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ABSTRACT: Herein we disclose a catalytic synthesis of cycloalkanols that harnesses the potential of N2O as an oxygen transfer
agent onto sp3-hybridized carbons. The protocol is distinguished by its mild conditions and wide substrate scope, thus offering an
opportunity to access carbocyclic compounds from simple precursors even in an enantioselective manner. Preliminary mechanistic
studies suggest that the oxygen insertion event occurs at an alkylnickel species and that N2O is the O transfer reagent.

Nitrous oxide (N2O) is a gaseous molecule that
contributes dramatically to global warming together

with CO2 and CH4.1 Its large global warming potential (>300
times that of CO2) and long half-life in the atmosphere (ca.
100 years) have resulted in warnings against the anthropogenic
emission of this gas, which has increased steeply in recent
decades.2,3 However, from the synthetic point of view, nitrous
oxide presents itself as an excellent O atom transfer (OAT)
reagent: it is a potent O atom donor that releases benign N2,
and it is relatively nontoxic to humans (laughing gas).3

However, N2O is inert,4a and its poor σ-donor and π-acceptor
abilities limit its activation by transition metals (Figure 1A).4

Therefore, forging synthetically relevant C−O bonds via
homogeneous catalysis has been challenging5,6 and has largely
relied on classical metal−oxo reactivity (epoxidations, C−H
abstraction, etc.).7 Pioneering work by Hillhouse with
transition metals and N2O demonstrated that certain L2Ni-
(II)−dialkyl complexes undergo O atom insertion into the
Ni−C bond (Figure 1B).6a Mechanistic studies on the
(bipy)Ni(II)−dialkyl system performed by Hillhouse6b and
Cundari and Gunnoe6e,f suggested an organometallic Baeyer−
Villiger-type mechanism for the O insertion step. Capitalizing
on this reactivity, our group has recently disclosed the catalytic
synthesis of phenols from (hetero)aryl halides using N2O
under reductive conditions (Figure 1C, left).8 In this
Communication, we demonstrate that this strategy can be
extended to the catalytic synthesis of challenging C(sp3)−O
bonds (Figure 1D). The protocol developed herein forges an
additional C−C bond via a carbometalation event,9,10 which
sets the stage for O insertion. Due to the resulting chiral
quaternary center, we exploited a chiral bidentate ligand in the
catalytic system to access enantioenriched indanols and
benzofuran compounds, which are widespread motifs present
in biologically relevant compounds.11

Inspired by similar precedents on carbocyclization and C−C
and C−N bond formation,10 we selected aryl iodide
compound 1a as the model substrate (Table 1). The use of
10 mol % NiI2 in combination with 15 mol % phenanthroline
derivative L1, activated Zn, and NaI in DMSO at 25 °C
resulted in an 87% isolated yield of alkanol 2a (see the

Supporting Information for full details of the reaction
optimization).12 Bidentate bipyridine/phenanthroline deriva-
tives as ligands were pivotal, but steric encumbrance in the
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Figure 1. (A) Advantages and challenges of nitrous oxide. (B)
Inspiration: Hillhouse’s work. (C) Catalytic formation of C(sp2)−OH
vs C(sp3)−OH bonds. (D) Racemic and enantioselective Ni-
catalyzed formation of primary alcohols through OAT from N2O.
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form a Ph group α to the nitrogen is required to observe the
desired reactivity (entries 2 and 3). Other bidentate ligands
based on a pyridine−pyrazole scaffold did not lead to any
conversion to 2a (entry 4). Interestingly, ligand L5 that
previously proved crucial in the catalytic O insertion into
C(sp2) bonds8 did not lead to product formation (entry 5).
Lowering the pressure of N2O to 1.5 atm diminished the yield
by ca. 10% (entry 6), and the substitution of Zn for Mn
inhibited the reactivity (entry 7). Whereas the absence of NaI
or Zn dramatically reduced the yield of 2a (entry 8 and 9),
replacement of the Ni(II) source did not influence the overall
yield (entry 10). Finally, the reaction does not proceed in the
absence of N2O (entry 11) or when the iodide in 1a is replaced
by bromide (entry 12). Whereas in the former case
dimerization of 1a was observed, recovery of the starting
material is the main outcome in the latter scenario.

The exploration of the scope of the catalytic protocol was
performed with compounds similar to 1a, where variations in
both the aryl ring and the pendent double bond were
introduced (Table 2). For example, the presence of alkyl
groups in the aromatic ring did not impact the yield (2b and
2c). Furthermore, benzyl alcohols protected in the form of
acetal (2d), ether (2e), silyl ether (2i), or ester (2f) were well-
tolerated. In the last example, lower yields were obtained,
presumably due to the nucleophilic nature of the final alkoxide.
Phenolic derivatives of catechol or anisole delivered alkanols
2g and 2h in good yields. Interestingly, the presence of halides
directly attached to the aromatic moiety was also tolerated, as
exemplified by the formation of 2j−2l in good yields. The
methyl group in the 1,1-disubstituted alkene could also be
replaced, as exemplified by the compatibility of extended alkyl
chains (2m−2q). Protected alcohols present in the alkyl chain
of the alkene were also tolerated, as shown by acetal (2r) and
the presence of Bn (2s) and Bz (2t). An extended aromatic
substrate also reacted without apparent solubility issues (2u).
Interestingly, a pendent alkene on the ring was also well-
tolerated, without traces of potential epoxidation observed

(2v). Finally, the linker between the aryl group and the alkene
could be replaced by an O atom, leading to dihydrobenzofur-
anols (2w−2ae). In general, slightly lower yields were obtained
compared to indanols. Nevertheless, similar substitution
patterns in the aryl group and the pendent alkene were well-
accommodated. Not surprisingly, when a substituent is placed
ortho to the C−I bond, the corresponding alkanol cannot be
obtained (2af). Unfortunately, attempts to forge six-membered
rings were unsuccessful. It is also important to mention that
the alkoxide generated as a product is incompatible with some
functionalities, thus restricting orthogonal compatibility.

The reaction design to obtain alkanols from 1 relies on an
initial oxidative addition of the aryl iodide to the Ni catalyst,
followed by a carbometalation event into the alkene. At this
point, a quaternary stereogenic carbon is generated. Therefore,

Table 1. Optimization of the Ni-Catalyzed O Insertion onto
C(sp3) Bondsa

aReactions were performed with 0.1 mmol of 1a. bYields were
determined by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene
as an internal standard. cIsolated yield; the reaction was performed
with 0.1 mmol of 1a.

Table 2. Scope of the Ni-Catalyzed Oxygen Transfer from
N2O onto sp3-Hybridized Carbonsa

aReaction conditions: 1 (0.1 mmol), NiI2 (10 mol %), L1 (15 mol
%), NaI (0.15 mmol), and Zn (0.4 mmol) in DMSO (0.5 mL) at 25
°C for 40 h. Yields of isolated pure materials after preparative TLC are
shown. Abbreviations: THP = 2-tetrahydropyranyl; TBS = tert-
butyldimethylsilyl. bDMA was used instead of DMSO. cL3 was used
instead of L1.
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we envisaged that with an appropriate chiral ligand, a
stereoselective carbometalation could lead to an enantiose-
lective protocol. Re-evaluation of the reaction parameters when
using chiral ligands was required, with the most noticeable
modification being the replacement of DMSO with DMA.
After a thorough screening, L6 proved to be optimal to obtain
high yields and high enantioselectivity (Table 3, entry 1).10gL6

features an imidazolylpyridine backbone with a chiral carbon
bearing a tBu at the 4-position of the imidazoline. N-Arylation
of the ligand with a PMP group led to substantially lower levels
of enantiocontrol (entry 2). When the imidazoline was
replaced by oxazoline, lower yields and selectivities were
obtained (entries 3−5). Finally, the addition of steric
encumbrance at the ortho position of the pyridine moiety
inhibited the reactivity (entry 6). Having identified L6 as the
optimal ligand, an exploratory scope was performed. A total of
nine compounds were prepared with variations on the aryl
group with alkyl groups (2w, 2x, 2aa, 2ae, 2ad) and an ester
(2ab). Contrarily to the racemic protocol, dihydrofuranols
proved to be more efficient in the asymmetric version than the
corresponding indanols (2a and 2n). The absolute config-
uration of the final protocol was determined based on the X-
ray structure obtained for benzoylated (S)-2w and is in
agreement with previous reports using chiral pyridine−
oxazoline ligands.10

Having demonstrated the viability of forging C(sp3)−O
bonds from N2O in a carbohydroxylation reaction, we
conducted an investigation to gain insight into the potential

intermediates as well as the origin of the O atom. As
aforementioned, the reaction did not proceed under an Ar
atmosphere (Table 1, entry 11). Analysis of the headspaces of
three distinct reactions (2a, 2o, and 2g) clearly confirmed the
presence of N2 (Scheme 1A). Control experiments did not

indicate the presence of N2 in the employed N2O. Since the
solvent in the racemic version was DMSO (Table 2), it was
essential to explore the possibility of OAT from the solvent. To
this end, 18O-labeled DMSO (25% 18O) was synthesized and
subjected to the optimized reaction conditions. After
completion of the reaction, no incorporation of 18O into 2a
was observed (Scheme 1B, left). More direct evidence on the
origin of the O atom was obtained when 15N15N18O was
used.13 In this case, compound 2a was obtained with 46 ± 1%
incorporation of 18O, which corresponds to the theoretical
maximum (see the Supporting Information). Additionally, a
series of potent O transfer reagents commonly employed in
organic synthesis were tested under the optimized conditions.

Table 3. Enantioselective Carbohydroxylation of Olefinsa

aReactions were performed on a 0.1 mmol scale. Yields were
determined by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene
as an internal standard. PMP = 4-methoxyphenyl. bIsolated yield.
cL10 was used instead of L6.

Scheme 1. (A) Analysis of the Gaseous Headspace of the
Reaction Mixture Confirms the Formation of N2; (B)
Experiments Performed to Elucidate the Origin of the O
Atom in the Final Product; (C) Involvement of an
Alkylnickel Species in the Alkoxylation Step

aYields were determined by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as an internal standard. ND = not detected.
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However, no reactivity toward the formation of 2a was
observed in any case (Scheme 1, bottom). This is in agreement
with Cundari’s observations, where other sources of O were
unable to engage with Ni complexes in OAT reactivity.6e

These experiments collectively point toward N2O as the O
source. As mentioned previously, upon oxidative addition into
the Ar−I bond, a carbometalation step ensues, thus delivering
a primary alkylnickel without β hydrogens. We speculated that
a similar alkylnickel intermediate would form starting from
alkyl iodide 3a (Scheme 1C).14 Indeed, when 3a was subjected
to the optimized reaction conditions, alcohol 4a formed
smoothly both in DMSO and DMA. In the absence of N2O, 3a
delivered a 73% yield of the corresponding protodeiodinated
product and a 14% yield of the dimer. This clearly indicates
that a similar alkylnickel intermediate is formed in both cases.
Whereas the exact mechanism for the O insertion still remains
elusive, direct addition of a free carbon radical to N2O is
unlikely.15

In summary, we provide a protocol that unlocks catalytic O
atom transfer from N2O for the formation of C(sp3)−O bonds
under mild conditions. The protocol uses a combination of Ni
and 2-phenylphenanthroline as a catalytic system in the
presence of Zn and NaI as crucial reagents. The reaction
engages aryl iodides bearing pendent alkenes, which upon
carbometalation lead to O atom insertion into a Ni−C(sp3)
bond. Since the carbohydroxylation method forges a
quaternary stereocenter, an enantioselective protocol was also
provided. For this purpose, a ligand based on an
imidazolylpyridine backbone was utilized, which delivered
the chiral alkanols in good yields with excellent enantiose-
lectivities. A series of direct and indirect experiments
confirmed the origin of the O atom and the uniqueness of
N2O as the OAT reagent. These protocols add to the recent
work on C(sp2)−O bond formation and consolidate the
catalytic insertion of O atoms into M−C bonds using N2O as a
valid strategy for the construction of oxygenated molecules in
organic synthesis. Further applications of this concept are
currently ongoing in our laboratory.
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