organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

14-Ethoxy-4,6-dimethyl-9-phenyl-8,12dioxa-4,6-diazatetracyclo-[8.8.0.0^{2,7}.0^{13,18}]octadeca-2(7),13,15,17tetraene-3,5,11-trione

G. Jagadeesan,^a D. Kannan,^b M. Bakthadoss^b and S. Aravindhan^a*

^aDepartment of Physics, Presidency College, Chennai 600 005, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: aravindhanpresidency@gmail.com

Received 3 December 2012; accepted 7 December 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.130; data-to-parameter ratio = 15.1.

In the title compound, $C_{23}H_{20}N_2O_6$, the fused pyrone and pyran rings each adopt a sofa conformation. The dihedral angle between the mean planes of the pyran and phenyl rings is 61.9 (1)°. In the crystal, molecules are linked by two pairs of $C-H\cdots O$ hydrogen bonds, forming dimers. These dimers are linked *via* a third $C-H\cdots O$ hydrogen bond, forming a twodimensional network parallel to (102).

Related literature

For the biological activity of pyranocoumarin compounds, see: Kawaii *et al.* (2001); Hossain *et al.* (1996); Goel *et al.* (1997); Su *et al.* (2009); Xu *et al.* (2006). For anti-filarial activity studies, see: Casley-Smith *et al.* (1993). For their enzyme inhibitory activity, see: Pavao *et al.* (2002). For asymmetry parameters, see: Nardelli (1983).

 $M_r = 420.41$

Experimental

Crystal data C₂₃H₂₀N₂O₆ Monoclinic, $P2_1/c$ a = 16.8362 (9) Å b = 8.1692 (4) Å c = 14.4400 (8) Å $\beta = 98.000$ (3)° V = 1966.72 (18) Å³

Data collection

Bruker Kappa APEXII CCD	19858 measured reflections
diffractometer	4247 independent reflections
Absorption correction: multi-scan	2943 reflections with $I > 2\sigma(I)$
(SADABS; Bruker 2004)	$R_{\rm int} = 0.039$
$T_{\rm min} = 0.979, \ T_{\rm max} = 0.983$	

Z = 4

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.20$ mm

 $\mu = 0.10 \text{ mm}^{-1}$

T = 293 K

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)] = 0.046 & 281 \text{ parameters} \\ wR(F^2) = 0.130 & H\text{-atom parameters constrained} \\ S = 1.04 & \Delta\rho_{\max} = 0.28 \text{ e } \text{\AA}^{-3} \\ 4247 \text{ reflections} & \Delta\rho_{\min} = -0.19 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C4-H4\cdotsO1^{i}$ $C5-H5\cdotsO3^{i}$ $C18-H18\cdotsO6^{ii}$	0.93	2.59	3.514 (3)	172
	0.93	2.45	3.361 (3)	165
	0.93	2.56	3.215 (3)	128

Symmetry codes: (i) -x, -y + 1, -z; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2009).

SA thanks the UGC, India, for financial support

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2537).

References

- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Casley-Smith, J. R., Wang, C. T., Casley-Smith, J. R. & Zi-hai, C. (1993). Br. Med. J. 307, 1037–1041.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Goel, R. K., Maiti, R. N., Manickam, M. & Ray, A. B. (1997). Indian J. Exp. Biol. 35, 1080–1083.
- Hossain, C. F., Okuyama, E. & Yamazaki, M. (1996). Chem. Pharm. Bull. (Tokyo), 44, 1535–1539.
- Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M., Yoshizawa, Y., Ito, C. & Furukawa, H. (2001). *Anticancer Res.* 21, 1905–1911.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Pavao, F., Castilho, M. S., Pupo, M. T., Dias, R. L. A., Correa, A. G., Fernandes, J. B., Da Silva, M. F. G. F., Mafezoli, J., Vieir, P. C. & Oliva, G. (2002). *FEBS Lett.* 520, 13–17.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Su, C. R., Yeh, S. F., Liu, C. M., Damu, A. G., Kuo, T. H., Chiang, P. C., Bastow, K. F., Lee, K. H. & Wu, T. S. (2009). *Bioorg. Med. Chem.* 17, 6137–6143.
- Xu, Z. Q., Pupek, K., Suling, W. J., Enache, L. & Flavin, M. T. (2006). Bioorg. Med. Chem. 14, 4610–4626.

supplementary materials

Acta Cryst. (2013). E69, o80 [doi:10.1107/S160053681205009X]

14-Ethoxy-4,6-dimethyl-9-phenyl-8,12-dioxa-4,6-diazatetracyclo-[8.8.0.0^{2,7}.0^{13,18}]octadeca-2(7),13,15,17-tetraene-3,5,11-trione

G. Jagadeesan, D. Kannan, M. Bakthadoss and S. Aravindhan

Comment

Coumarin derivatives show strong activity against cancer cell lines (Kawaii *et al.*, 2001) and exhibit monoamine oxidase inhibitory activity (Hossain *et al.*, 1996). Antiulcer activity of some naturally occurring pyranocoumarins has been reported (Goel *et al.*, 1997). They also show anti-hepatitis B virus, anti-filarial (Casley-Smith *et al.*, 1993) and cytotoxic activities (Su *et al.*, 2009) and anti-TB activity (Xu *et al.*, 2006). One natural source coumarin derivative, Chalepin, inhibits the glyceraldehyde-3-phosphate dehydrogenase of parasites (Protein Data Bank ID code 1 K3T) (Pavao *et al.*, 2002). Herein, we report on the crystal structure of the title coumarin derivative.

In the title molecule (Fig. 1) the six-membered pyrone ring of the coumarin ring system [DS (C9) = 0.163 (1) Å and D2 (C9—C8) = 0.029 (1) Å] and the pyran ring [DS (C8) = 0.065 (1) Å and D2 (C8—C7) = 0.075 (1) Å] both adopt a sofa conformation defined by the above asymmetry parameters (Nardelli, 1983). The mean plane of the pyran ring and the phenyl ring are tilted with respect to one another with a dihedral angle of 61.9 (1) °. The torsion angles H9—C9—C8—H8 = 51 (2)° and H8—C8—C7—H7 = 175.12 (2)°, define the ring fusions involving the in the fused pyrone and pyran ring system of the coumarin moiety.

In the crystal, molecules are linked by two pairs of C-H···O hydrogen bonds to form dimers. These dimers are linked via a third C-H···O hydrogen bond forming a two-dimensional network parallel to (10-2) [Table 1 and Fig. 2].

Experimental

A mixture of 2-ethoxy-6-formylphenyl (2E)-3-phenylprop-2-enoate (0.296 g, 1 mmol) and *N*,*N*-dimethylbarbituric acid (0.156 g, 1 mmol) was placed in a round bottom flask and melted at 453 K for 1 h. After completion of the reaction, as indicated by TLC, the crude product was washed with 5 ml of an ethylacetate and hexane mixture (1:49 ratio) which successfully provided the pure product in 92% yield as a colourless solid. Diffraction quality crystals were obtained by slow evaporation of a solution in ethyl acetate.

Refinement

All the H atoms were positioned geometrically and constrained to ride on their parent atom: C-H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H atoms, respectively, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $= 1.2U_{eq}(C)$ for other H atoms.

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to

prepare material for publication: PLATON (Spek, 2009).

Figure 1

The molecular structure of the title molecule, with atom lables. Displacement ellipsoids are drawn at the 30% probability level (H atoms have been omitted for clarity).

Figure 2

A view along the c axis of the crystal packing of the title compound. The C-H…O hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in these interactions have been omitted.

14-Ethoxy-4,6-dimethyl-9-phenyl-8,12-dioxa-4,6- diazatetracyclo[8.8.0.0^{2,7}.0^{13,18}]octadeca-2(7),13,15,17-tetraene-3,5,11-trione

F(000) = 880

 $\theta = 2.1 - 31.2^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K

Block, colourless

 $0.25 \times 0.20 \times 0.20$ mm

 $D_{\rm x} = 1.420 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8834 reflections

Crystal data

 $C_{23}H_{20}N_{2}O_{6}$ $M_{r} = 420.41$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 16.8362 (9) Å b = 8.1692 (4) Å c = 14.4400 (8) Å $\beta = 98.000$ (3)° V = 1966.72 (18) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD	19858 measured reflections
diffractometer	4247 independent reflections
Radiation source: fine-focus sealed tube	2943 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.039$
ω and φ scan	$\theta_{\rm max} = 26.9^{\circ}, \ \theta_{\rm min} = 1.2^{\circ}$
Absorption correction: multi-scan	$h = -21 \rightarrow 21$
(SADABS; Bruker 2004)	$k = -10 \rightarrow 10$
$T_{\min} = 0.979, \ T_{\max} = 0.983$	$l = -18 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.130$	$w = 1/[\sigma^2(F_o^2) + (0.0545P)^2 + 0.6922P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
4247 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
281 parameters	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL97 (Sheldrick,
direct methods	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0027 (7)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

D 1		1	1	• • •		1 .	• , •	1. 1	,	,	18:	21
Fractional	atomic	coordinates	and	isofronic i	or eauw	ilent	isofronic	displa	acement	narameters	IA^{4}	-)
1 / actionat	aronne	coordinates		ison opie .	si equire	wonv	isonopie	cuspic	accincin	parameters	1.1	/

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
04	0.16385 (8)	0.54434 (17)	0.34721 (9)	0.0456 (4)
O2	0.22837 (7)	0.36035 (17)	0.07300 (9)	0.0438 (3)

03	0.12638 (8)	0.20829 (18)	0.09730 (10)	0.0513 (4)
O6	0.41821 (8)	0.2943 (2)	0.41399 (10)	0.0548 (4)
05	0.29499 (10)	0.5286 (2)	0.64093 (10)	0.0632 (4)
N1	0.23397 (10)	0.5455 (2)	0.49074 (11)	0.0433 (4)
01	0.29820 (9)	0.5214 (2)	-0.04780 (10)	0.0547 (4)
N2	0.35919 (9)	0.4205 (2)	0.52645 (11)	0.0450 (4)
C13	0.36037 (11)	0.3696 (2)	0.43419 (13)	0.0412 (4)
C11	0.23195 (11)	0.4981 (2)	0.39956 (13)	0.0379 (4)
C14	0.32631 (10)	0.4522 (2)	0.20279 (13)	0.0369 (4)
C10	0.29172 (10)	0.4137 (2)	0.36840 (13)	0.0367 (4)
C16	0.33429 (11)	0.5327 (2)	0.04229 (14)	0.0427 (5)
C20	0.17880 (10)	0.2965 (2)	0.13077 (13)	0.0387 (4)
C15	0.29621 (10)	0.4502 (2)	0.10910 (13)	0.0378 (4)
С9	0.28330 (10)	0.3522 (2)	0.26942 (12)	0.0365 (4)
H9	0.3045	0.2404	0.2707	0.044*
C8	0.19371 (10)	0.3446 (2)	0.23246 (13)	0.0378 (4)
H8	0.1691	0.2618	0.2685	0.045*
C7	0.15484 (11)	0.5103 (2)	0.24763 (13)	0.0386 (4)
H7	0.1821	0.5959	0.2164	0.046*
C1	0.06624 (11)	0.5170(2)	0.21317 (14)	0.0401 (4)
C12	0.29624 (12)	0.4995 (3)	0.55866 (14)	0.0460 (5)
C22	0.16917 (14)	0.6433 (3)	0.52058 (15)	0.0566 (6)
H22A	0.1808	0.6647	0.5864	0.085*
H22C	0.1196	0.5842	0.5079	0.085*
H22B	0.1647	0.7450	0.4870	0.085*
C17	0.40429 (12)	0.6166 (3)	0.07246 (15)	0.0515 (5)
H17	0.4313	0.6705	0.0294	0.062*
C19	0.39570 (11)	0.5407 (3)	0.23118 (15)	0.0478 (5)
H19	0.4163	0.5459	0.2943	0.057*
C18	0.43425 (12)	0.6208 (3)	0.16645 (16)	0.0555 (6)
H18	0.4811	0.6785	0.1863	0.067*
C6	0.04019 (13)	0.5835 (3)	0.12795 (15)	0.0547 (6)
H6	0.0773	0.6274	0.0928	0.066*
C21	0.33837 (15)	0.5946 (3)	-0.11801 (15)	0.0631 (6)
H21A	0.3071	0.5791	-0.1782	0.095*
H21B	0.3900	0.5445	-0.1174	0.095*
H21C	0.3451	0.7096	-0.1056	0.095*
C23	0.42923 (13)	0.3828 (3)	0.59566 (16)	0.0614 (6)
H23A	0.4690	0.3278	0.5654	0.092*
H23B	0.4132	0.3133	0.6434	0.092*
H23C	0.4513	0.4825	0.6234	0.092*
C2	0.01032 (13)	0.4541 (3)	0.26413 (19)	0.0633 (7)
H2	0.0267	0.4096	0.3230	0.076*
C4	-0.09540 (13)	0.5224 (3)	0.14226 (19)	0.0647 (7)
H4	-0.1496	0.5229	0.1181	0.078*
C5	-0.04080 (15)	0.5868 (3)	0.09263 (18)	0.0679 (7)
Н5	-0.0575	0.6337	0.0345	0.082*
C3	-0.07031 (14)	0.4565 (3)	0.2283 (2)	0.0738 (8)
H3	-0.1077	0.4129	0.2631	0.089*

Atomic	Atomic displacement parameters (A ⁻)						
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}	
04	0.0445 (7)	0.0561 (8)	0.0357 (7)	0.0139 (6)	0.0034 (6)	-0.0044 (6)	
O2	0.0415 (7)	0.0573 (8)	0.0326 (7)	-0.0085 (6)	0.0054 (6)	-0.0022 (6)	
O3	0.0488 (8)	0.0552 (8)	0.0481 (9)	-0.0117 (7)	0.0006 (7)	-0.0065 (7)	
O6	0.0386 (7)	0.0730 (10)	0.0522 (9)	0.0106 (7)	0.0048 (6)	0.0051 (8)	
O5	0.0691 (10)	0.0884 (12)	0.0320 (8)	-0.0072 (9)	0.0067 (7)	-0.0053 (8)	
N1	0.0472 (9)	0.0523 (10)	0.0315 (9)	0.0016 (7)	0.0097 (7)	-0.0019 (7)	
01	0.0533 (8)	0.0768 (10)	0.0347 (8)	-0.0044 (7)	0.0084 (6)	0.0080(7)	
N2	0.0401 (9)	0.0587 (10)	0.0347 (9)	-0.0063 (8)	0.0003 (7)	0.0046 (8)	
C13	0.0382 (10)	0.0483 (11)	0.0371 (11)	-0.0051 (9)	0.0049 (8)	0.0061 (9)	
C11	0.0390 (9)	0.0414 (10)	0.0330 (10)	-0.0023 (8)	0.0034 (8)	0.0026 (8)	
C14	0.0316 (9)	0.0449 (10)	0.0352 (10)	0.0033 (8)	0.0079 (7)	-0.0010 (8)	
C10	0.0362 (9)	0.0423 (10)	0.0318 (10)	-0.0009 (8)	0.0056 (7)	0.0034 (8)	
C16	0.0411 (10)	0.0526 (11)	0.0354 (11)	0.0044 (9)	0.0088 (8)	0.0028 (9)	
C20	0.0347 (9)	0.0411 (10)	0.0400 (11)	0.0022 (8)	0.0042 (8)	-0.0019 (8)	
C15	0.0325 (9)	0.0444 (10)	0.0371 (11)	0.0014 (8)	0.0071 (8)	-0.0011 (8)	
C9	0.0326 (9)	0.0421 (10)	0.0350 (10)	0.0026 (7)	0.0054 (7)	0.0005 (8)	
C8	0.0351 (9)	0.0427 (10)	0.0363 (10)	-0.0020 (8)	0.0068 (7)	0.0015 (8)	
C7	0.0383 (9)	0.0443 (10)	0.0331 (10)	0.0024 (8)	0.0050 (8)	0.0021 (8)	
C1	0.0372 (10)	0.0419 (10)	0.0414 (11)	0.0068 (8)	0.0059 (8)	-0.0018 (8)	
C12	0.0503 (11)	0.0537 (12)	0.0335 (11)	-0.0109 (9)	0.0044 (9)	0.0027 (9)	
C22	0.0682 (14)	0.0626 (14)	0.0412 (12)	0.0153 (11)	0.0158 (10)	-0.0050 (10)	
C17	0.0449 (11)	0.0635 (14)	0.0485 (13)	-0.0078 (10)	0.0150 (9)	0.0090 (10)	
C19	0.0376 (10)	0.0648 (13)	0.0407 (11)	-0.0063 (9)	0.0049 (8)	-0.0020 (10)	
C18	0.0406 (11)	0.0730 (15)	0.0534 (14)	-0.0165 (10)	0.0087 (9)	-0.0006 (11)	
C6	0.0477 (11)	0.0738 (15)	0.0412 (12)	0.0026 (11)	0.0020 (9)	0.0061 (11)	
C21	0.0835 (17)	0.0693 (15)	0.0397 (13)	-0.0016 (13)	0.0199 (12)	0.0094 (11)	
C23	0.0477 (12)	0.0874 (17)	0.0450 (13)	-0.0090 (12)	-0.0078 (10)	0.0099 (12)	
C2	0.0467 (12)	0.0761 (16)	0.0682 (16)	0.0043 (11)	0.0122 (11)	0.0215 (13)	
C4	0.0387 (11)	0.0757 (16)	0.0765 (18)	0.0069 (11)	-0.0033 (12)	-0.0295 (14)	

0.0489 (14)

0.099 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

0.0590 (14)

0.0445 (12)

0.0907 (19)

0.0807 (18)

C5

C3

04—C11	1.337 (2)	C7—C1	1.506 (2)
O4—C7	1.452 (2)	С7—Н7	0.9800
O2—C20	1.363 (2)	C1—C6	1.361 (3)
O2—C15	1.396 (2)	C1—C2	1.373 (3)
O3—C20	1.189 (2)	C22—H22A	0.9600
O6—C13	1.221 (2)	C22—H22C	0.9600
O5-C12	1.215 (2)	C22—H22B	0.9600
N1-C11	1.368 (2)	C17—C18	1.381 (3)
N1-C12	1.384 (3)	C17—H17	0.9300
N1-C22	1.465 (3)	C19—C18	1.376 (3)
O1—C16	1.360 (2)	C19—H19	0.9300
O1—C21	1.426 (2)	C18—H18	0.9300
N2—C12	1.376 (3)	C6—C5	1.388 (3)

0.0113 (13)

-0.0016 (12)

-0.0079 (13)

0.0022 (16)

-0.0111 (11)

0.0204 (14)

N2—C13	1.398 (3)	С6—Н6	0.9300
N2—C23	1.468 (2)	C21—H21A	0.9600
C13—C10	1.436 (2)	C21—H21B	0.9600
C11—C10	1.348 (3)	C21—H21C	0.9600
C14—C15	1.377 (3)	C23—H23A	0.9600
C14-C19	1 386 (3)	C23—H23B	0.9600
C14—C9	1.520 (2)	C23—H23C	0.9600
C10—C9	1 503 (3)	C2-C3	1384(3)
C16—C17	1 381 (3)	C2—H2	0.9300
C16—C15	1.403 (3)	C4-C5	1.349 (4)
C20—C8	1.507 (3)	C4—C3	1.366 (4)
C9—C8	1.530 (2)	C4—H4	0.9300
C9—H9	0.9800	С5—Н5	0.9300
C8-C7	1 533 (3)	С3—Н3	0.9300
C8—H8	0.9800		0.9200
	0.9000		
C11—O4—C7	117.97 (14)	C6—C1—C2	118.38 (19)
C20—O2—C15	120.75 (14)	C6—C1—C7	119.54 (18)
C11—N1—C12	121.34 (17)	C2—C1—C7	122.06 (18)
C11—N1—C22	121.18 (16)	O5—C12—N2	122.78 (19)
C12—N1—C22	117.46 (17)	O5—C12—N1	121.7 (2)
C16—O1—C21	117.29 (17)	N2—C12—N1	115.52 (17)
C12—N2—C13	125.11 (16)	N1—C22—H22A	109.5
C12—N2—C23	116.86 (17)	N1—C22—H22C	109.5
C13—N2—C23	118.00 (17)	H22A—C22—H22C	109.5
06—C13—N2	119.66 (17)	N1—C22—H22B	109.5
06-C13-C10	124.30 (18)	H22A—C22—H22B	109.5
N_{2} C13 - C10	116.04 (17)	H22C-C22-H22B	109.5
04-C11-C10	125.25(17)	C18 - C17 - C16	120.08 (19)
04—C11—N1	111.64 (16)	C18—C17—H17	120.0
C10-C11-N1	123 11 (17)	C16—C17—H17	120.0
C_{15} C_{14} C_{19}	11845(18)	C18 - C19 - C14	120.33 (19)
$C_{15} - C_{14} - C_{9}$	118 22 (16)	C18 - C19 - H19	119.8
C19 - C14 - C9	123 30 (17)	C_{14} C_{19} H_{19}	119.8
$C_{11} - C_{10} - C_{13}$	123.30(17) 118.49(17)	C19-C18-C17	120.93 (19)
$C_{11} - C_{10} - C_{9}$	120.83 (16)	C19 - C18 - H18	119 5
C_{13} C_{10} C_{9}	120.39 (16)	C17 - C18 - H18	119.5
01 - C16 - C17	120.39(10) 125.70(18)	C1 - C6 - C5	117.5 121 1 (2)
01 - 016 - 015	125.70(13) 116.05(17)	C1 - C6 - H6	121.1 (2)
C_{17} C_{16} C_{15}	110.05(17) 118.25(18)	C5-C6-H6	119.4
$C_{1}^{2} = C_{10}^{2} = C_{13}^{2}$	117.29(17)	01 C21 H21A	100.5
$O_{3}^{2} = C_{20}^{2} = O_{2}^{2}$	117.79(17) 124.50(18)	O1 = C21 = H21R	109.5
03 - 020 - 08	124.59(16) 117.62(15)	$U_1 = U_2 I_1 = H_2 I_1 B$	109.5
$C_{14} = C_{15} = C_{15}$	117.02(15) 122.00(16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C14 - C15 - C16	122.90(10) 121.04(17)	$U_{-}U_{21}$ $U_{-}U_{21}$ $U_{21}U_{-}U_{21}$	109.5
$C_{14} = C_{15} = C_{10}$	121.94(17) 115.00(16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{10} = C_{10} = C_{10}$	115.09 (10)	$\frac{11210}{122} + \frac{1210}{122} + \frac{1210}{122} + \frac{1220}{122} + 1$	109.5
$C_{10} = C_{7} = C_{14}$	113.37(13) 107.66(14)	N2 C22 H22P	109.5
C_{10} C_{2} C_{0} C_{8}	107.00(14) 100.55(14)	$H_{2} = C_{2} = H_{2} = H_{2$	109.5
UIT-UJ-U0	107.33 (17)	112JA UZJ 112JD	102.5

С10—С9—Н9	107.9	N2—C23—H23C	109.5
С14—С9—Н9	107.9	H23A—C23—H23C	109.5
С8—С9—Н9	107.9	H23B—C23—H23C	109.5
C20—C8—C9	111.91 (15)	C1—C2—C3	120.3 (2)
C20—C8—C7	110.65 (15)	C1—C2—H2	119.8
C9—C8—C7	109.51 (15)	С3—С2—Н2	119.8
С20—С8—Н8	108.2	C5—C4—C3	119.3 (2)
С9—С8—Н8	108.2	C5—C4—H4	120.3
С7—С8—Н8	108.2	C3—C4—H4	120.3
O4—C7—C1	106.40 (15)	C4—C5—C6	120.3 (2)
O4—C7—C8	108.85 (14)	С4—С5—Н5	119.9
C1—C7—C8	114.07 (15)	С6—С5—Н5	119.9
O4—C7—H7	109.1	C4—C3—C2	120.6 (2)
С1—С7—Н7	109.1	С4—С3—Н3	119.7
С8—С7—Н7	109.1	С2—С3—Н3	119.7

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C4—H4…O1 ⁱ	0.93	2.59	3.514 (3)	172
C5—H5…O3 ⁱ	0.93	2.45	3.361 (3)	165
C18—H18…O6 ⁱⁱ	0.93	2.56	3.215 (3)	128

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) -*x*+1, *y*+1/2, -*z*+1/2.