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Abstract: Inflammation and psychological stress are risk factors for major depression and suicide.
Both increase central glutamate levels and activate the hypothalamic-pituitary-adrenal axis and
the sympathetic nervous system. Both factors also affect the function of the chloride transporters,
Na-K-Cl-cotransporter-1 (NKCC1) and K-Cl-cotransporter-2 (KCC2), and provoke interleukin-6 (IL-6)
trans-signaling. This leads to measurable increases in circulating corticosteroids, catecholamines,
anxiety, somatic and psychological symptoms, and a decline in cognitive functions. Recognition of
the sequence of pathological events allows the prediction of novel targets for therapeutic intervention.
Amongst others, these include blockade of the big-K potassium channel, blockade of the P2X4 channel,
TYK2-kinase inhibition, noradrenaline α2B-receptor antagonism, nicotinic α7-receptor stimulation,
and the Sgp130Fc antibody. A better understanding of downstream processes evoked by inflammation
and stress also allows suggestions for tentatively better biomarkers (e.g., SERPINA3N, MARCKS, or
13C-tryptophan metabolism).
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1. Introduction

Major depressive disorder (MDD) is worldwide a leading cause of years lived with disability [1,2].
Unfortunately, drug development in psychiatry has stagnated during the last decades [3,4]. However,
continuing research has led to the recognition of the importance of the immune system in psychiatric
disorders [5,6], including depression [7,8]. Based on insights provided by ongoing academic research
efforts, it is possible to reinterpret the wealth of information on the pathophysiological processes in
major depressive disorder. This better understanding enables proposals for novel pharmacological
treatment targets. The current review starts off with a reinterpretation of existing disease knowledge.
This is subsequently used to list hitherto underexplored pharmacological treatment options. Finally,
it provides proposals for novel biomarkers for endophenotypic depression symptoms, as well as
suicide risk.

2. Stress as a Risk Factor for Depression and Suicide

Stress, including early life stress, is an important risk factor for major depression [9–15]. Early
life stress (childhood neglect, physical or sexual abuse, or early parental loss) not only constitutes
a major risk factor for depression, but also significantly increases suicide risk [16,17]. Stressors like
family or romantic conflicts and legal or disciplinary problems can trigger suicidal behaviors [17]
and manic episodes [18,19]. Stress-induced depression is characterized by deep mental and physical
fatigue, disturbed non-restorative sleep, irritability, emotionality, concentration problems and memory
disturbances [9]. Psychological stress can be investigated under laboratory conditions by a tool called
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the Trier social stress test (TSST) [20]. Application of the TSST frequently evokes marked increases in the
activity of the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis (seen as
increases in circulating levels of catecholamines, adrenocorticotrophic hormone (ACTH), and cortisol,
and tachycardia) [20,21]. Interestingly, the circulating levels of interleukin-6 (IL-6) are also increased, as
is the activity of the pro-inflammatory nuclear-factor kappa-B (NFκB)-pathway in monocytes [21–24].
Notably, TSST-induced pro-inflammatory activity is particularly strong in individuals with a history of
childhood maltreatment [22]. Both the corticosteroid “stress”-hormones and the sympathetic nervous
system represent important effector systems. Chronic social stress in laboratory animals and in humans
has been shown to stimulate gene transcription of pro-inflammatory proteins in monocytes via an
activation of β-adrenoceptors [25,26] and α1B receptors [27]. Repeated social defeat in mice has been
observed to increase the number of monocytes trafficking to the brain, while plasma levels of IL-6
and the weight of the spleen have been seen to increase [28]. Blockade of β-adrenoceptors during
the defeat period has been shown to prevent these changes [28]. Notably, the observation that stress
leads to activation of the immune system has been conceptualized as a preparation for subsequent
wounding and possible infection [14,15]. This interpretation is supported by the observation that
defeat-stress in mice improves bacterial clearance by phagocytes [29]. As in peripheral monocytes,
in the central nervous system stress can result in activation of microglial cells [30–32] (reviewed
by [5,33,34]). Stress-induced microglia activation is microscopically visible in terms of an alteration of
the microglia phenotype [35,36].

2.1. Stress Modifies KCC2 and NKCC1 Activity

The direction of anion-flux through the gamma-aminobutyric acid-A (GABAA) channel depends
on the electrochemical gradient for the chloride ion and is determined by the expression and activity of
two trans-membrane chloride-transporters, K-Cl-cotransporter-2 (KCC2) and Na-K-Cl-cotransporter-1
(NKCC1) (reviewed by [37]). KCC2 extrudes chloride, while NKCC1 performs chloride-influx.
A reduction in the expression of KCC2 or the inhibition of the activity impairs chloride-extrusion,
which leads to higher intracellular chloride levels [37]. Under such conditions, a GABA-induced
opening of the GABAA-channel causes a chloride efflux and thus a depolarization.

Corticotrophin-releasing factor (CRF)-producing cells within the paraventricular nucleus (PVN)
are activated by glutamate-neurons and noradrenergic neurons [9,38,39] but under inhibitory control
by GABA-neurons [38,40,41]. An altered direction of the chloride flux through GABA-channels thus
has consequences for the activity of the HPA axis.

A variety of experiments in rodents show that stress affects the function of chloride transporters.
For instance, acute restraint stress in rats has been shown to activate α1-adrenoceptors in the PVN [40],
which suppressed the activity of the KCC2. Consequently, restraint stress was observed to lead
to a depolarization shift, rendering GABA-agonists activating rather than inhibitory [40]. In mice,
acute restraint stress has been seen to reduce the cell-surface expression of KCC2 [41]. The modified
chloride-gradient has been observed to cause an increase in excitatory GABA transmission. Interestingly,
under this particular condition, GABAA-mimetic neurosteroids were found to raise the firing frequency
of CRF neurons and caused significant increases in circulating corticosterone-levels [41]. Moreover,
the anxiolytic activity of neurosteroids has been seen to be altered to an anxiogenic effect [41]. In a
model of chronic stress, Gao and colleagues [42] found that repeated exposure to unpredictable mild
stress increased the protein levels of NKCC1 in CRF neurons of rat PVN. The NKCC1 levels remained
elevated for at least 10 days [42]. Moreover, the authors confirmed that acute restraint stress decreased
KCC2 levels in the PVN; however, this effect was short-lasting and returned to baseline within 5 days
post stress. These data indicate that acute stress impairs GABA control over CRF neurons via a decrease
in KCC2 function, whereas chronic stress-induced impairment is mediated via an increase in NKCC1
expression. The depolarizing activity of GABA is not restricted to the PVN and similar effects have been
noticed in the spinal cord and are thought to play a role in neuropathic pain and hyperalgesia [43,44].
The effect of stress on chloride transporters and consequently on GABA-function may provide a
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mechanistic explanation for “the GABAergic deficit hypothesis of major depressive disorder” [14,45].
A dysfunctional GABA-inhibition would lead to a diminished suppression of glutamate neurons and
to an increased activity of the sympathetic nervous system and HPA axis. The reader may notice that
this process represents a vicious circle. A further vicious circle may be formed when high levels of
cortisol activate the mineralo-corticoid receptor (MR) because MR-activation is known to increase the
metabolic stability of NKCC1 [46].

2.2. Hyperactivation of the HPA Axis

A prolonged activation of the HPA axis may result in an exhaustion (atrophy) of cortisol production
by the adrenal. Low circulating levels of cortisol are observed in a number of chronic stress disorders
in humans. This includes atypical depression [47], posttraumatic stress disorder [48], and suicide
attempts [49]. Since activation of the HPA axis inhibits immune-cell function [15,50,51], an exhausted
cortisol production might lead to a hyper-immune state with increased levels of IL-6 [47,52].

2.3. Stress Induces Increased Central Glutamate Signaling

Immobilization stress in rats has been found to significantly increase extracellular glutamate
levels in the hippocampus and frontal cortex [53,54]. A role of corticosterone in this response is
indicated by the observation that adrenalectomy markedly attenuates the stress-induced increase
in glutamate [53,54]. Additionally, chronic unpredictable mild stress has been observed to cause an
increase in extracellular glutamate levels in these two brain areas, acting on N-methyl-D-aspartate
(NMDA) receptors that couple to the NFκB signaling pathway [55]. Furthermore, foot-shock stress, as
applied in the learned helplessness model, has been shown to cause a marked increase in neuronal
glutamate release in the rat frontal cortex, which again is dependent on glucocorticoid receptor (GR)
activation [56]. Finally, chronic mild stress has been found to increase the expression of NMDA-NR1
receptors on CRF neurons in the rat PVN, which in turn leads to an increased excitation of the HPA
axis [39]. These data indicate that stress causes a corticosterone-driven increase in neuronal glutamate
release [57]. Neuron-derived glutamate provokes adenosyl-triphosphate (ATP)-release by astrocytes,
which represents a danger-signal for microglial cells [58]. Chronic psychosocial stress decreases
astroglial plasticity in the rodent hippocampus and frontal cortex [59,60]. In another experiment, four
sessions of restraint stress elevated corticosterone levels in mice in vivo. Blockade of corticosterone
synthesis, blockade of the glucocorticoid receptor by RU486, or blockade of NMDA-receptors by MK801
prevented stress-induced microglia proliferation [50]. MK801 also prevented microglia-proliferation
following exogenous corticosterone administration to non-stressed mice [50]. These results suggest that
stress activates the GR receptor on neurons, which leads to increased extracellular levels of glutamate.
This glutamate may subsequently activate NMDA receptors on astrocytes, and these then produce
ATP (see Figure 1). Data by Ferrini and De Koninck indicate that ATP activates P2X4 receptors on
microglia, and this provokes the release of brain-derived neurotrophic factor (BDNF) [44]. BDNF
will activate tropomyosin receptor kinase-B (TrkB) receptors on neurons and reduce the activity of
KCC2 (promoting GABA-induced depolarization) [44]. This summary indicates that stress in the CNS
triggers a sequence of events that ultimately leads to an increase in neuronal network excitability [44].
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Figure 1. This scheme is based upon data published by [44,58]. Stress activates a sequence of events
that involves neuron-derived glutamate, astrocyte-derived ATP, and microglia-derived brain-derived
neurotrophic factor (BDNF), and ultimately results in higher network excitability. Since stress
induces dendritic atrophy, the elevated network excitability might serve a repair function. Legend:
GR, glucocorticoid receptor; NMDA, N-methyl-D-aspartate; TrkB, tropomyosin receptor kinase-B;
KCC2, K-Cl-cotransporter-2.

ATP also stimulates microglia to assemble the components of the ‘NOD-, LRR- and
pyrin-domain-containing protein 3′ (NLRP3) inflammasome [58]. The NLRP3 inflammasome mediates
the cleavage of pro-interleukin-1β (pro-IL1β) to mature IL1β [34] and sensitizes microglia to generate a
stronger pro-inflammatory response [61]. Frank et al. have exposed rats to inescapable tail shocks. They
noted that the responsiveness of hippocampal microglia to lipopolysaccharide (LPS) was raised by the
tail-shock procedure, but, notably, this sensitization was absent if the rats had been adrenalectomized or
treated with the GR-antagonist RU486 prior to the tail shocks [61]. Chronic stress reduced the dendritic
connectivity and size of the hippocampus and prefrontal cortex (PFC) [62–64], while inhibition of NMDA
receptors or inhibition of glutamate-release blocked the effect of chronic stress on dendritic atrophy
(reviewed by [57]). Stress-induced reduction in neuropil is likely to contribute to impairment in cognitive
function [65,66].

2.4. Stress Increases Levels of Interleukin-6

In human subjects, physical and psychosocial stress can cause central and peripheral IL-6
release [15,67–69]. Daily life stressors evoked a particularly large increase in IL-6 in individuals who
had suffered from childhood trauma [22,70]. In addition, rodent studies provide ample evidence
for stress-induced IL-6 release. For instance, chronic unpredictable mild stress has been shown to
elevate the levels of the IL-6 protein in the hippocampus and alter animal behavior [71]. Treatment
with the NMDA-blocker ketamine has been found to provoke a rapid reduction in circulating IL-6
levels and normalized ‘depressed’ behavior [71]. Chronic mild stress, similar to other forms of stress
such as acute foot shock or chronic intermittent cold exposure, has been seen to increase IL-6 levels in
the hypothalamus of rats and activate the IL-6 – gp130 – STAT3 (signal transducer and activator-3)
signaling pathway [72]. In apparent contradiction to these results is the observation that rats which
are resilient to learned helplessness (a further rodent model of depression) have lower brain levels of
IL-6 than their helpless counterparts [73]. The solution to this apparent conundrum is that IL-6 signals
in two fundamentally different ways. When IL-6 acts via the membrane-bound IL-6 receptor (called
“classical signaling”) it mainly causes neuron-protective effects [74–76]. However, when IL-6 acts in
conjunction with the membrane-shed moiety of the IL-6 receptor (soluble IL6R, or sIL6R), a process
called “trans-signaling”, it provokes mainly pathologic effects [75,77–79]. A detailed discussion about
factors that influence the use of the two signaling modes is provided in Section 3.1 below.
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3. Inflammation as a Risk Factor for Depression and Suicide

Whereas the previous sections dealt with the effect of stress on depression-related parameters,
the next sections deal with inflammation. It may be noted that central and peripheral inflammation
cause effects that resemble those that are due to stress. Miller and Raison [80] have formulated the
“pathogen defense hypothesis of depression”, which posits that risk alleles for depression are the ones
that inhibit growth of pathogens by a pro-inflammatory activity, and therefore are conserved in the
human genome (Table 1).

Table 1. Depression is comorbid with inflammatory disorders.

Comorbidity Citation
Viral infection (e.g., HIV *) [36,81]

Bacterial infection (e.g., periodontitis) [68,82]
Allergic inflammation (e.g., asthma) [83]

Autoimmune disease (MS) [84]
Autoimmune disease (RA) [85–87]

Neurological disorder (Parkinson’s) [88,89]
Neurological disorder (Alzheimer’s) [90,91]
Cardiovascular disease (heart failure) [92]

Diabetes [93]
Obesity [94]

*HIV, human immunodeficiency virus; MS, multiple sclerosis; RA, rheumatoid arthritis.

Depression is comorbid with numerous disorders involving inflammation (Table 1; for reviews
see [6,14,15,95,96]). Conversely, inflammation markers such as IL-6 are often elevated in depression. For
instance, depressed patients with metabolic syndrome [97] or patients suffering from atypical depression
(e.g., hyperphagia, weight gain, hypersomnia) display high plasma levels of IL-6 [98]. Meta-analyses
of cytokine levels show that plasma IL-6 levels [99–102], tumor necrosis factor-α (TNFα) [99,100], and
circulating levels of C-reactive protein (CRP) [101,102] are elevated in patients with MDD. Moreover, IL-6
has been identified as an important susceptibility gene for major depression [103]. Serum IL-6 and sIL6R
have also been found to be higher after delivery, especially in women with a history of depression [104].
Clinical studies measuring sIL6R in unipolar depression are still sparse, but two meta-analyses in bipolar
depression have reported that circulating levels of IL-6 and sIL6R were higher in patients than in healthy
controls [105,106]. Clearly elevated levels of sIL6R in serum and cerebrospinal fluid (CSF) have been
observed in patients with neurological inflammatory diseases such as multiple sclerosis [107]. In a
systematic literature search of studies concerning cytokine levels in patients with suicidal ideation, suicide
attempts, or suicide completion, elevated IL-6 in CSF, blood, and postmortem brain tissue was found in 8
out of 14 studies [108]. In suicide attempters, plasma IL-6 levels and CSF IL-6 levels did not correlate,
and, interestingly, IL-6 levels were higher in plasma than in CSF ([109,110] but see also [111]). High
plasma levels of IL-6 were associated with increased suicidal ideation [112] and suicide attempts [113],
and they were independent of depression severity [112–114]. Moreover, IL-6 levels in plasma are also
associated with suicide endophenotypic behaviors, such as increased extraversion, impulsivity, and
violent attempts [109,115,116]. Measurements of sIL6R levels in individuals showing suicidal behavior
have, apparently, not yet been performed [117]. Apart from these clinical studies, rodent depression
models such as chronic unpredictable mild stress, learned helplessness, maternal separation, forced swim
test/tail suspension test, prenatal stress, and olfactory bulbectomy are also associated with significant
increases in IL1β, TNFα and IL-6 in the brain and blood [68,118].

3.1. IL-6 Trans-Signaling in Depression

Although leukocytes, fibroblasts, adipocytes, keratinocytes, and endothelial cells all secrete
IL-6 [119], about 30% of circulating IL-6 is derived from adipose tissue [13]. Homeostatic production of
IL-6 leads to plasma levels of 1–10 pg/mL, but during infection, inflammation, or cancer, these levels are
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elevated to the lower ng/mL range. Signal transduction by IL-6 involves the formation of a hexamer built
from IL-6, the membrane-bound IL-6-receptor, and the gp130 protein [74,120,121]. This form of signaling
is occasionally called “cis”-signaling but is more often referred to as “classical”-signaling. Expression
of the IL-6-receptor (IL6R) is confined to neutrophils, monocytes, CD4 T-cells (but not CD8 T-cells),
memory T-cells, and hepatic and osteoblast cell lines [122,123]. In the brain, IL6R is strongly expressed
by microglia, but very weakly (or not at all) by astrocytes, oligodendrocytes, and neurons [77,124,125].
Two metallo-proteinases, ‘a desintegrin and metalloproteinase-17′ (ADAM17) and ADAM10, are able to
cleave the extracellular part (the ‘ectodomain’) of the IL-6-receptor [74,122,126,127]. The resulting moiety
(soluble IL6R, or ‘sIL6R’) still binds IL-6, and the IL-6/sIL6R complex can activate cells that express gp130,
notably with no need for membrane-bound IL6R [122,127]. This is called IL-6 “trans-signaling” ([122];
for a review see [76]). ADAM10 and ADAM17 activity is induced by phorbol-esters, by the cytokines
IL1β and TNFα, and by apoptotic pathways (e.g., DNA-damage, UV radiation, and Fas ligation) [127].
Additionally, CRP provokes an increase in sIL6R production [123,128]. Hence, in principle, sIL6R
can be produced by the sympathetic nervous system (via the α1 receptor-Gq-protein-kinase-C
(PKC)-diacylglycerol (DAG) signaling pathway (mimicked by phorbolesters)) and during inflammation
(when levels of CRP, TNFα, or IL1β are elevated). Hepatocytes, neutrophils, and CD4+ T-cells represent
the major sources of circulating sIL6R [122,127,128]. In human serum sIL6R is always present
at relatively high concentrations of 25–75 ng/mL, and these levels are 2–3 fold increased during
inflammation [119]. Soluble-IL6R circulates at elevated levels in various diseases [128], including major
depressive disorder [129] and bipolar disorder [105,106]. The ratio of IL-6 to sIL6R/IL-6 determines to
which degree trans-signaling will occur [119,123]. Importantly, circulating sIL6R may cross the blood
brain barrier and cause IL-6 trans-signaling in the CNS [130].

3.2. IL-6 Trans-Signaling in the Brain

Mice with a genetic overexpression of IL-6 by astrocytes have been found to respond to restraint
stress with an exaggerated rise in plasma corticosterone [131]. This is consistent with data in humans
that IL-6 activates the HPA axis [132]. Since this is a neuronal response to IL-6, it is likely that it involves
trans-signaling via sIL6R. Inflammation in the CNS leads to production of reactive oxygen species,
whereas oxidative stress is known to decrease in cell-surface expression due to a rapid decline in KCC2
tyrosine-phosphorylation [133]. In addition, in sensory nerves it has been shown that IL-6 signaling
also alters phosphorylation of NKCC1, which in this case led to higher cell-surface expression and
higher intracellular chloride levels [134]. It is conceivable that IL-6 might provoke similar effects in
central neurons. As discussed in earlier sections, both mechanisms, a decline in KCC2 and an increase
in NKCC1, would contribute a depolarizing activity of GABAA. IL-6 trans-signaling therefore increases
the synaptic excitation/inhibition ratio [135,136]. It is likely that IL-6 will not only enhance the activity of
the HPA axis but also the activity of the sympathetic nervous system (c.f. [137]). Peripheral and central
inflammation in animals indeed increases the activity of the sympathetic nervous system [138–140].

Under physiological conditions, astrocytes assume numerous supportive functions, including
structural support, neurovascular coupling, regulation of extracellular K+, uptake of neurotransmitters,
and metabolic support of neurons [141]. Astrocytes are essential for regulation of glucose uptake and
lactate release, uptake of glutamate and release of glutamine (required for glutamate as well as GABA
neurotransmission), and uptake of glutathione precursors and the release of glutathione [141,142].
During brain inflammation, however, microglia is polarized to the activated M1-phenotype, and this,
in turn, stimulates astrocytes to attain what is called a “neurotoxic reactive”, or “A1”-phenotype ([143];
see Figure 2). A1 astrocytes secrete an unknown factor that is highly toxic to a subset of neurons
and to mature oligodendrocytes [143,144]. The sIL6R/IL-6 complex is a conceivable candidate for
this toxic factor, but this has not been tested yet. Since corticosteroids inhibit the pro-inflammatory
phenotype of microglial cells [145], it is likely that during brain inflammation corticosteroids are
neuroprotective, which is in contrast to the stress-induced pathology described in Section 2.3. This
makes the glucocorticoid receptor both a part of the problem and a part of the solution [146].
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Figure 2. This scheme is based upon data published by [143]. It assumes that inflammation causes
interleukin-6 (IL6)-release and shedding of sIL6R from microglia. Trans-activation of astrocytes would
lead to the ‘neurotoxic-reactive’ phenotype that may cause damage to neurons. Activation of the
glucocorticoid receptor would limit the inflammation-induced sequence of events. Legend: sIL6R,
soluble IL-6-receptor.

The data summarized in this section show that IL-6 in the pro-inflammatory trans-signaling mode
provokes much of the downstream effects that are also observed after exposure to stress. It is evident
that both stress and inflammation lead to activation of the sympathetic nervous system, the HPA axis,
and an enhanced GABA-depolarization (presumably leading to anxiety, psychopathology, and cognitive
decline), as well as somatic ‘sickness’ symptoms (see Figure 3). Although causing a similar spectrum
of symptoms, it is likely that the two inputs, stress or inflammation, will differ in the intensity of their
biological outputs [47,147]. It will be interesting to read future scientific literature to see if it fits the idea that
melancholic and atypical depression are the respective outputs of the stress and the inflammation arms.
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Figure 3. A graphical summary of the biological effects induced by stress and inflammation.
As reviewed in Sections 2 and 3 of this manuscript, inflammation and psychological stress activate the
hypothalamic-pituitary-adrenal (HPA) axis, the sympathetic nervous system, and increase glutamate,
while the inhibitory effect of gamma-aminobutyric acid (GABA) is diminished. This leads to measurable
increases in circulating corticosteroids, catecholamines, anxiety, somatic and psychopathological
symptoms, and a decline in cognitive functions. Both stress and inflammation affect the function of
the chloride transporters, Na-K-Cl-cotransporter-1 (NKCC1) and K-Cl-cotransporter-2 (KCC2), and
provoke IL-6 trans-signaling. Although there is a large qualitative overlap, it may be that stress and
inflammation lead to quantitative differences in the severity of the individual effects. Legend: BP =

blood pressure, CS = corticosterone, HR = heart rate, NA = noradrenaline, ns = nervous system, PKC =

protein kinase C, sIL6R = soluble IL6 receptor.
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4. Potential for Therapeutic Intervention

4.1. Intervening in the Sequence of Events Provoked by Stress

Stress has a profoundly negative effect on the viability of neurons (Figure 1). The mechanism
has been investigated in detail in in vitro experiments [135,148,149]. Corticosterone-induced neuron
death is associated with a decrease in the activity of protein kinase-B (PKB or Akt) and an increase
in glycogen-synthase kinase-3 (GSK3)-activity [135,148,149]. Factors that increase PKB-activity like
leptin [135], insulin-like growth factor-1, [149], or inhibition of GSK3 with lithium, inhibit neuronal
loss [148]. Zhang et al. ([150]) describe that dexamethason-induced apoptosis of neonatal hippocampal
neurons involves the assembly of the NLRP1 inflammasome via an increased K-efflux through ‘big-K’
(BK) potassium channels. The effect of dexamethason was ascribed to an immediate effect on the
electrophysiology of BK-channels but also to an increase in mRNA and protein levels of BK following
a chronic (28 days) treatment of mice in vivo [150]. The GR-antagonist RU486 and the big-K inhibitor
iberiotoxin blocked dexamethason-induced apoptosis [150]. This short summary shows that negative
effects of stress can be diminished by multiple mechanisms, including GSK3-inhibition and blockade
of the big-K potassium channel. These represent potential drug-development targets for treatment
of depression.

The next logical target for interruption of the sequence of events shown in Figure 1 is
NMDA blockade. The antidepressant activity of the NMDA-channel blocker ketamine is now
well established but there are still doubts as to whether the antidepressant activity is mediated
by NMDA-inhibition [57,151,152]. Consistent with data in Figure 1, the antidepressant effect
of ketamine involves a rapid increase in the expression of BDNF and subsequent TrkB receptor
activation [57,152,153]. However, another NMDA-channel blocking drug, memantine, has been
observed to fail to produce antidepressant activity in humans (reviewed by [151]). Whilst BDNF
expression and TrkB-activation is induced also by effective treatments like electroconvulsive shock
therapy or tricyclic antidepressants [153], memantine has been shown to fail to induce BDNF
transcription [151]. This result indicates that the degree of NMDA blockade by memantine might be
too small. Another argument that casts doubt on the NMDA-mechanism of action is the observation
that a metabolite of ketamine, 2R,6R-hydroxy-norketamine, lacks affinity for the ketamine-binding
site but has still been found to generate a rapid antidepressant-like effect in animal studies [152]. This
latter argument is not as strong, since it may well be that the metabolite simply acts via a different
pharmacological activity (e.g., via activation of opiate µ-receptors; see [152]). BDNF decreases the
function of the chloride extruder KCC2, thus promoting a polarizing activity of GABA [43,44,154,155].
It has been argued that a high intracellular chloride concentration is beneficial for the formation of
novel dendrites and synapses [134,156].

The last evident target from the cascade pictured in Figure 1 is the P2X4 channel. Three
subunits of P2X are required to form a functional channel and each has to be stimulated by ATP to
open the channel [157]. Due to its effects on the NLRP3 inflammasome-formation in microglia and
macrophages, the P2X4-related (P2X7) channel is a well-known target for depression, and several
selective P2X7-inhibitors are currently under development [157]. The P2X4 channel is mostly known
for its role in the development of neuropathic pain, and some lead compounds for drug development
have been described [157–159]. Development hurdles are selectivity, bioavailability, brain penetration,
and poor water solubility, as well as species differences in pharmacology [157–159]. Importantly, the
blockade of P2X4 prevents BDNF-release and this ultimately results in a reduction in mRNA levels of
KCC2 [159].

4.2. Intervening in the Sequence of Events Provoked by Inflammation

The sequence of events shown in Figure 2 is by no means as thoroughly validated as the one
discussed in Section 4.1. Nevertheless, concerning depression, there can be no doubt that IL-6
trans-signaling has important pathophysiological consequences (see Sections 3.1 and 3.2). In the
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IL-6-receptor family, the receptors for leukemia inhibitory factor, ciliary neurotrophic factor, and
others associate with the Janus-kinases JAK1 and JAK2 [160], but gp130 exclusively associates with the
tyrosine kinase-2 (TYK2) [161]. Since the IL-6 receptor is non-signaling, this implies that IL-6 in both
classic and trans-signaling modes requires TYK2 for downstream signaling. Therefore, one way to
block pathological IL-6 trans-signaling would be via TYK2 kinase-inhibition. Large pharmaceutical
companies apparently have realized that selective TYK2 inhibition (vis-à-vis other kinases, in particular
also to JAK1 and JAK2) may represent a worthwhile development target [161–163]. However, an
obvious disadvantage of this approach is that it will also inhibit the desirable IL-6 classic signaling.
Antibodies directed against IL-6 or IL6R suffer from the same disadvantage. Importantly though, this
is not the case for a recombinant derivative of the soluble gp130 protein, “sgp130Fc” [76]. Sgp130Fc
is sgp130 bound to the Fc portion of IgG, and acts as a specific inhibitor of IL-6 trans-signaling [127].
During sepsis, sgp130Fc has been shown to inhibited sIL6R signaling while the anti-inflammatory
classic signaling remained unaffected and regenerative proliferation was retained [76,127]. Sgp130Fc
(Olamkicept® Conaris/Ferring) is in phase II clinical trials. Sgp130fc has shown efficacy in numerous
preclinical inflammation models, including CNS inflammation [76], but its effect in depression models
remains to be tested. Apart from the need for a parenteral route of administration, a further potential
issue could be an insufficient blood-brain passage for those cases where the depressogenic inflammation
is within the central nervous system.

4.3. Common Pathways Activated by Stress and Inflammation

A further useful approach to inhibit inflammation is by stimulation of the vagus nerve [164]
or mimicking the effects of the vagus by nicotinic α7-agonists [165–167]. Electrical stimulation
of the efferent vagus nerves in rats prevented LPS-induced endotoxic shock [168] and reduced
secretion of IL-6 and TNFα [169]. It has been suggested that exercise, controlled breathing, relaxation
therapies and fish-oil increase the activity of the vagus nerve and decrease production of TNFα and
IL-6 [164]. Electrical stimulation of the vagus nerve has been shown to improve major depression in
treatment-resistant patients [164,170–172]. There is furthermore an extensive preclinical literature that
stimulation of the nicotinic α7-receptor with agonists like acetylcholine, choline, carbachol, nicotine, or
the relatively selective agonist GTS-21 causes a reduction in inflammation-induced cytokine-release
from human and rodent microglia cells and macrophages [165,167,168,172–176]. Although shown thus
far during brain maturation only, activation of nicotinic α7-receptors has the propensity to modulate
chloride transporter levels [177,178]. This makes nicotinic α7 receptor activation an exciting target
for drug development in depression, but up to now no development compound has been tested for
depression and as of the year 2019, no compound has reached the market.

A more global overview of the down-stream consequences of stress and inflammation is provided
in Figure 3. Cognitive function is worsened by acute uncontrollable stress exposure and involves an
increase in noradrenaline/α1-adrenoceptor/PKC activation in the prefrontal cortex (reviewed by [62]).
This has led to the use of the α1-adrenoceptor antagonist prazosin for treatment of stress-related
disorders [62]. Centrally acting α2-adrenoceptor agonists like clonidine or guanfacine are alternatives
for prazosin [62]. These compounds reduce the activity of the sympathetic nervous system [179]
while stimulating the activity of the parasympathetic nervous system [180]. Unfortunately, their
profound hypotensive effect [179] is a disadvantage for use in psychiatric indications. There are three
subtypes of α2 receptors in human genome and of these it is the α2A subtype that seems responsible for
cardiovascular activity [181]. Notably, the α2B receptor has received considerable attention, because
a mutation in the α2B receptor gene was associated with higher performance in a cognitive task for
emotional stimuli and a stronger emotional memory [182–184]. The mutant form of the receptor
(a deletion of three amino acids) is relatively resistant to receptor-desensitization [185] and gives rise to
an elevated sympathetic outflow [186]. These findings suggest that a selective α2B-receptor antagonist
could be useful to dampen excessive responding to emotional stimuli, in particular in homozygous
carriers of the mutant form of the α2B-receptor.
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There are a number of ways in which high intracellular chloride levels can be reduced. The most
obvious is the inhibition of the NKCC1 transporter. This can be done with registered drugs like the
diuretic bumetanide (review by [187]) or, interestingly, by oxytocin-spray [187]. A further possibility
is inhibition of kinases like lysine deficient kinase (WNK) and SPS1-related proline/alanine-rich
serine-threonine kinase (SPAK), as they regulate the cell surface-persistence of NKCC1 and KCC2 [188].
However, seemingly, the discovery and development of such kinase-inhibitors is not far advanced.

5. Biomarkers

5.1. Biomarker for IL-6 Trans-Signaling

In contrast to the psychological symptoms of depression (mood symptoms, anxiety, irritability, and
cognitive alterations), the inflammation-induced vegetative symptoms (flue-like symptoms, fatigue,
or anorexia) respond poorly to treatment with antidepressants [15,189,190]. This implies that a full
remission of depression is achieved only when the driving force behind the vegetative symptoms
is eliminated. IL-6 in its trans-signaling mode is the prime suspect for this symptom cluster (see
Figure 3). Indeed, successful antidepressant treatment is associated with a reduction in plasma
IL-6 levels [100,129,191–195]. However, since IL-6 levels do not necessarily reflect the degree of
trans-signaling, one would need a marker for trans-signaling. Cellular internalization of the complex
IL-6/sIL6R is slower than that of IL-6 bound to membrane-localized IL6R. Therefore, IL-6 trans-signaling
leads to stronger and longer lasting intracellular signaling than IL-6 classic signaling [76]. SERine
proteinase inhibitor-A3N (SERPINA3N) is an example of a gene that is regulated by trans-signaling but
not via classic signaling [77], and probably there are more examples to be found. These genes could
serve as biomarkers for the sickness syndrome-related symptoms of depression and suicide risk [123].

5.2. Biomarkers for Stress-Induced Effects

As a biomarker for the stress pathway to depression, one could propose salivary
α-amylase [196,197]. Whether salivary α-amylase (sAA) is also a useful marker for suicidality is
questionable, since relatives of suicide completers unexpectedly have been found to display a blunted
stress-induced sAA response [198]. Stress-induced activation of the sympathetic nervous system
can lead to activation of PKC, and this may promote sIL6R shedding and cognitive decline (see
above). One of the substrates of PKC is the protein myristoylated alanine-rich C-kinase substrate
(MARCKS) [199,200]. Interestingly, the expression level of MARCKS has been shown to be consistently
increased in circulating leukocytes in different cohorts of suicidal bipolar depression-patients [201]. As
a read-out of peripheral activity of the sympathetic nervous system, it might therefore be worthwhile
to study phosphorylation levels of MARCKS in white blood cells of depression patients.

The parasympathetic nervous system is the physiological opponent of the sympathetic nervous
system. A low activity of the parasympathetic nervous system can be quantified by low heart
rate variability (HRV). Low HRV has been detected in humans suffering from stress [202] or
depression [203–205] as well as in suicidal individuals [206]. Depression severity has been observed as
being negatively correlated with HRV [203,204]. It would be useful to test if improvements in HRV
correlate with amelioration of stress-induced depression symptoms.

Hypercortisolemia and dysregulation of the HPA axis are often found in severe forms of
depression [81,207–209]. In contrast, atypical depression (characterized by hyperphagia and
hypersomnia) is associated with low cortisol levels [207]. Hypocortisolemia is also frequently observed
in fibromyalgia, chronic fatigue syndrome, and post-traumatic stress disorder [207]. In patients with
depression, high cortisol levels in blood or saliva are associated with future completed suicide [210–212],
but, remarkably, abnormally low cortisol levels are also a risk factor for suicide [49,198,213]. Moreover,
there is evidence that glucocorticoids may diminish suicide numbers [214]. This short overview shows
that both high and low cortisol levels are associated with depression and suicide risk, and this of course
jeopardizes its utility as a biomarker.
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In principle, the same is also true for the biomarker glutamine-synthetase. The enzyme
glutamine-synthetase (glutamate ammonium ligase (GLUL)) is exclusively expressed in astrocytes and
promotes the synthesis of glutamine from glutamate (reviewed: [215]). Astrocytes play a central role in
both stress-induced activation of microglia and inflammation-induced neuron loss (Figures 1 and 2).
LPS and inflammatory cytokines inhibit glutamine-synthetase activity and also, as a consequence,
glutamate uptake, glutamine synthesis, and neuronal-protection are diminished [216]. Conversely, the
neuroprotective effect of astrocytes is increased after forced expression of GLUL [216]. The activity
of GLUL in astrocytes is increased by glucocorticoids and glutamate but reduced by glutamine [217].
Dexamethasone has been found to induce an increase in synthesis and activity of GLUL in astrocytes
in culture, whereas noradrenaline, in itself ineffective, potentiated GLUL activity [217]. Since GLUL
activity is also stimulated by glutamate, the data by Hansson ([217]) indicate that all three stress
factors (noradrenaline, corticosterone, and glutamate) increase GLUL function. Thus, ‘stress’ (Figure 1)
and ‘inflammation’ (Figure 2) display opposite effects on GLUL function in astrocytes. Lithium, via
an increase in β-catenin, activates the transcription of the GLUL gene [218,219]. Notably, β-catenin
levels are diminished in post mortem brains of suicide victims [220], whereas Li has an anti-suicidal
activity [221,222]. The proposal that low GLUL levels/activity could be a biomarker for suicide [215] is
therefore jeopardized, due to the finding that GLUL levels become elevated under stress conditions.

5.3. Biomarkers for Inflammation-Induced Effects

The value of cortisol or GLUL levels as biomarkers for depression and suicide could eventually be
rescued if we were able to distinguish between stress-induced and inflammation-induced consequences
(Figure 3). While stress is thought to lead to depression with melancholic symptoms, inflammation
tends to result in atypical depression [147,223]. Roughly one third of MDD patients have clearly elevated
cytokines [224–227]. Patients in this subgroup are frequently obese [225,227,228] and/or suffer from
metabolic syndrome [98,229] and cardiovascular disease [96]. They often display atypical features such
as increased appetite, hypersomnia, and fatigue [230]. Their depression symptoms may preferentially
respond to dietary interventions such as dietary restriction or the fish-oil component eicosapentaenoic
acid [227,231]. It may well be that patients with atypical depression are the ones that display a distinct
suicide-endophenotype with increased extraversion, impulsivity, and violent attempts [109,115,116].
Infectious agents such as human immunodeficiency virus (HIV), neuro-borreliosis, and Toxoplasma
gondii are associated with agitation, aggression, and violent suicide attempts [224,226]. Numerous
inflammatory mediators [115,228], including IL-6 in its trans-signaling mode, increase the expression of
the enzyme indoleamine 2,3-dioxygenase (IDO) [156]. IDO converts L-tryptophan to L-kynurenine, and
this is further metabolized to quinolinic acid. In suicidal individuals increased levels of IL-6 [108,114],
L-kynurenine [232] and quinolinic acid [233] have all been reported. An IDO-induced increase in
the production of kynurenine, and quinolinic acid have negative consequences for the availability of
tryptophan for serotonin and melatonin synthesis. Consequently, CSF, plasma, and urine levels of
the serotonin metabolite 5-hydroxy-indolic acid (5HIAA) are often strongly diminished in suicidal
individuals [234]. The same is true for melatonin [235,236]. The enzymatic activity of IDO can be
measured by a relatively simple, non-invasive method. Teraishi et al. ([237]) orally administered
C13-labeled tryptophan to MDD patients and respective controls. Exhaled 13C-CO2 was quantified
over the next three hours. Compared to the controls, in the MDD patients the recovery rate and peak
levels of 13C-CO2 were significantly larger. This method would also be suitable to study IDO-activity
in patients at an increased risk of suicide.

6. General Remarks

From the above it is evident that the subgroup of patients with major depressive disorder that suffer
from an inflammation-prominent form of the disorder can be easily identified by multiple biomarkers
(cytokine levels, IL-6-trans-signaling, low 5HIAA, low GLUL, low(er) cortisol, high kynurenine and
quinolinic acid, and high tryptophan metabolism). Putative novel treatments for these particular
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patients are sGP130fc (particularly in case of an inflammation outside the brain), or TYK2-inhibition.
The remaining group of MDD patients is probably divided in a group defined by stress-induced
depression, and a group with a mix of inflammation and stress. High cortisol levels, high α-amylase,
PKC-activity, MARCKS-phosphorylation, and high GLUL are tentatively biomarkers for this group of
patients with stress-induced depression. Novel treatments for this group could comprise low-dose
α2-adrenoceptor agonists, β-blockers, and treatments that reduce high intracellular chloride levels
(shifting the effect of GABA from depolarizing to inhibitory). Other treatment targets for this group of
patients could be NMDA-blockade, P2X4-blockade, inhibition of the BK-potassium channel, and/or
GSK3-inhibition. Vagus nerve stimulation and nicotinic α7 receptor agonists are particularly interesting
targets because these interventions might improve both stress- and inflammation-induced symptoms
and would be particularly suited to patients in whom depression is driven by a mix of stress and
inflammation factors. The information collected in the current review could be used to generate
and improve sequential treatment optimization paradigms, such as for instance that described by
Kraus et al. [238].
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