, it coincides
with the definition of multi-information (or total correlation) [18].
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Another class of transformations is the one of space transformations, which assign a probability
value of an event to another event of the sample space. For the vector of random variables
X = (x1, x2, ..., xn)T , taking a transformation A, we write:

T[P(X)] = P(AX). (5)

For instance, the parity transformation takes (x1, x2, ..., xn) to (−x1,−x2, ...,−xn), and the
probability distribution P(X) is symmetric if it is an even function.

We can also have permutations of (x1, x2, ..., xn), with a symmetry associated with each
possible permutation. One special permutation is the even reversion, transforming (x1, x2, ..., xn)

into (xn, ..., x2, x1); combining it with the parity transformation, we obtain the odd reversion:
(x1, x2, ..., xn)→ (−xn, ...,−x2,−x1). The measure of statistical asymmetry for reversion is:

D(P||T[P]) = ∑
x1,x2,...,xn

P(x1, x2, ..., xn) log
P(x1, x2, ..., xn)

P(±xn, ...,±x2,±x1)
, (6)

with a plus sign if the transformation is an even reversion and a minus sign if it is an odd reversion.
If we are studying the time evolution of an even (odd) variable x, i.e., if the indexes in the path

(x1, x2, ..., xn) represent time, the symmetry with respect to even (odd) reversion transformations can be
regarded as time reversibility, and the measure of statistical asymmetry D(P||T[P]) quantifies the degree
of time irreversibility of the considered temporal path. This type of symmetry is used in the area of
non-equilibrium physics, with D(P||T[P]) being closely related to the notion of entropy production [19–21].

3. Statistical Symmetries of the Gaussian Autoregressive Process

Having defined the measure of statistical asymmetry, we proceed to the characterization of
stochastic processes. We specifically study statistical symmetries of the autoregressive process of order
n with Gaussian error term defined by:

xt =
n

∑
j=1

φjxt−j + ξt, (7)

with φj being constant real coefficients and ξt independent Gaussian random variables with mean
zero and variance σ2. Besides its simplicity, the study of the autoregressive process is justified by its
importance in time series modeling [22–24].

We consider the stationary autoregressive model, with all the roots of the characteristic polynomial
p(λ) = λn − ∑n

j=1 φjλ
n−j inside the unit circle in the complex plane. For large t, the vector

X = (xt, xt−1, ..., xt−m) follows a multivariate Gaussian distribution with null mean vector [25]:

f (X) =
1√

(2π)m+1det(C)
exp

(
− 1

2
XTC−1X

)
, (8)

where C is the covariance matrix related to vector X. Observe that for the stationary Gaussian
autoregressive model, the covariance matrix is a symmetric Toeplitz matrix.

We can then investigate the symmetries (i.e., invariance under transformations) of this multivariate
Gaussian distribution and measure the statistical asymmetries of a temporal path X of the process.
Let us take only transformations mapping the original distribution to another multivariate Gaussian
distribution, so that the Kullback–Leibler divergence D only depends on the covariance matrices [26]:

D ≡ D( f ||T[ f ]) =
1
2

[
ln

det(C̃)

det(C)
+ tr(C̃−1C)− (m + 1)

]
, (9)
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where C̃ is the covariance matrix of the transformed Gaussian distribution, ln is the natural logarithm
and D is measured in nats.

Considering space transformations, observe that a path X from a stationary Gaussian
autoregressive process is always statistically symmetric with respect to parity and reversion
transformations, so this process is always time reversible for even or odd variables [27,28];
time irreversibility arises when non-stationarity is present.

Instead of space transformations, we explore transformations acting directly on the covariance
matrix. We choose three transformations on the covariance matrix: the total independence transformation,
the non-negative covariance transformation and the geometric covariance transformation:

1. The total independence transformation keeps the elements of the principal diagonal and
transforms the elements cjk, j 6= k, of the covariance matrix into zeros:

c̃jk 6=j = 0; (10)

The independent process (white noise) xt = ξt, not depending on past values, has the total
independence statistical symmetry.

2. The non-negative covariance transformation makes:

c̃jk = |cjk|, (11)

i.e., it makes all the elements of the covariance matrix non-negative; the symmetric processes are
the ones with only non-negatively correlated variables.

3. The geometric covariance transformation produces a geometric decay in the covariance:

c̃jk = cjj

( cj(j+1)

cjj

)|j−k|
, (12)

which is the covariance decay behavior of autoregressive processes of order n = 1, being Markovian
and the symmetric processes for this transformation. Note that the independent process is also
statistically symmetric with respect to the geometric and non-negative covariance transformations.

We estimate the statistical asymmetry measure D for each one of the three previous
transformations for a simulated Gaussian autoregressive process with parameters changing every
10,000 steps, but keeping unit variance (see Table 1).

Table 1. Parameters of the simulated Gaussian autoregressive process.

Interval (Steps) φ1 φ2 σ

1–10,000 −0.9 0 0.436
10,001–20,000 −0.5 0.4 0.507
20,001–30,000 −0.5 0.1 0.827
30,001–40,000 −0.5 0 0.866
40,001–50,000 −0.1 0 0.995
50,001–60,000 0 0 1
60,001–70,000 0.1 0 0.995
70,001–80,000 0.5 0 0.866
80,001–90,000 0.5 0.1 0.827

90,001–100,000 0.5 0.4 0.507
100,001–110,000 0.9 0 0.436

Intending a local analysis, we utilize a sliding window procedure. In each window of size w,
regarded as stationary, we estimate the covariance matrix of a path (xt, xt−1, ..., xt−m) and compute the
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measure D using Equation (9) for each one of the studied transformations: Dind for total independence
transformation (Equation (10)), Dnneg for non-negative covariance transformation (Equation (11)) and
Dgeom for geometric covariance transformation (Equation (12)). As in any such procedure, the size w of
the window should be large enough for a reasonable estimation of the covariances and small enough for
a local characterization. In Figure 1, we show the results for w = 1000 and m = 2; red lines correspond
to the exact values of the statistical asymmetry measures, where covariances were computed using the
Yule–Walker equations [24] (transitions between different sets of parameters were ignored).

Figure 1. (a) Simulated Gaussian autoregressive process with the parameters specified in Table 1 and
estimations of the statistical asymmetry measure D for the transformations: (b) total independence
transformation, (c) non-negative covariance transformation and (d) geometric covariance transformation,
using path length m + 1 = 3 and window size w = 1000. Red lines are the theoretical values, and D = 0
indicates intervals when the process is statistically symmetric for the considered transformation.

In this simulated process, the estimations of statistical asymmetry measures closely follow the
theoretical values and they are able to distinguish the distinct behaviors associated with each of the
considered transformations: for the total independence transformation, Dind is minimum (≈0) for
the independent process (φ1 = φ2 = 0) and increases as the parameters distance from zero; for the
non-negative covariance transformation, Dnneg ≈ 0 identifies the processes whose autocorrelation function
is always non-negative; and for the geometric covariance transformation, the estimations of Dgeom that



Entropy 2018, 20, 511 6 of 13

largely deviates from zero indicate the processes that are not Markovian, in this case autoregressive
processes of order n = 2 (φ2 6= 0). Note that the transformations were conveniently chosen so that the
statistically symmetric Gaussian autoregressive processes come from three (not mutually exclusive) classes
according to their autocorrelation structure—independent, non-negative correlations, Markovian—and D
measures the deviation of the actual process from each of those classes.

The path length m+ 1 = 3 was chosen because the simulated process includes only autoregressive
processes of order n ≤ 2, and the effects of the three described transformations are already appreciable
for this value of m. Analyzing the same simulated process, Figure 2 presents the estimations of D for the
total independence transformation using m = 2, 3, 4 and 5, evidencing that for this process, the increase
of the value of m only changes the magnitude of D and does not interfere in the characterization
of the process in terms of the relative degree of statistical asymmetry. Indeed, for general Gaussian
autoregressive processes, a value of m greater than the order n is over-informative since the parameters
defining the process are fully determined by its variance and the n first lags of the autocovariance
function (Yule–Walker equations). The choice of the value of m is also restricted by the utilized
transformations (e.g., the geometric covariance transformation requires m ≥ 2 to be useful) and,
in practice, by the statistical significance of the estimations of the covariances.

Figure 2. For the same process in Figure 1a, estimations of the statistical asymmetry measure D for the
total independence transformation considering paths (xt, xt−1, ..., xt−m) with length m = 2, 3, 4 and 5.
An increase in the value of m increases the magnitude of D, but keeps the relative degree of statistical
asymmetry along the process.

A more detailed view of the transformations on the covariance matrix associated with a Gaussian
autoregressive process is exhibited in Figure 3. Using the same set of random numbers for a direct
comparison, we simulate two autoregressive processes with the parameters in the first two rows of
Table 1: φ1 = −0.9, φ2 = 0, σ = 0.436 and φ1 = −0.5, φ2 = 0.4, σ = 0.507 (Figure 3a,b, respectively),
visually presenting similar behavior. Figure 3c,d displays the corresponding estimated autocovariance
functions (black circles) and the results of the application of the total independence transformation
(Equation (10), red diamonds), the non-negative covariance transformation (Equation (11), blue
triangles) and the geometric covariance transformation (Equation (12), green squares). Simply from
the functional form of the autocovariance functions, with negative values of covariances, we readily
observe deviations from the independent and non-negatively correlated processes. For the geometric
covariance transformation, visual inspection is not enough, and only a comparison between the
autocovariance function and the transformed one reveals that while the first process is Markovian,
the second one does not have covariances compatible with an autoregressive process of order
n = 1, being non-Markovian. The quantities Dind, Dnneg and Dgeom measure those deviations
and are particularly useful in local analysis, where the inspection of the whole autocovariance
(or autocorrelation) function in each window is not practicable.
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Figure 3. Simulated Gaussian autoregressive process with parameters: (a) φ1 = −0.9, φ2 = 0,
σ = 0.436 and (b) φ1 = −0.5, φ2 = 0.4, σ = 0.507. (c,d) Autocovariance function for the
simulated processes (black circles) and its transformed versions for total independence transformation
(red diamonds), non-negative covariance transformation (blue triangles) and geometric covariance
transformation (green squares).

4. Application to Market Price Time Series Data

In order to exemplify how the concept of statistical symmetry can be applied to analyze time
series data, we characterize price time series from the foreign exchange market by measuring its local
statistical asymmetries. The dataset used here was purchased from the Electronic Broking Service (EBS)
and contains traders’ quotes (desired transaction prices) for buying or selling an amount of a currency,
with the mid-quote defined at each time as the average of the best quote from the buy side and from the
sell side. We focus on the pair U.S. dollar (USD) and Japanese yen (JPY) and analyze the mid-quote time
series with 1 s resolution for two days: 5 December 2011, representing an ordinary day, and 4 August
2011, an atypical day when there was an intervention in the market by the Japanese government.

The use of Equation (9) to measure statistical asymmetry and the interpretations of the previously
presented transformations presuppose modeling the time series as a Gaussian autoregressive process.
The market price dynamics, however, is usually not Gaussian; in fact, price changes commonly follow a
heavy-tailed distributions [29]. Nevertheless, the Gaussian autoregressive model continues to be utilized
as a linear approximation for price changes, being simple enough to derive analytical results and serving
as an ingredient for more elaborated models [30–32]. Other than that, standard models for price changes
are based on random coefficient autoregressive processes, centered on the autoregressive conditional
heteroskedasticity (ARCH) model, which reproduce the heavy-tailed distribution and maintain the
covariance matrix (up to a multiplicative factor) of the ordinary constant coefficient autoregressive
process [33–35]. Thus, since our analysis focuses on the autocovariances of the price time series,
the Gaussian approximation is justified, but knowing that we are actually analyzing the Gaussian
version of the time series, i.e., the Gaussian process producing the same temporal correlation structure
observed in the original series. Observe that the measure of statistical asymmetries as we propose does
not require the explicit estimation of the model parameters, but only the covariance matrix; in fact, in a
general case, it does not even require the specification of the model provided it is Gaussian.
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We perform the same local statistical asymmetry analysis described in the previous section with
path length m + 1 = 3 and window size w = 1000 on the market mid-quote (price) changes time series,
which are expressed in tick time, i.e., the time steps with no price change are removed. For these
data, we label a value D with the time corresponding to the end of the window it was computed
in, so that this value refers only to previous steps. As seen for the simulated process, the computed
statistical asymmetry measure may not be exactly zero for the symmetric processes due to an imperfect
estimation of the covariance matrix. We then use the value below which lie 98% of the estimations of D
for the independent process as the threshold for an interval to be classified as statistically asymmetric.
From the estimated cumulative probability distributions of D for the independent process, this value
is Dind = 0.0062 for the total independence transformation, Dnneg = 0.0188 for the non-negative
covariance transformation and Dgeom = 0.0028 for the geometric covariance transformation (Figure 4).
Results are displayed in Figure 5, in which shaded areas designate statistically symmetric intervals.

Figure 4. Estimated cumulative probability distributions of D for the independent process and the
transformations: (a) total independence transformation; (b) non-negative covariance transformation;
and (c) geometric covariance transformation. Red dashed lines indicate the values of D whose
cumulative probability is 0.98, Dind = 0.0062, Dnneg = 0.0188 and Dgeom = 0.0028, respectively.

The USD/JPY market on 5 December 2011 presents only mild volatility and no major events,
but its temporal correlations are not homogeneous. Besides locating the statistically symmetric
intervals, this analysis enables us to observe the evolution of the relative degree of asymmetry of
the USD/JPY market along the day. First, for the total independence statistical symmetry, at the
beginning of the day, the price change time series presents important deviations from the symmetric
process and cannot be characterized as independent, but shows statistically independent intervals
after this initial period (Figure 5c); we highlight that 5 December 2011 is a Monday, when the market is
reopened after the weekend, possibly explaining the initial relatively large asymmetric behavior of
price changes. Then, we notice that the non-negative covariance statically symmetric intervals coincide
with the independent ones (Figure 5d); of course, the independent symmetry implies non-negative
covariance symmetry, but it is possible that non-negative covariance symmetry exists in independent
asymmetric intervals (compare Figure 1c,d). The interpretation is that the price changes in this day
are either non-correlated or present important negative correlations; such observation agrees with
the stylized fact that the autocorrelation of price changes goes quickly to zero after a possible short
negative correlation [36]. We also note that the evolutions of Dind and Dnneg are very similar (up to
the difference in scales); this behavior is not unexpected since in this case, the positive-negative
zig-zag of the autocovariance function leading to a high value of Dnneg implies a high value of Dind as
well. Finally, the analyzed day is essentially geometric covariance statistically symmetric (Figure 5e)
(with the exception of a short interval at the beginning of the day), being described by a Markov process,
also consistent with the known rapid decay of the autocorrelation function of market price changes.
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Figure 5. (a) Time series of the mid-quote of USD/JPY for 5 December 2011; (b) time series of
price changes for the same day and estimations of the statistical asymmetry measure D for the
transformations: (c) Total independence transformation, (d) non-negative covariance transformation
and (e) geometric covariance transformation, using path length m = 2 and window size w = 1000.
Shaded areas indicate intervals classified as statistically symmetric.

Next, we randomize the market price changes data of 5 December 2011 and apply the same
methodology. Figure 6 shows that the shuffled time series presents the same correlation structure of
the independent process, being totally statistically symmetric for all three studied transformations and
confirming that the detected asymmetries in the original time series indeed reveal information about
the intrinsic correlations in the market dynamics.
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Figure 6. (a) Shuffling of time series of price changes for 5 December 2011 and estimations of the
statistical asymmetry measure D for the transformations: (b) Total independence transformation,
(c) non-negative covariance transformation and (d) geometric covariance transformation, using
path length m = 2 and window size w = 1000. Shaded areas indicate intervals classified as
statistically symmetric. The whole shuffled time series is evaluated as statistically symmetric for
all three transformations.

At last, we analyze the USD/JPY market on 4 August 2011 (Thursday). On that day, as the
Japan economy was still recovering from the earthquake of March 2011, the Japanese government
intervened in the market selling Yen to weaken the currency and stimulate exports [37]. Although the
Gaussian approximation is dubious in windows around this significant event, we can still compute
the statistical symmetries and study the price correlation structure of periods after the intervention.
Results are shown in Figure 7, with important differences when compared to the characterization of
5 December 2011 (Figure 5). Firstly, the scales: in the intervals classified as statistically asymmetric,
the degree of asymmetry is in general higher than in the asymmetric intervals of the ordinary
day. Secondly, we can find non-negative covariance statistically symmetric intervals that are not
independently symmetric (compare Figure 7c,d), indicating positive correlations. Lastly, the presence
of a few windows presenting high geometric covariance asymmetry, not manifesting the Markov
property (the two prominent ones around t ≈ 18,000 and t ≈ 26,000 in Figure 7e). A systematic
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investigation is still needed to evaluate if those are general differences between typical days and
periods with major events on the market or if they are particular for each day.

Figure 7. (a) Time series of the mid-quote of USD/JPY for 4 August 2011 (red arrow indicates the Japanese
government intervention); (b) time series of price changes for the same day and estimations of the statistical
asymmetry measure D for the transformations; (c) Total independence transformation; (d) non-negative
covariance transformation and (e) geometric covariance transformation, using path length m = 2 and
window size w = 1000. Shaded areas indicate intervals classified as statistically symmetric.

In the context of financial data, the presented statistical symmetry analysis using transformations
on the covariances can be applied, for instance in real-time characterization of markets, providing a
practical monitoring tool for practitioners and allowing them to adjust their strategies according to
changes in the correlation state of the market.
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5. Final Remarks

In this work, we studied a specific definition of statistical symmetry that deals directly with the
underlying probability distribution governing some system. Defining it this way, we could use the
Kullback–Leibler divergence to measure the degree of statistical asymmetry with respect to a given
transformation. We focused on statistical symmetries of a simple stochastic process, the Gaussian
autoregressive process, which follows a multivariate Gaussian distribution and then allows us to express
the statistical asymmetry measure in terms of its covariance matrix. Three transformations were selected
to characterize the Gaussian autoregressive process, each corresponding to different aspects of the
autocorrelation of the process: total independence transformation (independence), non-negative covariance
transformation (non-negative correlations) and geometric covariance transformation (Markovianity).

We provided an example of time series analysis using statistical symmetries by considering
Gaussian autoregressive processes that reproduce the autocovariances of the USD/JPY market price
change dynamics and measuring its local statistical asymmetries through a sliding window procedure.
We not only obtained the identification of statistically symmetric intervals (and thus, their properties of
independence, non-negative correlations and Markovianity), but also the relative degree of statistical
asymmetry for different periods of the day, revealing the evolution of the price correlation structure.

For the three examined transformations on the Gaussian autoregressive process, the statistical
asymmetry measure acts as a single information theoretically-based index for the temporal correlations’
structure of the process and stands as a potential tool for the characterization of time series that can be
approximated by such a model. For data not admitting a Gaussian description, one can estimate the
underlying probability distribution of the time series and compute measures of statistical asymmetry
using that estimation. A more general analysis framework can be achieved with the study of other
stochastic models and defining useful transformations to investigate different aspects of a given process.
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