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Abstract

The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of
hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus
(raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g.,
geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-
genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on
average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while
greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-
infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and
phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-
infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of
Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the
effector protein HopX1Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains.
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Introduction

Erwinia amylovora, the causal agent of fire blight, is a destructive

bacterial phytopathogen reported to occur across North America,

New Zealand, Europe and the Middle East [1]. Commonly,

strains of E. amylovora infect a broad range of host plants in the sub-

family Spiraeoideae including apple, pear, cotoneaster, hawthorn

and quince. However, a less prevalent group of strains has also

been reported in the United States of America that infect plants in

the genus Rubus, including blackberry and raspberry.

The Spiraeoideae-infecting strains of E. amylovora are thought to

be relatively homogenous both genetically [2,3] and phenotypi-

cally [4,5] with only minor variations evident. Genetic variation

has been identified in populations of Spiraeoideae-infecting E.

amylovora using a variety of molecular fingerprinting techniques

including PCR-ribotyping, pulse field gel electrophoresis (PFGE)

after XbaI restriction, minisatellite-primed PCR, random amplified

polymorphic DNA (RAPD) analysis, amplified fragment length

polymorphism (ALFP) and clustered regularly interspaced short

palindromic repeat (CRISPR) analysis [4,6,7,8,9,10]. Rubus-

infecting strains of E. amylovora contain greater genetic diversity

than the Spiraeoideae-infecting strains [3,8,11]. Rubus-infecting

strains are not pathogenic to apple [12,13] but variation has been

observed in their ability to infect immature pear fruit, with some

strains being weakly virulent (causing necrosis with limited ooze

production) and others unable to cause any symptoms [14].

Phenotypic differences that have been identified between the

Spiraeoideae- and Rubus-infecting strains include variation in

exopolysaccharide composition [15], carbon utilization and

secreted protein profiles [13,16], but to date, only the effector

protein Eop1 has been shown to be directly involved in host

specificity in E. amylovora [17].

The diversity of a species can be defined by analyzing the

repertoire of genes represented across all strains of the species, its

pan-genome. The pan-genome includes the ‘core genome’ of

genes common to all strains of the species and the ‘dispensable or

accessory genome’, which consists of genes present in at least one,

but not all strains of a species [18]. The essence of a species, in

terms of its fundamental biological processes and derived traits

from a common ancestor, is linked to the core genome. However,

genetic traits linked to variation in virulence, adaptation and

antibiotic resistance are more often governed by the dispensable or
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accessory genome [19]. Pan-genome analyses of bacterial species

(e.g., Haemophilus influenzae, Escherichia coli) have clearly shown that

the genome sequence of one or two genomes per species is not

sufficient to understand within-species diversity and that sequenc-

ing of multiple strains is required to present a more consistent

definition of the species itself [18,19].

To date, the genomes of two Spiraeoideae-infecting strains of E.

amylovora [2] and the genome of one Rubus-infecting strain [20]

have been published. Comparison of the two Spiraeoideae-

infecting strains revealed them to be almost identical (99.99%)

with the major differences being a large rearrangement in the

chromosomal DNA and plasmid content [2]. Genome comparison

of Rubus-infecting strain ATCC BAA-2158 to Spiraeoideae-

infecting strain CFBP 1430 identified 90% of the coding sequences

(CDS) to be conserved between both strains and identified 373

CDS of the ATCC BAA-2158 genome to be non-conserved

(singletons) [20]. Here, the diversity of E. amylovora is further

investigated by defining the pathogen’s pan-genome using

genomes from twelve strains that were carefully selected to

represent the broadest diversity, based on differential geographical

origin, isolation year or PFGE patterns [8,21,22].

Results and Discussion

The Pan-genome of E. amylovora
The chromosomes of the twelve genomes of E. amylovora

compared in this study are all approximately 3.8 Mb. The

Spiraeoideae-infecting strains and ATCC BAA-2158 have an

average G+C content of 53.6% and the Rubus-infecting strains

Ea644 and MR1 have G+C contents of 53.3 and 53.4, respectively

(Table 1). Analysis of the annotated sequences revealed that 86%

of the average E. amylovora genome consists of CDS and has an

average CDS density of approximately 1 per kb. The pan-genome

of E. amylovora was calculated to contain 5751 CDS of which 3414

CDS were considered as core (Figure 1). The average number of

CDS predicted per genome was 3819 CDS meaning that on

average 89% of each individual genome is core, though this

percentage did vary between 83% (MR1) and 92% (ATCC 49946)

(Table 1). Comparison of average amino acid identities (AAI)

calculated from the core genome indicated that the core genome

of E. amylovora is highly conserved (.99% amino acid identity

among all strains) (Table 2). AAI and phylogenetic analysis of the

core genome of E. amylovora strains (complete and draft) indicated

that they are all part of the same species, with the Spiraeoideae-

infecting strains exhibiting much less diversity than the Rubus-

infecting strains (Table 2 and Figure 2). The Rubus-infecting

strains Ea644 and MR1 cluster together but the Rubus-infecting

strain ATCC BAA-2158 clusters more closely with the Spiraeoi-

deae-infecting strains than it does with the other Rubus-infecting

strains. This grouping is consistent with previous studies using rep-

PCR, carbon utilization and phylogeny based on rpoB [8,11,16].

We performed maximal unique matches index (MUMi) analysis

to determine intra-species and intra-genus whole genome diversity

of each genome analyzed in this study and with closely related

species E. pyrifoliae, E. tasmaniensis and E. billingiae (Table 2).

MUMi scores of genomic distance ranging from 0 to 1 correlate

with average nucleotide identity scores and multi locus sequence

typing with a score of 0 for identical genomes to 1 for very distant

genomes [23]. MUMi scores of E. amylovora genomes comple-

mented phylogenetic analysis showing significant similarity among

all E. amylovora strains (0.000–0.122) compared with closely related

species (0.585–0.941), and in particular, high homogeneity among

Spiraeoideae-infecting strains (0.000–0.008). MUMi scores also

indicate that ATCC BAA-2158 is more closely related to

Spiraeoideae-infecting strains (0.043–0.047) than the other

Rubus-infecting strains (0.116–0.119). MUMi scores show that

Rubus-infecting strains Ea644 and MR1 are most genetically

similar to each other (0.031) and are as genetically similar to

ATCC BAA-2158 as they are to the Spiraeoideae-infecting strains

(0.114–0.122), corresponding to AAI analysis (Table 2) and

phylogenetic analysis (Figure 2).

In comparison with other microbial pan-genome studies, E.

amylovora has a high percentage of CDS per individual genome

classified as core (Table 3). This highlights the relatively small

amount of intra-species genetic diversity observed in E. amylovora

even with the inclusion of the more genetically diverse Rubus-

infecting strains. It has been speculated that E. amylovora has

relatively low genetic diversity (compared to other plant pathogens

like P. syringae) because it undergoes limited genetic recombination,

it has a high degree of specialization to a narrow ecological niche

and in Spiraeoideae-infecting strains, is exposed to limited

selection pressures due to pome fruit breeding strategies favoring

high-value varieties, that often are highly susceptible to fire blight

[8,24].

The number of genomes required to estimate the size of a

species’ pan-genome has been mathematically modeled [19,25]

leading to the concept of ‘open’ and ‘closed’ pan-genomes. In an

open pan-genome new genes are added to the gene repertoire of

the species with every new strain sequenced [19]. Based on

EDGAR analysis [26] using two complete genome sequences and

ten draft genome sequences of E. amylovora, the pan-genome is

predicted to be open (Figure 3A). Singleton development analysis

estimated that 52 novel CDS (including plasmids) and 40 novel

CDS (excluding plasmids) (Figure 3B) would be added to the

pan-genome with each additional genome of E. amylovora

sequenced.

Variation among the Spiraeoideae-infecting Strains
Phylogenetic and MUMi analysis have shown that Spiraeoi-

deae-infecting strains of E. amylovora are highly homogeneous at

the chromosome level, which is consistent with previous studies

[2]. When a singleton development analysis using only the

Spiraeoideae-infecting strains with nearly identical chromosomes

was conducted in EDGAR (including plasmids), the pan-genome

of this subgroup was open (Figure 3C) with a prediction of 30

new genes to be added to the pan-genome with each additional

genome sequenced. When the same analysis was done excluding

plasmids the pan-genome of Spiraeoideae-infecting strains was

still predicted to be open with 11 new genes to be added to the

pan-genome with each additional genome sequenced

(Figure 3D) highlighting the important role plasmids play in

the genetic diversity of E. amylovora. It is likely that the figures

for all of the pan-genome calculations are slightly inflated due

to the use of draft genomes (i.e., with contig breaks that

influence CDS prediction and comparison) and that the pan-

genome of the Spiraeoideae-infecting strains, excluding plas-

mids, is closed.

Recently, Spiraeoideae-infecting strains of E. amylovora have

also been differentiated into different geographical groups based

on CRISPRs [6,27]. CRISPR analysis clustered Spiraeoideae-

infecting strains of E. amylovora into three main groups, two of

which contained strains only from North America (CRISPR

groups II & III) and one that contained strains from Europe,

the Middle East, New Zealand and from the east coast of North

America (CRISPR group I). The more phylogenetically distant

clusters of groups I and III correlated with earlier PCR

ribotyping experiments that also grouped E. amylovora strains

into clusters of geographical origin based on genetic differences

The Pan-Genome of Erwinia amylovora
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[8]. All sequenced Spiraeoideae-infecting strains analyzed in this

study are of CRISPR group I [6]. Further investigation into E.

amylovora strains of CRISPR groups II and III may identify

more genetic diversity than exists among Spiraeoideae-infecting

strains in this study.

Variation among All Strains of E. amylovora – the
Accessory Genome

The majority of diversity observed within the pan-genome of E.

amylovora was between the Spiraeoideae-infecting and the Rubus-

infecting strains and among the individual Rubus-infecting strains.

Cross-infectivity of Rubus-infecting strains on Spiraeoideae and

Figure 1. Circular plot of the pan-genome of E. amylovora. The CDS of the pan-genome (forward and reverse) are depicted in the two
outermost circles (aqua). Moving inwards, the core genome is depicted in yellow and the accessory genome in black. The accessory genome of the
individual strains of E. amylovora continue inwards as follows: Rubus-infecting strains MR1 (red), Ea644 (pink) and ATCC BAA-2158 (purple), and
Spiraeoideae-infecting strains CFBP 1430 (light blue), ATCC 49946 (royal blue), Ea266 (dark green), CFBP 2585 (tan), 01SFR-BO (sky blue), Ea356 (teal),
UPN527 (navy blue), ACW 56400 (orange) and CFBP 1232T (light green). Variable regions of interest are numbered with a pan-genome locus (PL) of 1
to 32 and are described in Supplementary Tables 1 and 2. Of note are PL 4 (ICE flanking PAI-1), PL 20 (secondary metabolite cluster only found in
Rubus-infecting strains), PL 27 (sequence from the Rubus-infecting strains that could not be assembled into contiguous sequence), PL 28 (pEA72), PL
29 (pEA29), PL 30 (pEI70), PL 31 (pEAR5.2 and pEAR4.3) and PL 32 (pEA30).
doi:10.1371/journal.pone.0055644.g001
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Figure 2. Phylogenetic analysis of Erwinia species created in EDGAR based on concatenated sequence of the core genome. All strains
of E. amylovora cluster together and are separate from the other Erwinia species. The Spiraeoideae-infecting strains form a distinct cluster within E.
amylovora and the Rubus-infecting strain ATCC BAA-2158 (Rubus-infecting 1) clusters more closely with these strains than with the other two Rubus-
infecting strains labeled Rubus-infecting 2.
doi:10.1371/journal.pone.0055644.g002

Table 2. Percent average amino acid identities (AAI) calculated from the core genome data set using EDGAR and MUMi scores of
genomic distance between the 12 E. amylovora strains and closely related Erwinia spp.

Average amino acid identities (%) MUMi Scores

Data set Average (Stdev) Min Max Average (Stdev) Min Max

All E. amylovora 99.72 (0.34) 99.19 100 0.044 (0.050) 0.000 0.122

All Spiraeoideae-infecting isolates 99.98 (0.02) 99.93 100 0.005 (0.003) 0.000 0.010

All Rubus-infecting isolates 99.42 (0.36) 99.19 99.83 0.089 (0.050) 0.031 0.119

ATCC BAA-2158 to all Spiraeoideae-infecting isolates 99.79 (0.02) – – 0.044 (0.002) – –

ATCC BAA-2158 to Ea644 and MR1 99.23/99.19 – – 0.116/0.118 – –

MR1 to all Spiraeoideae-infecting isolates 99.21 (0.00) – – 0.118 (0.002) – –

Ea644 to all Spiraeoideae-infecting isolates 99.24 (0.02) – – 0.116 (0.002) – –

MR1 to Ea644 99.83 – – 0.031 – –

E. amylovora to E. pyrifoliae 95.44 (0.05) – – 0.588 (0.004) – –

E. amylovora to E. tasmaniensis Et1/99 92.66 (0.01) – – 0.804 (0.001) – –

E. amylovora to E. billingiae EB661 85.07 (0.01) – – 0.940 (0.000) – –

MUMi score values vary from 0 for identical genomes to 1 for very distant genomes.
doi:10.1371/journal.pone.0055644.t002
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vice versa is rare [11,13], and it is hypothesized that the genetics

influencing host-specificity determination is present within the

accessory genes of the pan-genome. Given the lack of diversity

observed in the chromosomes of the Spiraeoideae-infecting strains

we have used E. amylovora CFBP 1430 to represent the

Spiraeoideae-infecting strains in this section although all strains

were included in the analysis. Variable regions of the pan-genome

(Figure 1) are summarized in Supplementary Tables S1 and
S2 with regions of note discussed in more depth in the following

sections.

Genomic islands. Genomic islands (GIs) are defined as

clusters of genes in prokaryotic genomes of probable horizontal

origin and include prophages, integrated plasmids, integrative

conjugative elements, integrons and conjugative transposons [28].

GIs typically encode mobility related genes but also carry

significant ‘‘cargo’’ genes that can be involved in virulence, drug

resistance and increased ecological fitness [29,30,31]. We have

identified 12 loci within the E. amylovora pan-genome which vary in

GI content among strains (Supplementary Table S1 and
Figure 1) and which account for a large proportion of the genetic

variation observed within the chromosomal component of the

pan-genome. The majority of CDS identified on GI’s of the E.

amylovora pan-genome encode hypothetical proteins and mobility

related genes (Supplementary Table S1), including genes

Table 3. Percentage of CDS predicted to be core in the
genome of each selected bacterial species.

Species
% core
CDS

No.
Genomes Reference

Escherichia coli 44% 17 Open [64]

Ralstonia solanacearum 48% 6 Unknown [65]

Xanthomonas oryzae 63% 4 Open [26]

Pseudomonas syringae 64% 19 Unknown [66]

Streptococcus pneumoniae 74% 44 Open [67]

Xanthomonas campestris 75% 5 Open [26]

Listeria monocytogenes 80% 26 Open [68]

Staphylococcus aureus 85–89% 17 Closed [69]

Erwinia amylovora 89% 12 Open This study

Mycobacterium tuberculosis 98% 9 Closed [70]

doi:10.1371/journal.pone.0055644.t003

Figure 3. Singleton development plot analysis. Single development plots defined using 12 strains of E. amylovora including plasmids (A) and
excluding plasmids (B), and 9 Spiraeoideae-infecting strains of E. amylovora including plasmids (C) and excluding plasmids (D). All plots indicate that
the pan-genome of E. amylovora is ‘open’, predicting that each additional strain sequenced will add 52 (Plot A), 40 (Plot B), 30 (Plot C) and 11 (Plot D)
new singletons to their respective pan-genome sets.
doi:10.1371/journal.pone.0055644.g003
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involved in replication, transfer and integration of mobile

elements.

The largest GI in any of the E. amylovora strains (34.5 kb) is

present in the Rubus-infecting strains Ea644 and MR1 at pan-

genome locus (PL) 3 (Figure 1). At the same locus in the

Spiraeoideae-infecting strains and ATCC BAA-2158, there is a

different GI of approximately 23.4 kb. Analysis of the CDS

predicted across these GIs indicates that both GIs at this locus

carry different types of bacterial host-specific modification systems

responsible for protecting the cell from foreign DNA. These

modification systems generally have two primary functions;

protection of host DNA (bacterial) and degradation of foreign

DNA with restriction enzymes [32]. Ea644 and MR1 encode a

type 1 restriction modification system, a system which protects the

host DNA by adding methyl groups to recognition sites of

expressed restriction enzymes [32] and the Spiraeoideae-infecting

strains encode a DNA degradation (Dnd) host-specific modifica-

tion system which (in other bacteria) incorporates sulfur into the

DNA backbone to prevent restriction recognition [33].

Only one GI of approximately 20 kb (Figure 1 - PL20) was

present in all of the Rubus-infecting strains of E. amylovora but

absent in Spiraeoideae-infecting strains. Remnants of PL20 were

found in CRISPR region 1 (CRR1) of the Spiraeoideae-infecting

strains, suggesting that this island in Rubus-infecting strains is

ancestral to CRR1 of the Spiraeoideae-infecting strains [6]. PL20

encodes three polyketide synthase proteins (EAIL5_2889,

EAIL5_2891 and EAIL5_2892), a non-ribosomal peptide synthase

(EAIL5_2890) alongside a putative transporter (EAIL5_2885)

(Supplementary Figure S1). Other genes in this cluster are

modifying enzymes. As the total gene cluster represents a novel

NRPS/PKS, the prediction of the final chemical structure of the

product is impossible.

Pathogenicity and host specificity determinants. Two

major virulence determinants required for E. amylovora to infect

and cause disease on host plants are the exopolysaccharide

amylovoran biosynthesis pathway and the Hrp type III secretion

system (T3SS). There are no major differences among the 12

strains of E. amylovora in the amylovoran biosynthesis cluster

(.98% amino acid identity across the whole region) or the Rcs

phosphorelay system that controls its regulation [34]. There is

however, variation within Hrp cluster of E. amylovora (Figure 1 -

PL4) [35]. The Hrp cluster is a pathogenicity island that encodes

the hypersensitive response and pathogenicity (hrp) T3SS and the

majority of the known T3SS effector proteins [36]. Variation was

identified in HrpK (truncated in ATCC BAA-2158), the putative

chaperones OrfA and OrfC (which varied between host specific

groupings of Rubus- and Spiraeoideae-infecting strains) and more

significantly, Eop1 which has been shown to function as a host

limiting factor [17,35].

The remnants of an integrative conjugative element (ICE)

(previously referred to as the IT region) were present at the flank of

the Hrp cluster, which differs between Spiraeoideae- and Rubus-

infecting strains, as well as among the individual Rubus-infecting

strains [35]. This remnant ICE is mosaic in nature with varying

ICE-related genes identified in all strains, however, it appears to

have undergone significant genome reduction in the Spiraeoideae-

infecting strains, being more than 30 kb shorter in length than all

of the Rubus-infecting strains sequenced thus far [35].

Additional T3SS effector proteins that are located outside the

Hrp T3SS cluster in the E. amylovora genome have also been

identified and include: AvrRpt2Ea (Eop4) a protein found to

contribute to virulence on immature pear fruit [37]; HopPtoC an

effector protein induced during infection on immature pear fruit

[38]; HopAK1Ea (Eop2) a predicted translocator; and HopX1Ea

(Eop3) a protein conditioning avirulence on apple [39]. Compar-

ison of effector homologues in the pan-genome found HopPtoC

and HopAK1Ea are present in all strains of E. amylovora ($95%

amino acid identity). However, analysis revealed variation of the

effector proteins HopX1Ea and AvrRpt2Ea among different strains

of E. amylovora. Comparison of the region encoding HopX1Ea

identified that the Rubus-infecting strains only contained sequence

encoding the last 72–85 amino acids of the C-terminal end of

Spiraeoideae-infecting HopX1Ea. A recent study hypothesized that

the 301 residue protein HopX1Ea273 is recognized by the host

plant [39] so the consistent variation observed here among

Spiraeoideae-infecting and Rubus-infecting strains of E. amylovora

make this protein a strong candidate as a host specificity

determinant. A single base deletion at nucleotide 165 (amino acid

55) of AvrRpt2Ea in Rubus-infecting strains Ea644 and MR1, has

caused a frameshift resulting in a truncation at amino acid 73.

Annotation of this region in Ea644 and MR1 predicts a CDS for

AvrRpt2 which correlates with amino acids 79 to 223 of AvrRpt2

of the Spiraeoideae-infecting strain CFBP1430. The lack of an N-

terminal signal, which is important for secretion, translocation,

and chaperone binding of other T3SS effector proteins [40], in

either of these T3SS effector proteins may result in an inability to

be translocated into the host cell.

Type VI secretion systems. Type VI secretion systems

(T6SS) have been identified in at least a quarter of the sequenced

Gram-negative bacteria [41]. Three T6SS gene clusters have been

identified in E. amylovora [2] but their exact role in this species is

unknown. Inter-species comparison of the T6SS clusters among

closely related Erwinia and Pantoea species has previously identified

conserved core regions and variable hcp and vgrG islands [42].

Pan-genome comparison has shown that there is no variation

among the Spiraeoideae-infecting isolates, but has identified

variation between Spiraeoideae-infecting isolates and the Rubus-

infecting strains and among the Rubus-infecting isolates in the

T6SS clusters 1 and 3 (detailed in the Supplementary Text and

Supplementary Figures S2 and S3).

Within the conserved core regions of the three T6SS, variation

was observed within the region III of T6SS-1. This variation

included Rubus-infecting strains Ea644 and MR1 each containing

additional sequence (approximately 1300 bp sharing 99% identity)

between COG3520 and clpV (Supplementary Figure S2),

encoding proteins with sequence identity (52–65% aa identity) to

CDS in the corresponding loci of the T6SS-1 of E. pyrifoliae DSM

12163 (EPYR_00667 and EPYR_00668) [42,43].

Variation between strains of E. amylovora was primarily found

within the non-conserved hcp and vgrG islands of T6SS-1 regions II

and IV and T6SS-3 region IV. These variable regions share high

sequence similarity to closely related bacteria of the genera Erwinia

and Pantoea. The identification of intra-species diversity in the hcp

and vgrG islands of E. amylovora confirm that these regions are hot-

spots for rearrangement and are likely to play an important role in

the evolution and functional diversification of T6SS [42].

Carbohydrate utilization. E. amylovora CFBP 1430 is able to

utilize L-arabinose as a carbon source using the proteins encoded

by the araABFGHC gene cluster (EAMY_1725–1730), which

convert L-arabinose to D-xylulose 5-phospate for downstream

purposes [44]. Unlike in all of the Spiraeoideae-infecting strains

and ATCC BAA-2158 (Figure 1 - PL10), the Rubus-infecting

strains MR1 and Ea644 both lack the sequence corresponding to

gene cluster containing araABFGH, but the regulatory gene araC

(BN439_2117 and BN440_2152) is present. Though it will need to

be functionally confirmed, these findings indicate an inability of

the Rubus-infecting strains MR1 and Ea644 to metabolize and

actively transport L-arabinose.

The Pan-Genome of Erwinia amylovora
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Another region of variation in the pan-genome of E. amylovora

that appears to have metabolic implications is PL11, which is

found in Spiraeoideae-infecting strains and ATCC BAA-2158.

This 11.3 kb region contains CDS encoding proteins commonly

involved in carbon utilization and transport, including multiple

monooxygenase domain encoding CDS, an acyl-CoA dehydroge-

nase, a peptidase and putative sugar transport protein. Based on

the annotation of these CDS, it is difficult to predict a substrate for

this cluster.

Plasmids. Plasmids are a primary source of genetic diversity

among E. amylovora strains, particularly in the Spiraeoideae-

infecting strains. We sequenced six plasmids comprising 4.7% of

the pan-genome of E. amylovora but found only five of the fourteen

currently known plasmids [45] within our 12 genomes. The nearly

ubiquitous and diagnostic plasmid pEA29 (Figure 1– PL29)

which encodes genes for thiamine biosynthesis [46] was present in

all strains except for UPN527 (Table 1). Loss of the plasmidic

thiOSGF thiamine biosynthetic genes, results in thiamine prototro-

phy [47]. However, the strain UPN527 is still virulent, indicating

that thiamine prototrophy can be overcome in the host.

Plasmid pEA72 (Figure 1 - PL28), which has functionally

annotated CDS including a type IV secretion system, potentially

involved in conjugative transfer of the plasmid [48], but has no

known function to date, was only present in strain ATCC 49946

(Figure 1). In ATCC BAA-2158 we found two small circular

plasmids pEAR5.2 and pEAR4.3 of unknown function (Figure 1
- PL31) [20]. In a previous study, three small plasmids were

identified in ATCC BAA-2158 [49] but the third, pEA2.8, which

contains a CDS for the ampicillin resistance protein beta-

lactamase (though this has not been functionally explored),

appears to have been lost by this isolate of ATCC BAA-2158.

However, we have confidence that the phenotypic information

presented for this strain is correct as other studies conducted in the

laboratory with the same strain of ATCC BAA-2158 included

phenotypic analysis [17,20].

The genome sequence of strain CFBP 2585 revealed a novel E.

amylovora plasmid pEA30 of approximately 30 kb (Figure 1). This

plasmid contains a type IV secretion system for putative

conjugative plasmid transfer and predicted CDS involved in

plasmid replication and maintenance (Supplementary Figure
S4). Nucleotide similarity searches to known sequences in

GenBank indicate that pEA30 is most closely related to the RA3

plasmid of Aeromonas hydrophila (i.e., 70% total sequence coverage

and 64–81% identity of all high-scoring segment pair matches).

The RA3 plasmid is the archetype of the IncU plasmids, which are

a distinct group of mobile elements with highly conserved

backbone functions and variable antibiotic resistance gene

cassettes [50]. Similarity between pEA30 and RA3 is limited to

the conserved backbone of replication, maintenance and transfer-

related genes (Supplementary Figure S4) and pEA30 does not

contain any known antibiotic resistance cassettes, leaving the

function of this plasmid, like many of the other E. amylovora

plasmids [48], cryptic.

The genome sequence of strain ACW 56400 from Switzerland

contained the recently described plasmid pEI70, which contains

an ICE as a major feature and has thus far only been reported in

European E. amylovora populations [45]. The precise function of

pEI70, which has high sequence similarity to pEB102 from the

epiphyte E. billingiae Eb661, is to a large extent unknown and it is

thought that the ICE is unable to integrate into the chromosome

of E. amylovora [45]. However, it has been demonstrated that this

plasmid has an effect on strain aggressiveness in immature pear

fruit assays and, given its similarity to pEB102, it is postulated that

pEI70 may improve environmental fitness of the possessing strain

in planta rather than contributing directly to enhanced virulence

[45].

Conclusion
Individual genomes of the E. amylovora are largely made up of

core CDS, with approximately 10% being variable among strains.

‘‘Mining’’ the accessory genomes of the Rubus-infecting strains has

identified additional clues to the possible mechanisms influencing

host-specificity in E. amylovora. All Rubus-infecting strains analyzed

in this study possess a putative secondary metabolite pathway and

a multi-gene substitution in the LPS biosynthesis pathway [11] not

found in Spiraeoideae-infecting strains. Variation was also

observed in effector proteins of Rubus-infecting strains including

the host limiting factor Eop1 (as previously described [17]) and the

avirulence protein HopX1Ea. There was significant difference

between the HopX1Ea of Rubus- and Spiraeoideae-infecting

strains, with Rubus-infecting strains missing the coding sequence

for more than two thirds of the Spiraeoideae type HopX1Ea at the

N-terminus of the protein.

Overall, more genetic variation was observed among the Rubus-

infecting strains of E. amylovora compared to the Spiraeoideae-

infecting strains. As has been described previously [8,11], we

found that ATCC BAA-2158 was genetically more similar to the

Spiraeoideae-infecting strains than to the other Rubus-infecting

strains. Previously, when carbon utilization analysis was used to

differentiated Rubus-infecting strains into different groups, one

group was identified as being more Spiraeoideae-like [16]. The

identification of clusters of genes involved in carbon utilization

present in the Spiraeoideae-infecting strains and ATCC BAA-

2158 in this study provides support for those findings. The

availability of three genomes of Rubus-infecting E. amylovora strains

will aid in the facilitation of research into understanding the

differences between Spiraeoideae-infecting and Rubus-infecting

strains.

Outside the addition of plasmids, no variation was apparent in

the genetic content of the Spiraeoideae-infecting strains in this

study. However, Spiraeoideae-infecting strains with identical

plasmid content (e.g. only pEA29) do not always exhibit identical

phenotypes [22,51]. Differential gene expression has been

identified as a cause for varied virulence phenotypes in

Spiraeoideae-infecting strains of E. amylovora [51] but the

underlying genetic cause for this variation is unknown. Explora-

tion of the transcriptome and the metabolome of Spiraeoideae-

infecting strains (and Rubus-infecting strains) of E. amylovora would

certainly aid in identifying factors contributing to phenotypic

diversity.

Defining the pan-genome of E. amylovora has allowed us to gain a

better understanding of the species as a whole. Compared with

other bacterial species, E. amylovora does not possess a great deal of

genetic diversity. Understanding how this limited genetic diversity

contributes to different phenotypes will eventually pave the way

for improved diagnostics and, ultimately, better control strategies

for this destructive pathogen.

Methods

Strain Selection
Based on the host and year of isolation, worldwide geographic

origin and the PFGE patterns, we selected a total of nine diverse

strains of E. amylovora representing isolates from two continents,

seven host plants and a time span of five decades (Table 1) for

draft genome sequencing [22]. The complete genomes of CFBP

1430 and ATCC 49946 [2] and the draft genome of ATCC BAA-

2158 [20] were also used in this analysis.

The Pan-Genome of Erwinia amylovora
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DNA Extraction
Genomic DNA for Ea356, Ea266, CFBP 2585, MR1 and

Ea644 was isolated at Cornell University using the Qiagen Blood

and Cell Culture DNA Midi Kit (#13343) and for strains ACW

56400, 01SFR-BO, CFBP 1232T and UPN527 at ACW using the

Wizard Genomic DNA Purification Kit (Promega, Madison, WI,

USA).

Sequencing
Whole-genome sequencing of E. amylovora strains Ea356, CFBP

2585 and Ea266 was performed at the Victorian AgriBiosciences

Research Centre, Australia using a 454 FLX pyrosequencer (454

Life Sciences, Roche, Branford, CT, USA) according to manu-

facturer’s instructions. Strains MR1 and Ea644 were sequenced at

ACW, Switzerland using a 454 GS-Junior sequencer according to

the manufacturer’s instructions. Strains ACW5 6400, 01SFR-BO,

CFBP 1232T, UPN527 were sequenced by GATC using 36-base

paired-end sequencing on an Illumina Genome Analyzer. Results

of the sequencing are shown in Supplemental Table S3.

Assembly and Annotation
Genomic data were assembled using Newbler (454 Life

Sciences), in silico gap closure was performed with Lasergene

(DNASTAR, Madison, WI, USA) and final assemblies were

confirmed by realigning reads against the consensus assembly

using NGen 2.0 (DNASTAR). All plasmid sequences reported in

this study were completely assembled and circular, and chromo-

somal sequences were assembled to the ‘‘high quality draft

sequence’’ level. Gaps within the sequences were mainly found

in repetitive elements, e.g., the seven rRNA operons or rhs genes.

Genes were predicted using a combined strategy [52] based on

the gene prediction programs Glimmer [53] and Critica [54].

Subsequently, the potential function of each predicted gene was

automatically assigned using the GenDB annotation pipeline [55].

The resulting genome annotation was curated manually, and

metabolic pathways were identified using the KEGG pathways

[56] tool in GenDB.

Genome Comparisons
The program EDGAR [26] was used to compare (predicted)

protein repertoires of all strains and calculate the pan-genome,

singleton and core CDS numbers. EDGAR was also used to

generate the whole genome phylogenetic tree and create singleton

development plots. Due to the fact that EDGAR compares

predicted CDS against predicted CDS, we also used mGenome-

Substractor [57](using CFBP 1430 as the reference genome) with

an h-value .0.81 cut off to eliminate annotation bias when

determining the core genome. BLAST algorithms [58] were used

to compare specific CDS to known sequences in GenBank.

The average amino acid identity (AAI) was calculated as

described previously [59]. The maximal unique exact matches

index (MUMi) distance calculation was performed using the

Mummer program (version 3.20). Mummer was run on concat-

enated contigs (achieved by inserting a terminator string in each

reading frame at each contig join) of each genome. The distance

calculations performed using the MUMi algorithm are based on

the number of maximal unique matches of a given minimal length

shared by two genomes being compared. MUMi values vary from

0 for identical genomes to 1 for very distant genomes [23].

The program antiSMASH [60] was used for secondary

metabolite gene cluster identification and core structure prediction

for the putative product.

Supporting Information

Figure S1 Analysis of the nonribosomal peptide and
polyketide biosynthesis gene cluster found only in the
Rubus-infecting strains of E. amylovora (remnants of
which are identified in CRISPR region 1 in the Spiraeoi-
deae-infecting strains) using the software AntiSmash.
Using sequence from E. amylovora strain ATCC BAA-2158, five

CDS were predicted to be part of this pathway (shaded in pink) (a)

and the domains within each of the five CDS were identified (b).

The domains identified include beta-ketoacyl synthase domains

(green KS), phosphopantetheine attachment sites (blue PCP), AMP-

binding sites (purple A), condensation domain (blue C), dehydration

domain (DH), ketoreductase domains (KR) and an acyl transferase

domain (AT). Additionally, the predicted core chemical structure of

the product of the nonribosomal peptide or polyketide biosynthesis

gene cluster is depicted (C).

(PDF)

Figure S2 Comparison of the T6SS-1 loci from different
strains of E. amylovora. CDS encoding conserved core T6SS

proteins are shaded in green (located in regions I and III), CDS

encoding T6SS effector proteins Hcp and VrgG are colored red

(located in regions II and IV, the hcp and vgrG islands), non-core

CDS that are conserved among all strains are dark grey, non-

conserved CDS of the T6SS that vary among strains are not

colored (regions II, III and IV) and CDS flanking the T6SS are

light grey. Regions of homology among strains are represented by

grey shading.

(PDF)

Figure S3 Comparison of the T6SS-3 loci from different
strains of E. amylovora. CDS encoding conserved core T6SS

proteins are shaded in green (primarily conserved core regions I,

III and V but there is also a core protein in region IV of CFBP

1430 and ATCC BAA-2158), CDS encoding T6SS effector

proteins Hcp and VrgG are colored red (located in conserved core

region I and hcp and vgrG islands regions II and IV), non-core CDS

that are conserved among all strains are dark grey, non-conserved

CDS of the T6SS are not colored (region IV) and CDS flanking

the T6SS are light grey. Regions of conservation among strains are

represented by grey shading.

(PDF)

Figure S4 Comparison of plasmid pEA30 of CFBP 2585
(Ea495) to the RA3 plasmid of Aeromonas hydrophila.
The RA3 plasmid is the archetype of the IncU plasmids which are

a distinct group of mobile elements with highly conserved

backbones and variable antibiotic resistance gene cassettes.

Conservation between pEA30 and RA3 (represented by the grey

shaded lines) is limited to the conserved backbone of replication,

maintenance and transfer related genes.

(PDF)

Table S1 Pan-genome loci of the E. amylovora pan-
genome that contain genomic islands. When two lines are

present for a pan-genome locus, two different genomic islands are

present.

(PDF)

Table S2 Variable regions of interest in the pan-genome
of E. amylovora. When two lines are present for a pan-genome

locus, two different genomic islands are present.

(PDF)

Table S3 Statistics for the draft assemblies of nine E.
amylovora strains sequenced in this study.
(PDF)
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Text S1 Additional text describing differences in lipo-
polysaccharides and type VI secretion systems among
the E. amylovora genomes.
(PDF)
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35. Mann RA, Blom J, Bühlmann A, Plummer KM, Beer SV, et al. (2012)

Comparative analysis of the Hrp pathogenicity island of Rubus- and
Spiraeoideae-infecting Erwinia amylovora strains identifies the IT region as a

remnant of an integrative conjugative element. Gene 504: 6–12.

36. Oh C-S, Kim JF, Beer SV (2005) The Hrp pathogenicity island of Erwinia

amylovora and identification of three novel genes required for systemic infection.

Mol Plant Pathol 6: 125–138.

37. Zhao Y, He SY, Sundin GW (2006) The Erwinia amylovora avrRpt2EA gene

contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis

RPS2 when expressed in Pseudomonas syringae. Mol Plant-Microbe Interact 19:
644–654.

38. Zhao Y, Blumer SE, Sundin GW (2005) Identification of Erwinia amylovora genes
induced during infection of immature pear tissue. J Bacteriol 187: 8088–8103.

39. Bocsanczy AM, Schneider DJ, deClerck GA, Cartinhour S, Beer SV (2012)

HopX1 in Erwinia amylovora functions as an avirulence gene in apple and is
regulated by HrpL. J Bacteriol 194: 553–560.

40. Triplett LR, Melotto M, Sundin GW (2009) Functional analysis of the N

terminus of the Erwinia amylovora secreted effector DspA/E reveals features
required for secretion, translocation, and binding to the chaperone DspB/F. Mol

Plant-Microbe Int 22: 1282–1292.

41. Records AR (2011) The type VI secretion system: a multi-purpose delivery

system with a phage-like machinery. Mol Plant-Microbe Interact 24: 751–757.

42. De Maayer P, Venter SN, Kamber T, Duffy B, Coutinho TA, et al. (2011)
Comparative genomics of the type VI secretion systems of Pantoea and Erwinia

species reveals the presence of putative effector islands that may be translocated
by the VgrG and Hcp proteins. BMC Genomics 12: 576.

43. Smits THM, Jaenicke S, Rezzonico F, Kamber T, Goesmann A, et al. (2010)

Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM
12163T and comparative genomic insights into plant pathogenicity. BMC

Genomics 11: 2.

44. Watanabe S, Kodaki T, Makino K (2006) Cloning, expression, and
characterization of bacterial L-arabinose 1-dehydrogenase involved in an

alternative pathway of L-arabinose metabolism. J Biol Chem 281: 2612–2623.

45. Llop P, Cabrefiga J, Smits THM, Dreo T, Barbé S, et al. (2011) Erwinia amylovora
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