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registered with the National Institutes of Health under 
the clinicaltrials.gov identifier NCT00925132. Patients 
were treated with subcutaneous decitabine 0.1 or 0.2 mg/
kg three times weekly for 2  weeks (starting on day 1), 
in combination with oral panobinostat 10, 20, or 30  mg 
every 96  h (starting on day 8), and oral temozolomide 
150  mg/m2/day on days 9 through 13. In cycle 2, temo-
zolomide was increased to 200 mg/m2/day if neutropenia 
or thrombocytopenia had not occurred. Each cycle lasted 
6  weeks, and patients could receive up to six cycles. 
Patients who did not demonstrate disease progression 
were eligible to enter a maintenance protocol with com-
bination of weekly panobinostat and thrice-weekly decit-
abine until tumor progression, unacceptable toxicity, or 
withdrawal of consent.
Results  Twenty patients were initially enrolled, with 17 
receiving treatment. The median age was 56 years. Eleven 
(65  %) were male, and 6 (35  %) were female. Eleven 
(64.7  %) had cutaneous melanoma, 4 (23.5  %) had ocu-
lar melanoma, and 2 (11.8  %) had mucosal melanoma. 
All patients received at least one treatment cycle and were 
evaluable for toxicity. Patients received a median of two 
6-week treatment cycles (range 1–6). None of the patients 
experienced DLT. MTD was not reached. Adverse events 
attributed to treatment included grade 3 lymphopenia 
(24  %), anemia (12  %), neutropenia (12  %), and fatigue 
(12  %), as well as grade 2 leukopenia (30  %), neutrope-
nia (23 %), nausea (23 %), and lymphopenia (18 %). The 
most common reason for study discontinuation was disease 
progression.
Conclusions  This triple agent of dual epigenetic therapy 
in combination with traditional chemotherapy was gener-
ally well tolerated by the cohort and appeared safe to be 
continued in a Phase II trial. No DLTs were observed, and 
MTD was not reached.

Abstract 
Purpose  To explore the safety and tolerability of com-
bining two epigenetic drugs: decitabine (a DNA methyl-
transferase inhibitor) and panobinostat (a histone deacety-
lase inhibitor), with chemotherapy with temozolomide (an 
alkylating agent). The purpose of such combination is to 
evaluate the use of epigenetic priming to overcome resist-
ance of melanoma to chemotherapy.
Methods  A Phase I clinical trial enrolling patients aged 
18  years or older, with recurrent or unresectable stage 
III or IV melanoma of any site. This trial was conducted 
with full Institutional Review Board approval and was 
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Introduction

Until the recent advances in immune and targeted thera-
peutic approaches, progress in the treatment of metastatic 
melanoma remained dormant for nearly two decades. The 
approval of the immune stimulant ipilimumab and the 
subsequent development of novel targeted agents against 
BRAF, MEK, and PD-1 have fundamentally changed the 
landscape of melanoma treatment. Despite the excite-
ment generated by these novel agents, much remains to 
be understood and significant hurdles remain to be con-
quered. When individual oncogenic pathways are blocked 
pharmacologically, melanoma cells find ways to adapt and 
selectively activate alternative pathways that allow them 
to “escape” the effects of targeted agents. To prevent this, 
various trials are evaluating the combined use of drugs tar-
geting multiple pathways simultaneously. While targeting 
multiple downstream effectors of these pathways might be 
beneficial, we believe that depriving the cells of the ability 
to adapt and selectively activate such pathways by targeting 
upstream epigenetic mechanisms might be a more effective 
approach.

Epigenetic manipulation is a novel approach to can-
cer therapy that has proven successful in the treatment 
of hematologic malignancies, but remains to be further 
explored in solid tumors. Epigenetic alterations contribute 
to melanomagenesis by down-regulating tumor suppres-
sor genes, apoptotic mediators, and DNA repair enzymes 
[1]. They also appear to be an important driving force in 
resistance mechanisms to multiple therapies. There is evi-
dence that epigenetic silencing may contribute to resistance 
to chemotherapeutics and that drugs targeting epigenetic 
mechanisms may enhance chemosensitivity [2, 3]. Epige-
netic drugs also appear to enhance the endogenous anti-
tumor immune response via several mechanisms including, 
but not limited to, increased expression of cancer-testis 
antigens [4–14]. Furthermore, epigenetic drugs have shown 
the ability of reconstituting the functionality of apoptotic 
processes that, when deregulated, appear to play a crucial 
role in the resistance to chemotherapeutics [15], immune 
responses [11, 16], and targeted agents such as BRAF and 
MEK inhibitors [17, 18]. These, along with many other 
potential mechanisms, support the notion that epigenetic 
modifications represent a global mechanism for treatment 
resistance in melanoma.

In this Phase I trial, we explore the safety and tolerabil-
ity of combining two epigenetic drugs: decitabine [a DNA 
methyltransferase (DNMT) inhibitor] and panobinostat [a 

histone deacetylase (HDAC) inhibitor], with traditional 
chemotherapy with temozolomide (an alkylating agent), 
setting the stage of epigenetic interruption of melanoma 
cell resistance. This trial started enrolling patients when 
temozolomide was a standard treatment for metastatic mel-
anoma, prior to the approval of ipilimumab and subsequent 
targeted therapies. The primary objective of this trial was 
to evaluate the safety and tolerability of this triple agent 
regimen at previously defined doses. Since the use of decit-
abine in this trial was aimed at achieving epigenetic modi-
fication and not cytotoxicity, decitabine was administered 
at low doses known to cause hypomethylation. Panobi-
nostat was dose-escalated as shown in Table 1. Temozolo-
mide was administered at standard doses. While our model 
tested epigenetic drugs in combination with chemotherapy, 
we believe that a similar approach could be used with the 
newer immune and targeted therapies.

Materials and methods

Patients and eligibility criteria

Eligible participants included male or female patients that 
were 18 years of age or older, with recurrent or unresect-
able stage III or IV melanoma of any site. Since we sought 
to evaluate enhancement of chemosensitivity by epigenetic 
drugs, this trial enrolled patients with inherently aggres-
sive and resistant disease, including noncutaneous mela-
noma like ocular and mucosal; patients with brain metas-
tases, after the brain disease was adequately addressed 
either by whole brain radiation, radiosurgery, or resection; 
and patients that had progressed during or after their most 
recent treatment. Eligibility criteria also included adequate 
liver, renal, cardiac and bone marrow function; normal elec-
trolytes; normal thyroid function (or on adequate replace-
ment doses); normal LVEF by MUGA or echocardiogram; 
measurable disease per RECIST 1.0 criteria; and Eastern 
Cooperative Oncology Group (ECOG) performance status 
of 0–2. Previously treated or treatment-naïve patients were 
both eligible, except those who had previously received 

Table 1   Doses of decitabine and panobinostata

a  All cohorts received oral temozolomide at a dose of 150 mg/m2/day 
on days 9 through 13 on cycle 1

Cohort Decitabine (subcutaneously,  
three times weekly for 
2 weeks) (mg/kg)

Panobinostat 
(orally, every 
96 h) (mg)

No. of patients

1 0.1 10 5

2 0.1 20 4

3 0.2 20 4

4 0.2 30 4
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valproic acid, HSP90 inhibitors, hypomethylating agents, 
or HDAC inhibitors. Female patients of childbearing poten-
tial were required to not be pregnant, breast-feeding, and to 
use double contraception during and 3 months after study 
completion.

Exclusion criteria included: uncontrolled hyperten-
sion; history of ventricular fibrillation, torsades de pointes, 
or sustained ventricular tachycardia; heart rate <50 beats/
min; congestive heart failure NYHA class III or IV; acute 
coronary syndrome within 6  months of study enrollment; 
ECG abnormalities of QTc prolongation (>450 ms), right 
bundle branch block or left anterior hemiblock; known HIV 
or hepatitis C positivity; unresolved diarrhea or significant 
gastrointestinal impairment potentially interfering with 
panobinostat or temozolomide absorption; and concomitant 
use of CYP3A4 inhibitors or drugs known to increase risk 
of torsades de pointes.

This trial was conducted with full Institutional Review 
Board approval. All participants provided written consent 
before participating. This study was registered with the 
National Institutes of Health under the clinicaltrials.gov 
identifier NCT00925132. Novartis provided panobinostat 
and financial support for this trial.

Study treatment and dose escalation

Patients were treated with subcutaneous decitabine at a 
dose of 0.1 or 0.2 mg/kg three times weekly for 2 weeks 
(starting on day 1), in combination with oral panobinostat 
at a dose of 10, 20, or 30 mg every 96 h (starting on day 
8), and oral temozolomide at a dose of 150 mg/m2/day on 
days 9 through 13 (Fig. 1; Table 1). In cycle 2, temozolo-
mide dose was increased to 200 mg/m2/day if neutropenia 
or thrombocytopenia had not occurred. Prophylactic tri-
methoprim–sulfamethoxazole was not used. Each treatment 
cycle lasted 6 weeks, and patients could receive up to six 
cycles of combination treatment. Patients who did not dem-
onstrate disease progression were eligible to enter a main-
tenance protocol with combination of weekly panobinostat 
and thrice-weekly decitabine until tumor progression, unac-
ceptable toxicity, or withdrawal of consent. Maximum tol-
erated dose (MTD) was defined as the highest dose cohort 
where ≤1/6 patients experienced a dose-limiting toxicity 

(DLT). If a DLT was observed in the first three patients, 
the cohort was expanded to six patients, and all six patients 
needed to complete the first cycle of therapy without an 
additional DLT before dose escalation could proceed. Intra-
patient dose escalation was not allowed. DLT was defined 
as grade 4 hematologic toxicity, grade ≥3 nonhematologic 
toxicity, or grade 2 nonhematologic or grade 3 hematologic 
toxicity requiring a dose reduction or treatment interruption 
for more than 7  days during the first cycle. Grade 3 or 4 
nausea, vomiting, or diarrhea were only considered DLTs 
if they occurred despite optimal medical management. 
Grade 3 electrolyte, uric acid, or phosphorus abnormalities 
were not considered DLTs if they were correctable within 
1 week.

In cycle 2, dose was increased to 200 mg/m2/day if there 
was no neutropenia or thrombocytopenia.

Safety and response assessments

Patients were assessed for safety every 2  weeks during 
the first two cycles and then once every cycle. CBC with 
differential and serum chemistries were obtained once a 
week during the first two cycles and every 2 weeks there-
after. ECGs were performed prior to and following the first 
dose of panobinostat during cycle 1, and then on day 8 of 
every subsequent cycle. Toxicity was graded according to 
the National Cancer Institute (NCI) Common Terminology 
Criteria for Adverse Events (CTCAE), version 3.0.

Tumor response was assessed using whole body 
FDG PET–CT or CT scan after two cycles of treatment. 
Response was determined based on the response evaluation 
criteria in solid tumors (RECIST).

Results

Patient characteristics

Twenty patients were enrolled in the Phase I portion of 
this study. One patient had rapid progression of disease 
and was not treated with the protocol. One patient did not 
meet eligibility criteria due to untreated brain metastases. 
One patient withdrew consent. A total of seventeen patients 

Fig. 1   Treatment schema. Cycle duration: 42 days. Decitabine: days 1, 3, 5, 8, 10, 12. Panobinostat: days 8, 12, 16, 20, 24, 28, 32, 36, 40. 
Temozolomide: days 9–13
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received treatment. Characteristics are listed in Table  2. 
The median age was 56 years. Eleven (65 %) were male, 
and 6 (35  %) were female. Eleven (64.7  %) had cutane-
ous melanoma, 4 (23.5  %) had ocular melanoma, and 2 
(11.8 %) had mucosal melanoma.

Exposure to treatment and clinical toxicities

All seventeen patients received at least one treatment cycle 
and were evaluable for toxicity. Patients received a median 
of two 6-week treatment cycles (range 1–6). The dose 
escalation schema and number of patients enrolled in each 
cohort are described in Table 1. None of the patients expe-
rienced DLT. One patient in cohort 3 had grade 4 neutro-
penia that resolved within 3 days and did not meet criteria 
to be categorized as DLT. MTD was not achieved. Adverse 
events in each cohort are summarized in Table  3. These 
included grade 3 lymphopenia (24  %), anemia (12  %), 
neutropenia (12 %), and fatigue (12 %), as well as grade 2 

leukopenia (30 %), neutropenia (23 %), nausea (23 %), and 
lymphopenia (18 %). The most common reason for study 
discontinuation was disease progression.

The majority of the adverse events occurred in cohort 3. 
Of the 10 adverse events observed, only 8 were deemed to 
be treatment related (hypokalemia and back pain were not 
treatment related). Subjects’ characteristics and underlying 
disease might have contributed to the relatively high occur-
rence of adverse events in Cohort 3. Two out of the four 
subjects in cohort 3 were withdrawn from the study due to 
rapid disease progression and died shortly after.

Treatment efficacy

Of the 17 patients treated, 9 were considered nonevaluable 
for efficacy given that they did not complete two cycles 
of therapy due to early disease progression. Among eight 
patients evaluable for radiographic response, 6 (75  %) 
had either stable disease (5, 62.5 %) or complete response 
(1, 12.5  %). The patient with the complete response had 
mucosal melanoma and had the best response after two 
cycles of therapy. Response lasted for 8 months. Of the five 
patients with stable disease, two were from Cohort 1, two 
from Cohort 3, and one from Cohort 4. The two remaining 
patients (25 %) had progressive disease after two cycles of 
therapy (Table 4).

Discussion

The field of epigenetics might offer a novel approach to 
the treatment of melanoma that could potentially add to the 
recent progress in immune and targeted therapies. Though 

Table 2   Patient characteristics (n = 17)

Characteristics Value (range)

Male:female 11:6

Median age 56 (32–77)

Melanoma location

 Cutaneous 11

 Ocular 4

 Mucosal 2

Median no. of prior systemic treatments 1 (0–3)

ECOG 0–1

Median no. of cycles administered 2 (1–6)

Table 3   Summary of adverse 
events

a  No. of subjects: number of 
subjects that developed the 
adverse event listed
b  Subject that developed each 
adverse event is listed to note 
that some of the adverse events 
occurred in the same subject in 
a given cohort

Cohort Grade 3 (no. of  
subjects)a

Subjectb Cycle  
and day

Grade 4  
(no. of subjects)

Subjectb Cycle  
and day

DLT

1 Lymphopenia (1) #03 C1, D12 None None

Anemia (1) #02 C1, D12

Fatigue (1) #02 C2, D3

Nausea (1) #02 C2, D3

2 None None None

3 Lymphopenia (3) #12 C1, D40 Neutropenia (1) #13 C1, D21 None

Anemia (1) #13 C1, D40

Neutropenia (1) #14 C1, D15

Fatigue (1) #14 C1, D15

Fever (1) #14 C1, D20

Hypokalemia (1) #15 C4, D18

Back pain (1) #15 C2, D3

#15 C3, D5

#12 C1, D33

4 Thrombocytopenia (1) #20 C1, D25 None None
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significantly explored in hematologic malignancies, epige-
netic therapeutic approaches have lagged behind in solid 
tumors. It has been well established that epigenetic pro-
cesses, specifically DNA promoter methylation and histone 
acetylation/deacetylation, are key cellular events during 
tumorigenesis [19]. Moreover, melanoma cells appear to 
use the epigenetic apparatus to “adapt” and acquire resist-
ance to external offenders such as chemotherapeutics [15], 
the immune system [11, 16], and even the newer targeted 
agents [17, 18]. In this Phase I trial, we explored the safety 
and tolerability of traditional chemotherapy combined with 
dual epigenetic therapy with sequential DNMT and HDAC 
inhibition. We used temozolomide, a known standard agent 
for metastatic melanoma prior to 2011, combined with 
decitabine and panobinostat.

During DNA methylation, a methyl group is added 
to cytosine in CpG islands located predominantly in pro-
moter regions, resulting in the silencing of genes regulated 
by the affected promoter. Abnormal genetic silencing by 
DNA methylation appears to modulate cancer biology and 
development of drug resistance [20]. Decitabine is a pow-
erful DNMT inhibitor that has shown the ability to impair 
the methylation process in numerous cancer cell lines 
(including melanoma), allowing the re-expression of genes 
that malignant cells are trying to turn off [5]. There is evi-
dence that the doses required to achieve hypomethylation 
are much lower than the usual cytotoxic doses [21–23]. In 
addition, given that active cell cycling is required to achieve 
methylation reversal, prolonged courses achieve more 
hypomethylation than shorter courses [24]. In myeloid 
neoplasms, extended administration of low doses of hypo-
methylating agents may result in increased or sustained 
response rates [25]. When the goal is to achieve and main-
tain methylation reversal, keeping decitabine toxicity to a 
minimum might be key, as this allows for repeated doses 
and longer courses. This approach might be more effective 
than trying to push decitabine doses until DLT or MTD are 
reached [20]. Most trials using decitabine in solid tumors 
have used high, toxic doses, with short administration peri-
ods [26–29]. These factors, at least partly, may account for 

the disappointing responses to decitabine in solid tumors, 
as compared to responses in hematopoietic malignancies. 
For these reasons, in this trial, we used low doses of decit-
abine in an extended dosing regimen. DLT or MTD were 
not reached, allowing for repeated dose administration.

In addition to promoter methylation patterns, gene 
expression is also highly influenced by DNA–histone inter-
actions that regulate the ability of the transcription appara-
tus to access the DNA. The opposing activities of histone 
acetyltransferase and HDAC maintain histone acetylation 
patterns that lead to cell-specific gene expression profiles. 
Aberrant HDAC recruitment appears to play a critical 
role in gene expression changes seen in malignant trans-
formed cells that allow them to block apoptotic mecha-
nisms. HDAC inhibitors appear to reestablish apoptosis in 
melanoma cells [30], induce cell differentiation, and inhibit 
tumor growth in animal models by down-regulating posi-
tive cell cycle regulators such as cyclin D1, c-Myc, C-RAF, 
and AKT [31–37], while inducing the expression of a num-
ber of anti-proliferative genes [38–40]. Melanoma cells 
exposed to HDAC inhibitors also exhibit decreased levels 
of activated MEK1/2 and ERK1/2 [41], key melanoma-
genic kinases blocked by novel targeted agents. HDAC 
inhibitors may also interfere with the appropriate folding 
of HSP90-client proteins (including AKT and RAF) that 
are critical to cancer cell growth [36, 37]. HDAC inhibi-
tors, however, are unable to reactivate the expression of 
genes that have been previously silenced by methylation of 
their promoters. This provides a rationale for the sequential 
use of DNMT inhibitors followed by HDAC inhibitors to 
provide “epigenetic synergy,” which has shown to enhance 
gene re-expression and drug sensitivity [42]. In this trial, 
we administered Panobinostat, a novel and potent HDAC 
inhibitor, a week after decitabine initiation. In animal stud-
ies, panobinostat has been shown to have affinity to mela-
nin, judged by measurable drug-related radioactivity in the 
uveal and pigmented skin at 96 h port-dose administration 
(data from Novartis Investigator’s Brochure). In our study, 
panobinostat was administered every 96 h.

This triple agent regimen of decitabine, panobinostat, 
and temozolomide was generally well tolerated by the 
cohort and appeared safe to be continued in a Phase II 
trial. No DLTs were observed, and MTD was not reached. 
As discussed before, when the goal is to achieve epige-
netic modulation, administration of higher doses of DNMT 
inhibitors might hinder the ability of patients to tolerate the 
frequent dosing intervals required to maintain hypometh-
ylation throughout the treatment cycle. Maintaining hypo-
methylation also appears to be more important than deep-
ening the nadir of methylation in each cycle. Given that the 
doses used in all cohorts proved safe, cohort 3 dose level 
was the recommended dose for the Phase II portion of this 
trial, as this is the subcutaneous dose of decitabine that has 

Table 4   Response assessment (by RECIST criteria)

Cohort Melanoma origin Type of response

1 Cutaneous Stable disease

1 Cutaneous Stable disease

1 Mucosal Complete response

2 Ocular Progression

3 Ocular Stable disease

3 Cutaneous Stable disease

4 Mucosal Stable disease

4 Ocular Progression
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been shown to achieve successful hypomethylation [43]. 
This is supported by the observation of a gradual increase 
of hemoglobin F concentration 2 weeks after the initiation 
of therapy (preliminary data from Phase II, not shown) that 
appears to persist through the course of treatment. Patient 
responses in this cohort as shown in Table 4 are intriguing, 
especially given the inclusion of patients with ocular and 
mucosal melanoma, two highly chemoresistant variants of 
melanoma. The complete response observed in one sub-
ject with mucosal melanoma is very intriguing. This sub-
ject achieved this best response (complete response) after 
two cycles. Mucosal melanomas tend to have c-kit muta-
tions and are generally negative for B-RAF. They metasta-
size quite frequently, behaving differently from cutaneous 
melanoma. The effect of epigenetic therapy in this patient 
population might provide clues to the disease biology and 
warrants more investigation. However, the rarity of these 
tumors will likely make studying this subpopulation more 
difficult. We hypothesize that DNMT inhibition followed 
by HDAC inhibition target key epigenetic events that mela-
noma cells use to selectively turn on or off specific path-
ways that confer resistance to chemotherapy and apoptosis. 
This study started enrolling patients prior to the approval of 
ipilimumab and the new targeted agents that are revolution-
izing the treatment of melanoma. We believe that epige-
netic alterations might represent a global resistance mecha-
nism in melanoma and other cancers. Clinical trials using a 
similar approach, but this time combining epigenetic agents 
with immune therapies and novel targeted agents such 
as BRAF, MEK, or PD-1 inhibitors, are warranted. This 
approach of crippling “upstream” epigenetic mechanisms 
that allow melanoma cells to adapt and acquire resistance 
to novel agents could prove to be an alternative to blocking 
multiple “downstream” effectors using multiple targeted 
agents.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s) 
and the source are credited.
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