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Abstract

Background: Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The
neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have
remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity
to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for
hemi-field VWM retention.

Methodology/Principal Findings: In this study, we recorded electroencephalography (EEG) from 14 normal young
adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to
the left visual field (LVF) memory condition. The difference in mean amplitude between the ipsilateral and
contralateral event-related potential (ERP) at parietal-occipital electrodes in retention interval period was obtained
with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase
synchronization in the theta- (4–8 Hz), alpha- (8–12 Hz), beta- (12–32 Hz), and gamma- (32–40 Hz) frequency bands.
The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length
was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and
gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands
phase synchrony were most predominant in retention period for right visual field (RVF) WM than for LVF WM.
Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were
linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative
correlation with behavior accuracy.

Conclusions/Significance: We suggest that the differences in theta- and alpha- bands between LVF and RVF conditions in
functional connectivity and topological properties during retention period may result in the decline of behavioral
performance in RVF task.
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Introduction

Visual working memory (VWM) allows for temporary storage

and manipulation of the visual information necessary for the

subsequent complex cognitive tasks [1]. The neuronal mechanisms

required to sustain and process coherent visual information and

the mechanisms of limited VWM capacity have remained

unknown. Studies have reported that the capacity of VWM is

limited to a fixed number of objects, up to about 4 objects, and

varies by object complexity [2–3]. Although numerous studies

have utilized behavioral accuracy by Cowan’s formula to estimate

VWM capacity, using neural activity during the retention interval

to predict individual memory capacity was proposed recently [4–

5]. During the retention interval, neural activity was strongly

modulated by the memory load, and was invariable when the

memory load reached the memory capacity [4].

Behavioral studies have found that the increasing memory load

results in the decline of accuracy and the increase of reaction time.

Neuroimaging studies (including functional magnetic resonance

imaging, fMRI; electroencephalography, EEG; magnetoencepha-

lography, MEG) have shown that a network of several cortical

regions in the frontal, temporal, parietal and occipital lobes

supports the neural activity of VWM system [5–8], in which the

prefrontal, parietal, and occipital areas play an important role in

encoding and maintenance of objects in visual memory [4,6,9].

Because of the low temporal resolution for fMRI technology, it is

difficult to reveal the neural mechanism that occurs instanta-

neously during the retention interval. Hence, EEG/MEG or

simultaneous MEG and EEG technology are selected to record the

neural activity when subjects are performing a VWM task. Due to

the low spatial resolution for EEG/MEG, multi-channel mea-

surement and the technology of minimizing the contribution of
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volume conduction should be considered and applied. Prior

studies have shown that, during retention interval in a short-term

memory task in humans, posterior alpha (9–12 Hz) and frontal

theta (4–7 Hz) power systematically increase with the increase in

working memory load [10–11], and enhanced gamma (20–80 Hz)

activity at frontal and left posterior sites appears in the memory

condition [12]. However, little is known about how the VWM

network of those functionally distinct areas operates during the

retention interval for hemi-field WM. Graph theoretical method

provides a powerful novel way of quantifying the structural and

functional brain networks using structural MRI, diffusion MRI,

functional MRI and EEG/MEG techniques [13–16].

EEG/MEG studies based on graph theoretical method have

been increasingly performed to investigate brain functional

connectivity with the advantage of high temporal resolution and

broad frequency band [17–18]. For EEG data, each recorded

electrode represents a vertex of a graph, and an edge of a graph

indicates strong functional correlativity between two channels.

Functional connectivity between all pairs of electrodes has been

estimated using different measurements, including linear temporal

correlation, generalized synchronization, fluctuation analysis, and

phase synchronization [19–22]. The resulting connectivity ma-

trixes are converted to graphs by thresholding. The graphs are

then characterized by degree, clustering coefficient, and shortest

path length, among other measures. Because oscillatory phase

synchrony is thought to be very valuable for the investigation of

neuronal interactions and communications [23], in the present

study, we used this method to measure functional connectivity. An

EEG study has reported a gamma synchronous network oriented

to the cued location using phase synchronization [24], but it did

not quantify this large-scale network by graph theoretical methods.

A study of simultaneous MEG and EEG technology investigated

the structure of oscillatory phase synchronized networks during the

VWM retention interval, and found that alpha- (7–13 Hz) and

beta- (16–25 Hz) bands networks had a memory-load dependent,

scale-free small-world structure [25]. In addition, one other study

used a similar method indexing connection density and found that

human cortical alpha- (10–13 Hz), beta- (18–24 Hz), and gamma-

(30–40 Hz) bands among fronto-parietal and visual areas were

memory-load dependent during the VWM retention interval [5].

However, the above-mentioned studies used topological parame-

ters of a graph to characterize the system level mechanisms of

VWM maintenance based on a delayed matching-to-sample task

in the whole visual-field memory task.

For ERP studies of the whole visual-field WM, a broadly

distributed sustained negative wave has been reported to be

modulated by the memory load during the memory retention

period [26–27]. For ERP studies of the hemi-field VWM, a

contralateral delay activity (CDA) across the posterior parietal,

posterior temporal and occipital electrode sites, or sustained

posterior contralateral negativity (SPCN), were found in memory

retention period [4,28–29]. And they found that the CDA

amplitude was modulated by the number of memory items and

sensitivity to individual differences in memory capacity. In the

present study, we performed a hemi-field VWM task, and

addressed the following hypotheses: 1) VWM load-related changes

during the retention interval results in an alteration of contralat-

eral delay activity (CDA) at parietal-occipital areas, which may be

used to predict mean memory capacity; 2) the functional

connectivity of whole brain networks for the hemi-field VWM

during the retention interval is VWM load-dependent, and

modulated in different ways for different frequency bands; 3) the

changes in brain functional networks are dependent on the

direction of visual-field WM during the retention interval with

increasing memory load. To test these hypotheses, neural activity

was measured by ERPs at parietal-occipital areas, and functional

connectivity was estimated by calculating the phase synchrony

between each pairwise combination of 128 electrodes sites. The

resulting connectivity matrices were converted to a set of

undirected binary graphs by set thresholds. Following that, the

mean degree, clustering coefficient, and the shortest path length of

a graph were evaluated.

Materials and Methods

Subjects
Fourteen right-handed subjects (three females) participated in

the present study for monetary compensation. They were recruited

by advertisement at the University of Electronic Science and

Technology of China. The mean age was 23 years, ranged

between 21 and 28 years. An informed consent was signed by each

subject before the experiment. The subjects had no history of

neurological problems and had normal color vision. The local

committee for the protection of human subjects for the University

of Electronic Science and Technology of China approved the

study.

Experimental paradigm
Figure 1 illustrates an example of the stimulus sequence. Each

trial began with a black fixation cross and arrow (100 ms)

instructing subjects to attend and remember the items in the

corresponding visual field. Following that, the memory array

(300 ms) was presented. There was the same number of circles for

the left and right visual field, ranging from 1 to 6 circles with

different colors. There were 9 colors in total, including black, pink,

red, orange, yellow, green, blue, cyan, and carmine. The diameter

Figure 1. Experimental paradigm. Each trial began with a cue, and then the memory array (300 ms) was presented. Following that, there was a
900-ms retention interval and then the presentation of the test array.
doi:10.1371/journal.pone.0022357.g001
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of each circle was 2.2 cm. The circles were presented randomly on

the locations of an invisible 463 matrix (5.5u64.2u) in the left and

right visual field. There was a 900 ms retention interval and then

the presentation of the test array. The test array remained on the

screen for up to 1500 ms or until subjects responded with a button

press, indicating whether the colors of circles in attended hemi-

field were the same or different from those in the memory array.

There were four equiprobable conditions: the same colors and

locations were present in both the test and the memory array in

attended hemi-field, only the color of one circle was changed in

the test compared with the memory array in attended hemi-field,

only the location of one circle was changed in the test compared

with the memory array in attended hemi-field, and both color and

location of one circle was changed in the test compared with the

memory array in attended hemi-field. For unattended hemi-field,

there were the similar four conditions as attended hemi-field.

During the experiment, subjects were told to remember color and

disregard location. Subjects used their right hand to press button 1

when the color of all circles in the memory array was the same as

that in the test array in the attended visual field and button 2 when a

color was changed. Subjects were required to maintain central

fixation throughout the recordings and to respond as quickly as

possible. Two practice blocks were done before starting the

experimental trials to learn the task. There were 24 experimental

blocks for each subject, each block consisting of 60 trials. Each

subject performed 1440 trials in total, with memory load ranging

from 1 to 6 items, in either the left or right visual field, so that each

condition had 120 trials. Stimuli were presented and behavioral

results were recorded and analyzed using E-prime software.

Data collection and preprocessing
EEG was recorded using the EGI system with a 128 channel

electrode cap. The reference electrode was the Cz (129th)

electrode, and EOG were recorded simultaneously from electrodes

placed above and below the left eye. All electrode impedances

were kept well below 15 kV. EEG was digitized at 1000 Hz with

an amplifier band-pass of 0.1–48 Hz, segmented from 200 ms

before the onset of the memory array to 1500 ms after the

memory array onset. EOG and significant muscle artifact were

excluded by automatic artifact rejection (6100 mV). EEG epochs

containing incorrect button press were excluded. The data was

baseline corrected using the 200 ms before the onset of the

memory array. After this preprocessing, 1611, 1579, 1414, 1241,

1132, and 1036 for left visual field trials remained in total over all

subjects for memory loads of 1 to 6, respectively. For the right

visual field, 1596, 1564, 1378, 1193, 1122, and 1003 trials

remained in total over all subjects for memory loads of 1 to 6,

respectively. Those EEG data were used for the further ERP and

phase synchronization analysis. For each subject, at least 64 trials

were included for each condition.

Behavioral data analysis
Mean reaction times (RT) and accuracy were calculated for 6

memory loads in LVF and RVF memory tasks across all subjects.

RT and accuracy were assessed by repeated measure analysis of

variance (ANOVA) for memory loads 1 to 6 in both visual-field

conditions. Kendall’s coefficient of concordance (W) test was

applied to measure the relationships across the six memory load

conditions with RT and accuracy. The capacity of visual working

memory was estimated using a formula defined by Cowan [30].

ERP analysis
Single trials from each subject in the 1 to 6 memory load

conditions in the left and right visual-field conditions were

averaged, respectively. Considering the primarily contralateral

organization of the visual system responses to contralateral and

ipsilateral memory arrays could be measured by the corresponding

electrode position. For each memory load, contralateral and

ipsilateral ERP waveforms were calculated and analyzed at lateral

parietal-occipital electrodes (PO7 and PO8). The contralateral

ERP was the mean of ERP at PO7 for right visual field memory

arrays and the mean ERP at PO8 for left visual field memory

arrays. In contrast, the ipsilateral ERP was the mean ERP at PO8

for right visual field memory arrays and the mean ERP at PO7 for

left visual field memory arrays. The difference waves between

ipsilateral and contralateral ERP waveforms were analyzed for

each memory load. In order to compare the amplitude of the ERP

difference waves during the memory retention interval for the 6

memory load conditions, the mean amplitude was calculated

within two measurement windows of 300–800 ms and 800–

1200 ms after the onset of the memory array. Mean amplitudes

were assessed by repeated measure analysis of variance (ANOVA),

Kendall’s coefficient of concordance (W) test and Pearson

correlation among six memory load conditions.

Computation of scalp current density
To minimize the contribution of volume conduction and remove

spurious synchronization, the following steps were applied to single

trial of EEG data before the computation of the phase synchrony.

Step 1. Each single trial of 12 conditions (662, memory load and

visual field) of every subject was filtered by the band-pass finite

impulse response filters at 4 Hz intervals between 4 and 40 Hz.

Totally signals of 9 frequency bands were obtained. Step 2. To

minimize the modulated effect to phase by the relative amplitudes of

sources, we standardized the EEG amplitudes. This was done by

subtracting the mean amplitude at a given frequency band in the cue

interval (2100 ms ,0 ms) from the amplitude and dividing the

standard deviation of amplitude at that frequency in the cue interval

for every time point. Step 3. We used a current source density (CSD)

toolbox of MATLAB supplied by Kayser J. (http://psychophysiology.

cpmc.columbia.edu/Software/CSDtoolbox/index.html) that imple-

ments a spherical spline algorithm of Perrin et al. to estimate scalp

current density (SCD) for EEG data [31–32]. The spline interpolation

constant was set to 4.

Computation of phase synchrony
After above SCD computation, the data from 2100 ms before

the onset of the memory array to 1200 ms after the onset of the

memory array were used to estimate long-range neural phase

synchrony by calculating mean resultant length (also called phase-

locking value). Under different names, the mean resultant length

(MRL) has been used to measure the bivariate phase synchroni-

zation in a number of EEG studies [33–36]. MRL was obtained by

comparing the instantaneous phases of pairs of signals. MRL

between electrodes j and k, at each sample time t, across the N

trials, were quantified as [33]

MRLj,k,t~
1

N

X

N

ei wj tð Þ{wk tð Þ
� ������

�����: ð1Þ

Instantaneous phase ø(t) of a signal x(t) was estimated by Hilbert

transform H

w tð Þ~ arg x tð ÞziHx tð Þ½ �: ð2Þ

MRL takes on values between 0 and 1, describing a continuum

between no and perfect phase synchronization. Strong synchronization
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means a concentrated distribution on one side, and weak synchroni-

zation corresponds to a nearly uniform distribution of the phase

difference on the unit circle.

For baseline compensation, we used the cue interval (2100 ms

,0 ms) as the baseline. Baseline corrected was done by

subtracting the mean MRL at a given frequency band in the

cue interval from the MRL and dividing the standard deviation

of MRL at that frequency in the cue interval for every time

point.

To compensate for the phase synchrony caused by stimulus

stimulus-evoked activity, we created 200 shuffling SCD data for

each frequency and time point. 200 MRL values were calculated

using above method, and the surrogate distributions of MRL

values were obtained [33]. Negative MRL values which mean

decrease in phase synchronization were not discussed in present

study, so that those values were set to zeros. For positive MRL

values, we used 95th percentile of the surrogate distribution as the

synchronous criterion. MRL values that met or exceeded this

criterion were discussed and kept, and other MRL values were set

to zeros. Finally, significant MRL values were normalized by

dividing the maximum value of MRL in all conditions.

The result of computing the normalized significantly corrected

MRL for all pair-wise combinations of channels is a square

1286128 matrix for each of 1200 time points (0 ms ,1200 ms).

After above processing, therefore 1512 temporal phase synchro-

nization matrices (128612861200) for 12 conditions (6 memory

load conditions and 2 visual fields) in 14 subjects in 9 frequency

bands were obtained.

Computation of the mean degree K, clustering
coefficient C, and shortest path length L of a graph

A phase synchronization matrix can be converted to a binary

graph by defining vertices (electrodes) and edges. If a value of

phase synchronization between electrodes i and j exceeds values of

threshold T, an edge exists between i and j vertex. These vertexes

and edges construct a functional brain network. However there is

no unique way to choose T.

After obtaining a graph from the synchronization matrix, the

mean degree K, clustering coefficient C and shortest path length L

were measured to characterize the functional connectivity of the

human brain [14–16]. The degree at each vertex, ki, i = 1, 2… M

(M = 128), is defined as the number of other vertexes connecting

with the vertex i. The degree of a graph, K, is the average of the

degrees of all the vertexes in the graph

K~
1

M

XM

i~1

ki: ð3Þ

For vertex i, suppose that the degree ki, indicates the maximum

possible number of edges between these ki vertexes is ki(ki21)/2. In

fact, the number of existing edges between neighbours of vertex i is

Ei [37–38]. The clustering coefficient Ci of a vertex i with degree ki

is defined as

Ci~
2Ei

ki ki{1ð Þ : ð4Þ

Hence, clustering coefficient C of a graph is averaged over all

vertices of the graph.

C~
1

M

XM

i~1

Ci: ð5Þ

The path length dij between two vertices i and j is the minimal

number of edges that have to be traveled to go from i to j. Shortest

path length L of a graph is the mean of the path lengths between

all possible pairs of vertices:

L~
1

M M{1ð Þ
X

i,j[M,i=j

dij : ð6Þ

The degree, clustering coefficient and path length are the core

measures of graphs. Higher K reflects more connections in a

graph. C is an index of local structure and a measurement of

resilience to random error. In contrast, L is a global characteristic

and indicates the routing efficiency of the network.

Direct comparisons of the mean degree K for the phase
synchrony data

We analyzed the phase synchrony data at the graph level by

using the mean degree K, to identify the relationships between

connections from all possible pairwise interactions among 128

brain areas and three factors of visual field, memory load, and

frequency bands. Corrected MRL matrices had been tested and

the positive value in MRL matrices indicated significant phase

synchronization between two brain areas. Hence, an edge exists

between i and j vertex when the MRL value is bigger than zero.

Therefore 1512 temporal graphs (1286128, 500 time points

(300,800 ms)) for 12 conditions (6 memory load conditions and 2

visual fields) in 14 subjects of 9 frequency bands were constructed.

Then 1512 mean degree K was calculated for each time point and

then averaged over 500 time points. Kendall’s coefficient of

concordance (W) test and Pearson correlation were performed to

identify the correlations between K and three factors (two visual

fields, nine frequency bands, and six memory loads). In order to

obtain the neural correlates with behavioral response, multi-linear

regressions of the K and memory load, with the behavioral results

(RT and accuracy) were performed in all significant frequency

bands, respectively. As the possible 15 correlations among 6

memory loads (665/2 = 15) were subjected to multiple, non-

independent tests, we employed the Bonferroni correction for

multiple comparisons (i.e., 0.05/15 = 0.0033 as threshold).

Graph visualization
Matlab software was used for graph visualization for averaged

graphs. The region of each vertex was positioned according to its

electrode location in the two-dimensional coordinates. The

Cartesian coordinate origin was the midpoint between the left

and right earlobes. The axis that was directed away from the

origin towards the nasion was the +x axis, and the axis that was

directed away from the origin towards the left earlobe was the +y

axis. Hubs in averaged graph were found as vertexes whose

degrees were larger than the average degree of the graph.

Comparisons of the C and L in the same mean degree K
Considering the strong influence of the connectivity density on the

topological properties of the brain functional networks [17–18,39],

clustering coefficient C, and path length L of 1512 phase

synchronization graphs in retention period (6 memory load

VWM Load-Related Changes in Brain Networks
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conditions, 2 visual fields, 14 subjects, 9 frequency bands, at

300,800 ms time points) were calculated and compared when the

mean degree K in each memory load were the same (minimum

mean degree for the phase synchrony data in six loads). We applied

different values of threshold T to each graph to obtain the same

mean K. Because we focused on the changes of C, and L in retention

period, then, we averaged the C, and L across 500 time points. The

mean L, and C, among six memory loads, two visual fields, and 9

frequency bands, were assessed by Kendall’s coefficient of

concordance (W) and Pearson correlation, which tested whether

those three factors had significantly different influence on both

topological parameters, respectively. Multi-linear regressions of the

C (or L) and memory load with the behavioral results (RT and

accuracy) were also performed in all significant frequency bands,

respectively. We employed the Bonferroni correction for multiple

comparisons (i.e., 0.05/15 = 0.0033 as threshold), too.

Identifying small-world brain networks
A small world network has a C close to that of an ordered

network, but a very small L close to that of a random network. In

order to identify small-world brain networks from ordered and

random networks, we calculated the values of clustering coefficient

C and path length L in both types of network. Theoretical ordered

networks have a high Cordered (0.75) and a large Lordered (M/2K) [37].

In a theoretical random network, Crandom (K/M) is very small and

Lrandom (In(M)/In(K)) is very short [37]. However, the theoretical

networks have Gaussian degree distributions that may differ from

the degree distribution of actual brain networks. We have obtained

the Cexp and Lexp of brain networks for each condition of each mean

degree K in the above section. Hence, we generated 500 random

and ordered control networks for corresponding networks by a

Markov-chain algorithm which preserves the degree distribution

exactly [40]. And the mean Cexp, Lexp Cordered, Lordered, Crandom, and

Lrandom across six memory loads for nine frequency bands and two

visual-field conditions in all subjects were calculated. Paired t-test

was used to identify the small-world-ness in different conditions. As

the possible 15 correlations among 6 memory loads (665/2 = 15)

were subjected to multiple, non-independent tests for the mean C

or L, we employed the Bonferroni correction for multiple

comparisons (i.e., 0.05/15 = 0.0033 as threshold).

Results

Behavioral results
Mean reaction time (RT) in the VWM task ascended with

increasing memory load. Mean RT was 529.20630.37 ms (mean

6 standard error of the mean (SEM) for this and all following

results), 593.04633.60 ms, 660.40638.78 ms, 691.99639.88 ms,

714.74640.97 ms, and 730.29644.20 ms from the memory load

1 to 6 across both visual-field conditions, respectively. Corre-

spondingly, mean accuracy declined with increasing memory load.

Mean accuracy was 95.6360.69%, 93.5460.68%, 83.1360.77%,

72.4761.09%, 67.1161.22%, and 60.6860.86% from the

memory load 1 to 6, respectively.

Figure 2A–B shows the RT and accuracy for memory loads

from 1 to 6 over two visual-field conditions. Mean RTs increased

significantly with increasing memory load (a repeated-measure

ANOVA: all paired memory load conditions, p,0.05; Kendall’s

coefficient of concordance test: W = 0.897, p,0.001). Mean

accuracy decreased significantly with increasing memory load

(ANOVA: p,0.05; Kendall’s W = 0.977, p,0.001). Cowan’s

value increased significantly from load 1 to 2, load 2 to 3

(ANOVA: p,0.001), and reached a plateau at load 3 (p.0.05 for

the differences between load 3 and 4 condition). Cowan’s value in

memory load 3 was about 2. Cowan’s value significantly depended

on the memory load conditions (Kendall’s W = 0.683, p,0.001).

The subjects’ mean memory capacity was 1.9860.05.

Figure 2C–D shows the average RT and accuracy for all

memory loads in LVF and RVF conditions. Mean RT was

640.00636.95 ms and 655.78637.59 ms, and mean accuracy was

79.5860.62% and 77.9460.77%. Subjects responded more

quickly and accurately in the LVF memory condition than the

RVF condition (Paired t test: t(13) = 3.92, p = 0.0017 for RT;

t(13) = 3.14, p = 0.0078 for accuracy).

Figure 2. Behavioral responses. (A) Average reaction time (RT) and (B) accuracy are shown for the 14 subjects in six memory load conditions
across both visual-field conditions. Subjects responded more quickly and accurately in the lower memory load. (C) Average RT and (D) accuracy are
shown for all subjects in left and right visual filed conditions across six load conditions (* p,0.01). Subjects responded more quickly and accurately in
the left visual field condition. Error bars shows SEM of within-subject.
doi:10.1371/journal.pone.0022357.g002
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ERP results
Figure S1 shows the grand averaged contralateral and ipsilateral

ERP waveforms for the memory load of 3 condition at the lateral

occipital and parietal electrodes (PO7 and PO8). During the

period of retention interval, a larger negative-going voltage was

found in contralateral ERP compared to ipsilateral ERP. Figure

S2 shows the ERP difference waves at PO7/8 electrodes for

memory load 1, 2, 3, and 5 conditions. Approximately 300 ms

after the onset of the memory array, the amplitude of ERP

difference was highly sensitive to the number of items. Increasing

memory load from 1 to 2 or from 2 to 3 resulted in an increase in

absolute amplitude.

We did analysis with different time-windows on ERP difference

waves (early period: 300,800 ms, and late period: 800,1200 ms

after the onset of the memory array). Figure 3 illustrates

the mean amplitude of ERP difference in the early and

late time-windows. Mean amplitude was 23.0660.41 mV,

23.9760.33 mV,24.3760.42 mV,24.4260.50 mV,24.6860.48 mV,

and 24.3360.33 mV from memory load 1 to 6 for early

period, and 21.9660.37 mV, 22.3060.30 mV, 22.7460.31 mV,

23.1860.63 mV,23.1260.35 mV,and22.8460.31 mVfor lateperiod,

respectively. During the late period mean amplitude of difference waves

decreasedsignificantlycomparedwiththat in theearlyperiod (Paired t test:

p,0.001). These results showed that memory retention initially began as

contralateralpredominance,buttendedtodecreaseafteraperiodoftime.

For the early period, there were significant differences between

memory loads 1 and 2, 3, 4, 5, 6 conditions (ANOVA: p,0.01),

respectively, but there was no difference among load 2, 3, 4, 5, 6

conditions. Mean amplitude depended significantly on the

memory load (Kendall’s W = 0.412, p,0.0001, six memory load

conditions). However, Kendall’s W was very low when we only

tested conditions of memory load from 2 to 6 (W = 0.120,

p = 0.150). For the late period, there were significant differences

between memory loads 1 and 3, 4, 5, 6 conditions (ANOVA:

p,0.01), respectively, but there was no significant difference

between memory load 1 and 2 (p = 0.25). Mean amplitude

depended significantly on the memory load (Kendall’s W = 0.229,

p = 0.007, six memory load conditions). However, Kendall’s W

was very low when we only tested conditions of memory load from

2 to 6 (W = 0.099, p = 0.236). We used Pearson correlation to test

the relationship between absolute value of difference waves with

memory load. A significantly positive correlation was found for the

early (two-tailed, p = 0.016) and late (p = 0.029) periods. Hence,

during the early or late period, mean absolute amplitude increased

with the increase of memory load and reached a plateau at the

condition of memory load 2, which was close to the mean memory

capacity of present subjects.

The results of the mean degree K for the phase
synchrony data

We obtained 1512 mean degree K under the condition of two

visual fields, nine frequency bands, six memory loads, and 14

subjects. For the LVF condition, Kendall’s W of mean degree K

showed that K was memory load-dependent in beta- (24–28 Hz)

and gamma- (32–36 Hz) frequency bands (for beta-band,

W = 0.167, p = 0.039; for gamma-band, W = 0.244, p = 0.004).

For the RVF condition, Kendall’s W of mean degree K showed

that K was memory load-dependent in theta- (4–8 Hz), alpha-

(8–12 Hz), beta- (12–20 Hz), and gamma- (36–40 Hz) frequen-

cy bands (for theta-band, W = 0.228, p = 0.007; for alpha-band,

W = 0.155, p = 0.05; for low beta-band (12–16 Hz), W = 0.174,

p = 0.033; for high beta-band (16–20 Hz), W = 0.160,

p = 0.048; for gamma-band, W = 0.159, p = 0.049). Figure 4

illustrates the mean degree K as a function of memory load for

significant frequency bands. Significantly positive Pearson

correlation coefficients were found for those frequency bands

(p,0.05). The results of Kendall’s coefficient of concordance

(W) test and Pearson correlation indicated that increasing

memory load increased mean degree K in beta- and gamma-

frequency bands for LVF memory condition, but theta-,

alpha-, beta-, and gamma- frequency bands for RVF memory

condition.

Multi-linear regressions of the mean degree K and memory load

with the behavioral results (RT and accuracy) were performed in

all significant frequency bands, respectively. Only in the theta-

band and for the RVF memory condition there was a significant

multi-linear regression between RT and two independents (K and

memory load) (p,0.0001). Partial regression coefficients of mean

Figure 3. Mean amplitude of ERP difference. The mean difference between the ipsilateral and contralateral waveforms within the windows of
300–800 ms (early) and 800–1200 ms (late) after the onset of the memory array as a function of memory load. Mean amplitude increased with
increasing memory load, and reached a plateau at load 2 condition for both periods.
doi:10.1371/journal.pone.0022357.g003
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degree K (p = 0.04) and memory load (p = 0.001) were significant

too. This linear regression was significant between RT and K

(p = 0.01, Bonferroni corrected). Figure 5 illustrates the linear

relationship between mean degree K and RT for theta-band in

RVF condition. Those results indicated that reaction time was not

only dependent on the memory load but also the mean degree K of

the brain functional networks. Increasing mean degree K increased

reaction time in theta-band for RVF memory condition.

The results of mean graph visualization
The mean brain functional network was calculated by averaging

the phase synchrony graphs across all the subjects, six memory

loads, and 500 time points in retention period (300,800 ms)

within two visual-field conditions for four frequency bands (theta,

alpha, beta, and gamma). We then used 0.07 as a threshold to all

mean networks to create the graphs. Figure S3 shows the two-

dimension map of scalp electrode locations and the regions of

interest (ROI). Figure S4 illustrates the connective networks for

four frequency bands in left and right visual-field conditions under

the same threshold condition. The networks showed different

connective density for two visual-field memory conditions in each

frequency bands. The networks of LVF memory had larger

connective density than those of RVF condition. Alpha-band

network had maximal phase synchronization, following theta-,

gamma-, and beta- bands. Furthermore, in Figure S4, beta-band

network was obviously interhemispheric connections. LVF

memory retention evoked more phase synchronization between

right posterior and left frontal brain regions, and RVF memory

retention evoked more phase synchronization between left

posterior and right frontal brain regions.

Then, to quantify the significance of brain regions in functional

connectivity, 34 scalp electrodes were selected to categorize into

eight main brain regions (see Figure S3). Table 1 illustrates the

region locations with averaged degree K in selected electrodes.

Specially, we defined a hub as a vertex whose degree is larger than

the mean degree of the network. For theta-band, bilateral frontal

regions were hubs in both hemi-field conditions, but bilateral

occipital regions were hubs only in RVF condition. For alpha-

band, bilateral frontal, occipital regions had high degree in both

hemi-field conditions, but only left temporal regions of LVF and

only left parietal regions of RVF were hubs. For beta-band,

bilateral occipital and memorial ipsilateral frontal areas were hubs

in both hemi-field conditions, but only right temporal regions of

LVF and only left parietal regions of RVF were hubs. For gamma-

band, right occipital and parietal areas were hubs in both hemi-

field conditions, but right frontal and left parietal regions of RVF

were hubs too. From Table 1, we found that bilateral frontal and

occipital areas were very important for both hemi-fields memory

retention, and left parietal areas especially played a key role in

RVF memory retention.

The results of C and L under the same mean degree K
1512 mean clustering coefficient (C) and shortest path length (L)

measurements during the retention period (300,800 ms) were

Figure 4. Mean degree K of a brain functional network. Mean degree K as a function of memory load during the retention period for left visual
field memory condition (first row), and right visual field condition (second and third rows) in memory load-dependent frequency bands. The results of
Kendall’s coefficient of concordance (W) test and Pearson correlation indicated that increasing memory load increased mean degree K in those
frequency bands.
doi:10.1371/journal.pone.0022357.g004
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obtained from the phase synchrony matrix under the same mean

degree K for each subject, each visual-field, each memory load

condition, and each frequency band.

For the LVF condition, the results of Kendall’s W and Pearson

correlation test of mean C showed that C was memory load-

dependent, and increasing memory load increased mean C in all

frequency bands except theta-band (for 8–40 Hz, each W.0.272,

p,0.003, and positive correlation of each frequency band is

significant at the 0.01 level (2-tailed)). The results of Kendall’s W

and Pearson correlation test of mean L showed that L was memory

load-dependent, and increasing memory load increased mean L in

theta-, beta-, and gamma- bands (for 4–8 Hz, W = 0.241, p,0.005;

for 20–24 Hz, W = 0.382, p,0.0001; for 24–28 Hz, W = 0.326,

p = 0.0004; for 32–36 Hz, W = 0.296, p,0.001; and positive

correlation of those frequency bands is significant at the 0.05 level

(2-tailed)). Figure 6 illustrates the mean C and L as a function of

memory load for significantly frequency bands. The results of

Kendall’s coefficient of concordance (W) test and Pearson

correlation indicated that increasing memory load increased

clustering coefficient C in alpha-, beta-, and gamma- frequency

bands, and increased shortest path length L in the theta-, beta-, and

gamma- frequency bands. The maximal correlative coefficient

between memory load and the C was 0.538 under the gamma-band

(36–40 Hz). And the maximal correlative coefficient between

memory load and the L was 0.320 under the theta-band (4–8 Hz).

Multi-linear regressions of the C/L and memory load with the

behavioral results (RT and accuracy) for LVF condition were

performed in all significant frequency bands, respectively. We

found that for the C there was a significant multi-linear regression

between behavioral accuracy and two independents (C and

memory load) (p,0.05) in beta- and gamma- frequency bands

(12–36 Hz). Partial regression coefficients of C (p,0.05) and

memory load (p,0.0001) were significant, which were negative

correlation with accuracy. These linear regressions were significant

between accuracy and C (p,0.001, Bonferroni corrected). For L

there was no significant multi-linear regression between behavioral

results and two independents (L and memory load). Figure 7

illustrates the significantly linear relationship between the C and

accuracy for beta-band (only band of 24–28 Hz was shown) and

gamma-band in LVF condition. Those results indicated that

behavioral result was not only dependent on the memory load but

also the mean clustering coefficient C of the brain functional

networks. Increasing mean C decreased accuracy in beta- and

gamma- frequency bands for LVF memory retention.

For the RVF condition, the results of Kendall’s W and Pearson

correlation test of mean C showed that the C was memory load-

dependent, and increasing memory load increased mean C in all

frequency bands (for 4–40 Hz, each W.0.325, p,0.0004, and

positive correlation of each frequency band is significant at the

0.01 level (2-tailed)). The results of Kendall’s W and Pearson

correlation test of mean L showed that the L was memory load-

dependent, and increasing memory load increased mean L only in

beta-band (for 12–16 Hz, W = 0.206, p = 0.013; and positive

correlation of this frequency band is significant at the 0.05 level (2-

tailed)). Figure 8 illustrates the mean C and L as a function of

memory load for significantly frequency bands. The results of

Kendall’s coefficient of concordance (W) test and Pearson

correlation indicated that increasing memory load increased

clustering coefficient C in theta-, alpha-, beta-, and gamma-

frequency bands, and increased shortest path length L only in beta

frequency band. The maximal correlative coefficient between

memory load and C was 0.521 under the alpha-band (8–12 Hz).

And the maximal correlative coefficient between memory load and

the L was 0.240 under the beta-band (12–16 Hz).

Multi-linear regressions of the C/L and memory load with the

behavioral results (RT and accuracy) for RVF condition were

performed in all significant frequency bands, respectively. We

found that for the C there was a significant multi-linear regression

between behavioral accuracy and two independents (C and

memory load) (p,0.05) in alpha frequency band (8–12 Hz).

Partial regression coefficients of the C (p = 0.0003) and memory

load (p,0.0001) were significant, which were negative correlation

with accuracy. This linear regression were significant between

accuracy and C (p,0.0001, Bonferroni corrected). For the L there

was no significant multi-linear regression between behavioral

results and two independents (L and memory load). Figure 9

Table 1. Summary of network measures for each condition.

Region name Degree (K)

Left visual field Right visual field

Theta Alpha Beta Gamma Theta Alpha Beta Gamma

Left frontal 10.50 17.83 2.50 3.33 7.17 13.67 1.00 1.50

Left parietal 3.50 6.25 1.00 2.50 3.50 11.50 3.25 4.50

Left temporal 4.00 13.33 1.67 3.00 4.00 10.00 0.67 3.67

Left occipital 5.00 16.75 2.50 3.75 5.00 17.75 2.25 3.25

Right frontal 9.33 13.33 1.00 3.83 6.67 12.67 2.00 6.17

Right parietal 1.50 9.50 1.00 5.50 2.75 8.00 0.75 5.75

Right temporal 3.33 10.33 2.00 1.00 1.33 8.67 0.67 3.33

Right occipital 5.50 13.00 3.50 6.00 4.75 19.00 1.50 4.00

Averaged degree K in eight brain regions of selected electrodes was shown and
network hubs were listed in bold and italic.
doi:10.1371/journal.pone.0022357.t001

Figure 5. Relationship between the mean reaction time and
mean degree K. Linear regression between mean reaction time (RT)
and mean degree K in theta-band for right visual field condition across
six memory load conditions. A linear regression analysis was conducted
to compare the relationship between RT and K. Each single subject in
each memory load condition is marked as a circle, totaling 84 circles.
This regression was significant (p = 0.01, Bonferroni corrected), indicat-
ing a positive linear correlation between RT and K.
doi:10.1371/journal.pone.0022357.g005
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illustrates the significantly linear relationship between the C and

accuracy for alpha-band in RVF condition. Those results

indicated that behavioral result was not only dependent on the

memory load but also the mean clustering coefficient C of the

brain functional networks. Increasing mean C decreased accuracy

in alpha frequency band for RVF memory retention.

Small-world brain network results
The mean clustering coefficient C and path length L of brain

networks of the average load condition in theta-, alpha-, beta- and

gamma- frequency bands for two hemi-field conditions, and

corresponding Cordered, Crandom, Lordered, and Lrandom are shown in the

Figure 10. Both the C and L of brain networks for two visual-fields

were intermediate between those of ordered and random networks

for four types of frequency bands. The C or L in left and right

visual field conditions had similar pattern compared to those of the

random and ordered networks. The C of the brain network was

significantly smaller than Cordered and significantly larger than

Crandom, and the L of the brain network was significantly lower than

Lordered and larger than Lrandom (paired t-test, p,0.001, Bonferroni

corrected). The results indicated that brain network of those four

types of frequency bands had intermediate clustering coefficient C

and path length L compared to ordered and random networks,

characteristic of small-world networks [37].

Discussion

The main goal of this study was to find VWM load-related

changes in neural activity and functional connectivity in both

hemi-field WM tasks during retention interval by traditional ERP

methods and modern graph theoretical techniques. The behav-

ioral data (Figure 2) showed that subjects had more rapid and

accurate responses to the low memory load condition than those

of the high memory load, indicating that the high memory load

task was sufficiently difficult to demand more cognitive resource

and effort. Specially, subjects had more rapid and accurate

responses to the LVF memory condition, indicating a hemi-field

asymmetry in visual object encoding and information mainte-

nance. ERP data provided further evidence that the memory

capacity was associated with the neural activity during retention

interval over parietal-occipital areas (Figure S1, S2 and Figure 3)

[2,4]. ERP results also showed that memory retention initially

began as contralateral predominance, but tended to decrease this

effect after a period of time. The results of graph theory measures

showed that brain network was not only VWM load-dependent,

but also visual-field dependent (Figure 4, 5, 6, 7, 8, 9, 10, and

Table 1).

Memory capacity and ERP amplitude
Previous studies have reported that VWM reaches capacity limit

at about 3 colors, 2 shapes, and 2 compound objects, which means

that the memory capacity decreases with the increase of object

complexity [41–43]. In our VWM task, mean memory capacity

was about 2 objects, which was estimated by the Cowan’s formula

or directly by the observation of behavioral accuracy (Figure 2B,

accuracy decreased rapidly starting from memory load 2

condition).

Figure 6. Mean clustering coefficient C and shortest path length L in LVF condition. Mean C (left column) and L (right column) as a function
of memory load during the retention period was shown for significant memory load-dependent frequency bands. The results of Kendall’s coefficient
of concordance (W) and Pearson correlation test indicated that increasing memory load increased mean C in alpha, beta, and gamma bands, and
increased mean L in theta, beta and gamma bands.
doi:10.1371/journal.pone.0022357.g006
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Figures S1, S2, and Figure 3 indicated that VWM load-related

changes resulted in an alteration of neural activity in the retention

interval at parietal-occipital areas. The parietal-occipital areas

have been frequently reported to play a role in active maintenance

in VWM tasks [44–45], in which the superior intraparietal sulcus

and the lateral occipital complex are important for encoding and

maintaining a variable subset of the attended objects [3]. The

mean amplitude difference in ERPs between the ipsilateral and

contralateral parietal-occipital electrodes during the retention

interval increased with the increase of the memory load and

reached a plateau at memory load 2 condition, which equaled to

the mean memory capacity in the present task. The above ERP

results provided further evidence that there was a direct

relationship between memory capacity and neural activity,

suggesting that mean amplitude of ERP difference could be a

predictor of the memory capacity [4–5].

Changes in brain network density for hemi-field memory
retention

The mean degree K of brain network was memory load-

dependent in beta- and gamma- frequency bands for LVF WM,

but in theta-, alpha-, beta-, and gamma- frequency bands for RVF

WM (Figure 4). On the one hand, this meant that the inter-region

phase synchrony was memory load-dependent and strengthened

with increasing memory load in theta-, alpha-, beta-, and gamma-

frequency bands [5,10–12]. On the other hand, the results

indicated that an increasing VWM load increased the number of

significant connections between interconnected brain areas for left

and right visual field WM in brain networks in different frequency

bands. Specially, increasing memory load in RVF increased

network density in theta- and alpha- frequency bands. The current

findings demonstrated that phase synchronous networks of theta-

and alpha-band were in particular sensitive to the memory load for

RVF memory retention.

Working memory requires the simultaneous storage and

processing of information, including the central executive

functions or attentional control system [1]. Simultaneous EEG-

fMRI studies of resting state have found that alpha power is

negatively correlated with parietal and frontal cortical activity [46–

47]. The fronto-parietal network is known to support attentional

processes [48]. The functions of alpha rhythms as well as theta

rhythms have also been explored in different cognitive tasks,

suggesting that the alpha- and theta-band synchrony plays an

active role in the attentional-control system [49–54]. Furthermore,

we found that increasing network density in theta-band for RVF

WM was significantly linked to the delay of behavior reaction time

(Figure 5). Combined with the behavior results, the decrease of the

behavior performance for RVF WM could be the result of the

involvement of theta-band phase synchronous network during the

information retention period.

Changes in hubs for hemi-field memory retention
The hubs of left or right visual field memory retention well

described the properties of phase synchrony networks, reporting a

high density of strong functional core areas. Palva and colleagues

have suggested that inter-area phase synchrony in the alpha-, beta-

, and gamma-frequency bands among frontoparietal and visual

regions could be a systems level mechanism for the information

maintenance in VWM for a whole visual field task [5]. They found

that major hubs were located to the frontal cortex for alpha-band,

right extrastriate regions and left intrparietal sulcus for beta-band,

bilateral intraparietal sulcus and left superior parietal gyrus for

gamma-band. According to our data (Table 1), despite the low

spatial resolution, the similar hubs were found, and the changes in

hubs between right and left visual-field retention were found also.

In this study, the network hubs in these frequency bands were

largely located in frontal, parietal, and visual regions that have

been observed in previously study [55]. From Table 1, we found

that bilateral frontal and occipital areas were very important for

two hemi-fields memory retention, but left parietal areas especially

played a more important role in RVF memory retention for alpha-

, beta-, and gamma- bands. The enhanced involvement of the left

parietal could suggest a compensation mechanism for memory

retention to RVF information, though we have not yet solid

evidence to demonstrate this hypothesis.

Figure 7. Relationship between the behavioral accuracy and
mean C in LVF condition. Significantly linear relationship between
clustering coefficient C and accuracy for (A) beta-band (only band of
24–28 Hz was shown) and (B) gamma-band were illustrated. Each single
subject in each memory load condition is marked as a circle, totaling 84
circles. These regressions were significant (p,0.001, Bonferroni
corrected), indicating a negative linear correlation between C and
accuracy.
doi:10.1371/journal.pone.0022357.g007
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Changes in graph theory measures for hemi-field
memory retention

The clustering coefficient C and shortest path length L of the

brain network under the same network density was memory load-

dependent and hemi-field dependent (Figure 6 and Figure 8). The

C showed significantly lower values in the low memory load

condition compared with higher memory load conditions for

alpha-, beta-, and gamma- bands for LVF memory retention, but

increasing memory load increased C in all frequency bands for

RVF memory retention. This result indicated that memory load

changed local connectedness of brain functional network [16–18].

The current findings demonstrated that topological property of

theta-band phase synchronous network was in particular sensitive

to memory load for RVF memory retention, which was in line

with the results of network density. Furthermore, we found that

increasing C was significantly linked to the decrease of behavior

accuracy in beta- and gamma- frequency bands for LVF

condition, but in alpha frequency band for RVF condition

(Figure 7 and Figure 9). This finding implied that the decrease of

behavior accuracy with increasing memory load when subjects

performed task may be the result of increasing local connectedness

in phase synchronous networks in different frequency bands.

The shortest path length L of the brain network was memory

load-dependent for theta-, beta-, and alpha- frequency bands in

LVF condition, but for beta-band in RVF condition (Figure 6 and

Figure 8). Increasing memory load increased L in these conditions,

which suggested that higher shortest path length might bring the

delay of reaction time.

Comparisons of the C and L of the brain networks with the

corresponding values of Cordered, Crandom, Lordered, and Lrandom showed

that both the C and L of the brain networks were intermediate

between those of ordered and random networks for all frequency

bands, characteristic of small-world networks [37]. And there was

no difference between left and right visual field conditions

(Figure 10). Previous studies in neuroscience based on graph

theoretical analysis have reported that anatomical and functional

brain networks have the characteristic small-world properties [16–

18,37–38,56–59]. Small-world neural networks have the potential

to facilitate synchronization between distant brain areas and

efficient information processing [46,60–61]. Hence, topological

properties (C and L) during the retention interval were load-

dependent and hemi-field dependent, and modulated by using

diverse modes for different frequency bands.

The main differences between RVF and LVF working
memory tasks

Behavior performance in LVF memory task was better than that

of RVF memory task. The reason may come from any process of

VWM, including attended direction, information encoding,

information retention, and information retrieve. In the present

study, we explored the contribution of hemi-field WM in retention

period. Interestingly, the load-dependent synchronized theta- and

alpha- bands networks were only appeared in RVF condition. This

suggests that beta- and gamma- bands interactions of brain

network were involved in two visual-field conditions for the control

Figure 8. Mean clustering coefficient C and shortest path length L in RVF condition. Mean C (A) and L (B) as a function of memory load
during the retention period was shown for significant memory load-dependent frequency bands. The results of Kendall’s coefficient of concordance
(W) and Pearson correlation test indicated that increasing memory load increased mean C in theta-, alpha-, beta-, and gamma- bands, and increased
mean L only in beta-band.
doi:10.1371/journal.pone.0022357.g008

Figure 9. Relationship between the behavioral accuracy and
mean clustering coefficient C in RVF condition. Significantly linear
relationship between mean C and accuracy for alpha-band was
illustrated. Each single subject in each memory load condition is
marked as a circle, totaling 84 circles. This regression was significant
(p,0.0001, Bonferroni corrected), indicating a negative linear correla-
tion between C and accuracy.
doi:10.1371/journal.pone.0022357.g009
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of top-down attention that holds visual information in VWM [9].

In addition, theta- and alpha- bands interactions of the whole

brain networks might be especially involved in RVF condition for

the extra control of top-down attention, which pointed to the

possibility that theta- and alpha- bands synchronization could

recruit additional processing resources for information retention of

RVF [23,51–52]. Furthermore, the load-dependent synchronized

theta-band network density was positive correlation with reaction

time only for RVF condition, which provided further evidence that

more complex control of top-down attention were required in this

condition to obtain additional processing resources, resulting in

the delay of reaction time. On the other hand, topological

property of theta-band phase synchronous network was in

particular sensitive to the memory load for RVF memory

retention, which supported the view of important role of theta-

band coupling for RVF condition. The load-dependent topolog-

ical property of alpha-band network was negative correlation with

accuracy only for RVF condition, which provided further evidence

that alpha-band coupling was also important in this visual field

condition, increasing C resulting in the decease of behavioral

accuracy. This result implied that the topological property (C) of

alpha-band coupling network could be used as a predictor for the

behavioral accuracy for RVF memory task.

Conclusion
We used traditional ERP and modern graph theoretical

technique to distinguish VWM load-related changes in neural

activity and functional connectivity of hemi-field VWM during the

retention interval. Subjects had more rapid and accurate responses

to the LVF memory condition. ERP data provided further evidence

that the neural activity in the retention interval over parietal-

occipital areas was not only associated with the memory load, but

also could be used to predict memory capacity. The results of

functional connectivity and graph theory measures showed that

brain network of theta-, alpha-, beta-, and gamma- frequency bands

was VWM load-dependent and visual-field dependent. The theta-

and alpha- bands phase synchrony networks were most predom-

inant in information retention of RVF. Furthermore, only for RVF

condition, theta-band brain network density during the retention

interval were linked to the delay of reaction time, and the load-

dependent topological property of alpha-band network was negative

correlation with accuracy, suggesting that synchronous of theta- and

alpha- frequency bands may be a strategy of recruitment additional

processing resources for information retention of RVF.

Taken together, the results show that the neural activity and

phase synchrony measures of functional brain connectivity in

theta-, alpha-, beta-, and gamma- frequency bands are not only

memory load-dependent, but also dependent on the direction of

visual-field memory during human VWM maintenance. And the

different frequency bands coupling in the RVF condition during

retention period are critical to the decline of behavioral

performance. We suggest that the differences in theta- and alpha-

bands between LVF and RVF conditions in functional connec-

tivity and topological properties during retention period may result

in the decline of behavioral performance in RVF task.

Supporting Information

Figure S1 Grand averaged ERP waveforms. Grand

averaged contralateral and ipsilateral ERP waveforms for load 3

at PO7/8 electrodes sites. Negative voltage is plotted upwards. A

large negative-going voltage was found in contralateral electrodes

to the memorized hemi-field within the time periods for the

memory array and retention interval. The two grey rectangles

reflect the time periods for the memory and test arrays,

respectively.

(TIF)

Figure S2 ERP difference waves. ERP difference waves at

PO7/8 electrodes for load 1, 2, 3, and 5 (from lowermost line to

topmost line). The grey rectangle reflects the measurement

Figure 10. Mean C and L in ordered, experimental, and random networks. Figure shows the comparison of the experimental clustering
coefficient C and path length L with those of the corresponding values in random and ordered networks for left and right visual field memory
conditions. Both C and L are intermediate between ordered and random networks for all frequency bands, whereas C of the EEG is significantly
smaller than C of ordered networks and significant larger than C of random networks, and L of the EEG is significantly lower than L of ordered
networks and larger than L of random networks (paired t-test, p,0.001, Bonferroni corrected).
doi:10.1371/journal.pone.0022357.g010
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window of 300–1000 ms after the onset of the memory array to

estimate the mean amplitude of ERP difference for memory load 1

to 6 in the retention interval.

(TIF)

Figure S3 Map of 128 scalp electrode locations and
regions of interest. ROI was circled by a line. There were eight

main brain regions, including left/right frontal, temporal, parietal

and occipital.

(TIF)

Figure S4 Functional connectivity in four frequency
bands for two visual-fields. The mean degree K of left visual

field condition was 6.47, 12.30, 1.72, and 4.69 for theta-, alpha-,

beta-, and gamma- bands, respectively. The mean degree K of

right visual field condition was 4.48, 10.30, 1.47, and 4.06 for

theta-, alpha-, beta-, and gamma- bands, respectively. The

networks of left visual field memory had larger connective density

than those of right visual field condition.

(TIF)
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