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ABSTRACT
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules that are 
released from damaged or dying cells and activate the innate immune system by interacting 
with pattern recognition receptors (PRRs). Although DAMPs contribute to the host's defense, 
they promote pathological inflammatory responses. Recent studies have suggested that 
various DAMPs, such as high-mobility group box 1 (HMGB1), S100 proteins, and heat shock 
proteins (HSPs), are increased and considered to have a pathogenic role in inflammatory 
diseases. Here, we review current research on the role of DAMPs in inflammatory 
diseases, including rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, 
atherosclerosis, Alzheimer's disease, Parkinson's disease, and cancer. We also discuss the 
possibility of DAMPs as biomarkers and therapeutic targets for these diseases.
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INTRODUCTION

The innate immune system is the first line of host defense that induces immediate, non-specific 
immune responses against pathogens (1). Inflammation is part of the innate immune system and 
is initiated when the innate immune system recognizes invading pathogens or molecules from 
tissue injury through pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) 
and inflammasomes of the innate immune system (2,3). Although inflammation is a protective 
response to eliminate harmful stimuli, initiate tissue repair, and restore health, it can also 
contribute to the development of various diseases, such as autoimmune diseases, cardiovascular 
diseases, and neurodegenerative diseases, if it is not properly regulated or resolved (4,5).

Damage-associated molecular patterns (DAMPs) are molecules released upon cellular stress 
or tissue injury and are regarded as endogenous danger signals, because they induce potent 
inflammatory responses by activating the innate immune system during non-infectious 
inflammation (6,7). Recently, emerging evidence has indicated that DAMPs play a key role in 
the pathogenesis of human diseases by inducing inflammation (8). This review describes the 
role of DAMPs in inflammatory diseases and the possibility of using DAMPs as biomarkers 
and therapeutic targets for these inflammatory diseases.
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ORIGIN AND LIST OF DAMPS

Since the danger model was introduced by Polly Matzinger (9), several DAMPs have been 
identified, and the number of DAMPs is still increasing (7,10). DAMPs are released from the 
extracellular or intracellular space following tissue injury or cell death (10). These DAMPs are 
recognized by macrophages, and inflammatory responses are triggered by different pathways, 
including TLRs and inflammasomes (10,11). DAMPs can originate from different sources and 
include extracellular proteins, such as biglycan and tenascin C, and intracellular proteins, 
such as high-mobility group box 1 (HMGB1), histones, S100 proteins, heat-shock proteins 
(HSPs), and plasma proteins, like fibrinogen, Gc-globulin, and serum amyloid A (SAA) 
(10,12-15). A list of well-characterized DAMPs, along with their origin and receptors, is shown 
in Table 1.

HMGB1, a member of the HMG protein family, which is located in the cell nucleus, has a 
critical function in gene expression, but when released to the extracellular space, HMGB1 is 
known to induce inflammation by activating the NF-κB pathway by binding to TLR2, TLR4, 
TLR9, and the receptor for advanced glycation end products (RAGE) (16). S100 proteins are 
calcium-binding proteins, and their main function is the management of calcium storage 
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receptor; RA, rheumatoid arthritis; RAGE, 
receptor for advanced glycation end products; 
RLR, RIG-like receptor; SAA, serum amyloid 
A; SLE, systemic lupus erythematosus; TLR, 
Toll-like receptor; TNF, tumor necrosis factor; 
VEGF, vascular endothelial growth factor; 
VSMC, vascular smooth muscle cell

Author Contributions
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Writing - review & editing: Sohn DH.

Table 1. List of DAMPs and their receptors
Origin Major DAMPs Receptors
Extracellular matrix Biglycan TLR2, TLR4, NLRP3

Decorin TLR2, TLR4
Versican TLR2, TLR6, CD14
LMW hyaluronan TLR2, TLR4, NLRP3
Heparan sulfate TLR4
Fibronectin (EDA domain) TLR4
Fibrinogen TLR4
Tenascin C TLR4

Intracellular compartments Cytosol Uric acid NLRP3, P2X7
S100 proteins TLR2, TLR4, RAGE
Heat shock proteins TLR2, TLR4, CD91
ATP P2X7, P2Y2
F-actin DNGR-1
Cyclophilin A CD147
Aβ TLR2, NLRP1, NLRP3, CD36, RAGE

Nuclear Histones TLR2, TLR4
HMGB1 TLR2, TLR4, RAGE
HMGN1 TLR4
IL-1α IL-1R
IL-33 ST2
SAP130 Mincle
DNA TLR9, AIM2
RNA TLR3, TLR7, TLR8, RIG-I, MDA5

Mitochondria mtDNA TLR9
TFAM RAGE
Formyl peptide FPR1
mROS NLRP3

ER Calreticulin CD91
Granule Defensins TLR4

Cathelicidin (LL37) P2X7, FPR2
EDN TLR2
Granulysin TLR4

Plasma membrane Syndecans TLR4
Glypicans TLR4

ER, endoplasmic reticulum; EDN, eosinophil-derived neurotoxin.
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and shuffling (10,17). Although S100 proteins have various functions, which include cell 
proliferation, differentiation, migration, and energy metabolism under healthy conditions 
(17), they also act as DAMPs by interacting with TLR2, TLR4, and RAGE after they are 
released from phagocytes (18). Likewise, HSPs normally function as chaperones and assist 
with biosynthetic pathways (10), but extracellular HSPs, which are cellular necrosis products, 
can induce inflammation through the activation of TLR2, TLR4, and CD91 (10,19). Adenosine 
triphosphate (ATP) and uric acid, which are purine metabolites, also activate NLR family, 
pyrin domain containing (NLRP) 3 inflammasomes to induce IL-1β and IL-18 (20,21). Finally, 
some plasma proteins, including SAA, fibrinogen, Gc-globulin, α1-microglobulin, and 
α2-macroglobulin, are extravasated to the sites of inflammation from the vasculature and 
function as DAMPs by stimulating macrophages to produce inflammatory cytokines through 
TLR2 or TLR4 (12-15).

PRRS

PRRs are important components of the innate immune system. Several families of PRRs 
have been identified in the diverse compartments of the cell (Table 2). They recognize 
microbes or tissue damage by specific molecular structures called pathogen-associated 
molecular patterns (PAMPs) or DAMPs (10,22). The main functions of PRRs are to stimulate 
phagocytosis and mediate inflammation by sensing various pathogens and molecules from 
damaged cells (2,23). As a result, PRRs activate inflammatory signaling pathways to induce 
innate immunity (23).

TLRs are type I transmembrane glycoproteins located at the cell surface (TLR1, 2, 4, 5, 6, and 
10) or in intracellular membranes (TLR3, 7, 8, and 9) and recognize various PAMPs or DAMPs 
(24). TLRs induce the production of proinflammatory cytokines and type I interferons 
(IFNs) through the myeloid differentiation factor 88 (MyD88)-dependent signaling pathway 
or the toll/interferon response factor (TRIF)-dependent signaling pathway (24). NOD-like 
receptors (NLRs) are cytoplasmic PRRs that include NODs, NLRPs, and the IPAF subfamily 
(25,26). NOD1 and NOD2 initiate proinflammatory signaling by activating NF-κB (25), 
and NLRP3 stimulation by DAMPs, such as extracellular ATP, hyaluronan, and uric acid, 
can activate caspase-1 and induce the release of IL-1β and IL-18 through the formation of 
an inflammasome (26). RIG-like receptors (RLRs), including RIG-I, MDA5, and LGP2, 
detect viral RNA and self RNA in the cytoplasm (27). RLRs induce the production of IFNs 
by interacting with IPS-1; furthermore, RLR signaling cross-talks with the TLR or the 
inflammasome signaling pathway (27). C-type lectin receptors (CLRs), expressed by dendritic 
cells (DCs), promote NF-κB activation by modulating TLR signaling or directly through the 
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Table 2. PRRs and their DAMP ligands
Family Major members DAMP ligands
TLRs TLR1–9 HMGB1, HSPs, S100 proteins, histones, DNA, RNA, mtDNA, 

syndecans, glypicans, biglycan, decorin, versican, LMW hyaluronan, 
heparan sulfate, fibrinogen, tenascin C

NLRs NOD1, NOD2, NLRP family Uric acid, Aβ, mROS, histones, biglycan, LMW hyaluronan
RLRs RIG-I, MDA5, LGP2 RNA
CLRs DEC-205, MMR, Dectin-1, Dectin-2, Mincle, DC-SIGN, DNGR-1 SAP130, F-actin
CDSs AIM2-like receptor DNA
Scavenger receptors CD36, CD44, CD68, CD91, CXCL16, RAGE HMGB1, HSPs, S100 proteins, calreticulin, versican
FPRs FPR1, FPR2, FPR3 Formyl peptide, cathelicidin (LL37)
NLR, NOD-like receptor; CLR, C-type lectin receptor; CDS, cytosolic DNA sensor; FPR, formyl peptide receptor; LMW, low molecular weight.
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spleen tyrosine kinase (SYK) and RAF1 pathways (28). Scavenger receptors consist of a large 
family of proteins and recognize various patterns. RAGE, one of the scavenger receptors, 
interacts with PAMPs or DAMPs, such as advanced glycation end products (AGEs), HMGB1, 
and S100 proteins, thereby mediating inflammation, oxidative stress, and apoptosis (29).

DAMPS IN AUTOIMMUNE DISEASES

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease (30). Swelling, pain, 
and stiffness of joints are the main symptoms of RA that result from inflammation of the 
synovial membrane of joints (31). Although the pathology of RA is not well understood, it is 
clear that DAMPs are associated with RA (30). S100A8/9/11/12 proteins were upregulated in 
the synovial tissue, synovial fluid, or serum of RA patients (32,33). In addition, the expression 
of HMGB1 was increased in the serum and synovial fluid of RA patients (34,35). On the other 
hand, when RA patients were treated with methotrexate (MTX), a common medication for 
RA, HMGB1 and cartilage degradation enzymes, matrix metalloproteinase (MMP)-2 and 
MMP-13, were decreased compared to the levels in the RA patients without MTX treatment 
(36). Furthermore, neutralization of HMGB1 can protect cartilage from degradation and 
prevent bone destruction due to RA in experimental animal models (37,38). It is assumed that 
HMGB1 stimulates the production of proinflammatory cytokines, such as tumor necrosis 
factor (TNF) and IL-1 (39). The inflammation of joints can promote cellular stress and lead to 
an increase in HSPs in the synovial tissue (40). It has been reported that the levels of HSP70 
were elevated in the synovial fluid of RA patients (41), and heat shock protein gp96 was 
increased in the synovial fluid of RA patients; this is considered to promote inflammation 
by activating macrophages through TLR2 signaling (42). HSP90 also contributes to the 
pathogenesis of RA by inducing a tumor-like synovial overgrowth by stabilizing integrin-linked 
kinase (ILK), extracellular signal-regulated kinase (ERK), and protein kinase B (Akt) (43).

Recently, citrullinated histones and their immune complexes have been reported to function 
as DAMPs in RA (44). Citrullinated H2B was increased in the synovial fluid of RA patients 
and activated macrophages to produce inflammatory cytokines, which were enhanced by 
immune complexes with RA patient-derived IgGs. Moreover, immunization with citrullinated 
H2B in the presence of low-grade joint inflammation induced inflammatory arthritis in an 
animal model of RA (44).

Systemic lupus erythematosus (SLE) is one of the chronic autoimmune diseases that invades 
multiple organs (45). HMGB1 expression was enhanced in SLE patients and correlated with 
the SLE disease activity index (46). Furthermore, the urine HMGB1 level was elevated in lupus 
nephritis patients (47). However, a monoclonal anti-HMGB1 antibody has no therapeutic 
effect on a mouse model of lupus nephritis (48). This suggests that HMGB1 could be a good 
biomarker, but not a potential therapeutic target for SLE. Oxidized mitochondrial DNA 
(mtDNA) was found in the blood neutrophils of SLE patients, and extrusion of oxidized 
mtDNA could stimulate IFN production by activating plasmacytoid DCs (49). Recent 
evidence has suggested that neutrophil extracellular traps (NETs) are implicated in SLE, and 
NETs derived from the low-density granulocytes of SLE patients are enriched in oxidized 
mtDNA, which induces the inflammatory response (50).
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DAMPS IN OSTEOARTHRITIS (OA)

OA has been regarded as a degenerative joint disease that is characterized by the destruction 
of cartilage (51). There are several risk factors for OA pathogenesis, which include age, 
physical trauma, and obesity (51). However, emerging evidence suggests that DAMPs-induced 
inflammation plays an important role in the pathogenesis of OA (14,52,53). Although the 
HMGB1 level was higher in the synovial fluid of RA patients than OA patients (35), more 
HMGB1-positive cells were found in the knee cartilage of high-grade OA patients compared 
to normal cartilage (54). Another study has provided evidence that the HMGB1 and 
RAGE levels are upregulated in OA knees compared to those of healthy controls (55). As 
demonstrated in other inflammatory diseases, extracellular HMGB1 activates the NF-κB 
signaling pathway to induce inflammation, and HMGB1 expression is related to the grade of 
cartilage destruction (16,54).

S100 proteins are also involved in the pathogenesis of OA. S100A8/A9 protein expression 
was elevated in the synovium of a collagenase-induced OA mouse model, and when 
S100A8 was intra-articularly injected into the knee joint of mice, it induced the expression 
of inflammatory markers, including Ly6C, F4/80, CCL2, and CCR2 in the synovium (56). 
Although S100A12 expression was unchanged in the serum between the OA patients and the 
healthy controls, the S100A12 level in the synovial fluid of OA patients was greatly increased 
compared to the healthy controls (57). In addition, S100A12 increased the secretion of MMP-
13 and vascular endothelial growth factor (VEGF) in human OA chondrocytes, suggesting 
that S100A12 induces the progression of OA by increasing MMP-13 and VEGF (58).

DAMPs originated from plasma may also contribute to the pathogenesis of OA. It was reported 
that the levels of several inflammatory mediators, such as IL-6 and MCP-1, were higher in OA 
sera compared to healthy sera, suggesting the inflammatory nature of OA (14). Moreover, 
various plasma proteins are enriched in the synovial fluid of OA patients, and some of the 
plasma proteins, such as Gc-globulin, α1-microglobulin, and α2-macroglobulin, induced 
inflammation by functioning as DAMPs by activating TLR4 (14). This result suggests that 
certain plasma proteins can contribute to the low-grade inflammation observed in OA patients.

DAMPS IN CARDIOVASCULAR DISEASES

Atherosclerosis is an inflammatory disease of the arterial wall, in which the vessels narrow 
due to accumulating plaques of inflammatory cells and lipids (59). Although innate immunity 
is essential to maintain a healthy arterial wall, it also has a distinct role in stimulating the 
development of atherosclerosis (60). Macrophages are recruited to arterial lesions, which 
are rich in DAMPs, and contribute to the pathogenesis of atherosclerosis not only by the 
formation of lipid-filled foam cells, but also by inducing inflammation through the activation 
of PRRs (60,61).

HMGB1 is released from macrophages and vascular smooth muscle cells (VSMCs) in the 
lesions; therefore, the HMGB1 levels are highly elevated in atheromatous plaques (62). 
Recombinant human HMGB1 induced proinflammatory responses in endothelial cells by 
increasing leukocyte adhesion molecules, such as ICAM-1 and VCAM-1, and by inducing 
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inflammatory mediators, such as IL-8, MCP-1, and TNFα (63). These results suggest that 
high expression of HMGB1 has the possibility to increase inflammation and accumulate 
atherogenesis (62,63).

S100 proteins are also involved in the pathogenesis of atherosclerosis. S100A8 and S100A9 
exist in plaques, and they increase atherogenesis by activating neutrophils and monocytes in 
arterial lesions (64,65). S100A8, S100A9, and S100A12 have an important role in the mediation 
of inflammation and increase atherosclerosis in human and rodent models by interacting 
with RAGE, which plays an important role in endothelial dysfunction and inflammation 
(66,67). Consistent with the prospective population-based cohort study, S100A12 showed the 
strongest association with the risk of coronary heart disease (CHD), among the conventional 
risk factors (68). Likewise, other DAMPs are also upregulated in cardiovascular diseases. 
HSP70 was elevated and concentrated in the central portions of thick atheromas compared 
to normal arterial specimens (69). Soluble HSP60 was increased in patients with early carotid 
atherosclerosis (70), and HSP60 promoted atherosclerosis by inducing VSMC migration via 
TLR4 and ERK mitogen activated protein kinase (MAPK) activation (71). Finally, expression 
of α-defensin was upregulated in hyperlipidemia and CHD patients, which suggests that 
α-defensin can also be a potential biomarker for atherosclerosis (72).

DAMPS IN NEURODEGENERATIVE DISEASES

Alzheimer's disease (AD) is a chronic neurodegenerative disease that is characterized by 
several symptoms, such as amnesia, inability to manage self-care, and eventually dementia 
(73). Although the pathology of AD is still mostly unknown, several hypotheses have been 
suggested to explain it. DAMPs are also known to be involved in neuroinflammation in 
neurodegenerative disorders (74). The levels of HMGB1 and soluble RAGE are significantly 
elevated in the sera of AD patients, which was correlated with the levels of amyloid beta 
(75). A recent study demonstrated that HMGB1 and thrombin are triggers of inflammation 
and dysfunction of the blood-brain barrier (BBB) (75). In AD patients, the serum levels of 
S100B were intimately related to the severity of the disease (76), and the administration of 
pentamidine, a S100B inhibitor, reduced the levels of S100B and RAGE, thereby inhibiting 
neuroinflammation in the brain of an AD mouse model (77).

Parkinson's disease (PD) is a common, age-related neurodegenerative disorder, and the main 
symptoms of which are several cardinal motor symptoms, including bradykinesia, spasticity, 
and gait abnormality. The most noticeable feature of PD is chronic inflammation (78). 
The role of the HMGB1-TLR4 axis is very important in the pathogenesis of PD. The serum 
HMGB1 and TLR4 protein levels were significantly elevated in PD patients and correlated 
with the PD stages (79). In a rat model of PD, an anti-HMGB1 monoclonal antibody inhibited 
inflammation by maintaining the BBB and reducing the secretion of inflammatory cytokines, 
such as IL-1β and IL-6 (80). The S100B protein level was elevated in the substantia nigra and 
cerebrospinal fluid of PD patients, and S100B was also increased in the ventral midbrain 
of a mouse model treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
(81). Although, the serum S100B level was similar between the PD patients and healthy 
individuals, it correlated with the scales for the severity of PD, such as the Hoehn and Yahr 
scale (82).
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DAMPS IN CANCER

The role of DAMPs in the pathogenesis of cancer is still controversial. DAMPs may mediate 
tumor progression by inducing chronic inflammation, which is a compound risk factor 
for tumor progression (83,84). To our knowledge, IL-1, IL-6, and lymphotoxin (LT)-β are 
well known promoters of carcinogenesis (83-85). DAMPs, such as HMGB1, S100 proteins, 
and HSPs, activate inflammatory pathways and release IL-1, IL-6, LT-β, IFN-γ, TNF, and 
transforming growth factor (TGF)-β (83). ATP, IL-1α, adenosine, and uric acid also promote 
carcinogenesis by inflammation, immunosuppression, angiogenesis, and tumor cell 
proliferation (83). In this context, it appears that DAMPs increase tumor development in the 
early stages of carcinogenesis (83).

In contrast, DAMPs may inhibit tumor progression via immunogenic cell death (ICD). 
Calreticulin functions as an important effector of ICD by inducing the DC-mediated 
phagocytosis of tumor cells, which reduces the tumor growth in colon carcinoma (86). In 
addition, extracellular ATP, released from dying tumor cells, is a significant mediator in 
ICD via the activation of the NLRP3 inflammasome (87). The release of HMGB1 from dying 
tumor cells increased the presentation of tumor antigens and regulated the TLR4-dependent 
immune response (88). In summary, DAMPs may increase carcinogenesis or inhibit tumor 
development, like a double-edged sword. Future work will be necessary to further understand 
the complicated roles of DAMPs in cancer.

DAMPS AS BIOMARKERS AND POTENTIAL THERAPEUTIC 
TARGETS
DAMPs may be valuable biomarkers for inflammatory diseases. Many researchers have 
worked to identify DAMPs and understand their relationships with multiple diseases. It is 
well established that several DAMPs are increased or decreased in various human diseases. 
Increased S100A8/A9 is associated with osteophyte progression in early human OA (89), 
suggesting that S100 proteins can be used as biomarkers for the diagnosis of the progressive 
grade of OA. Furthermore, many clinical studies have assessed the prognostic and predictive 
value of DAMPs, such as HSPs, ATP, and HMGB1, in cancer patients (90), which has raised 
the possibility that DAMPs may be useful prognostic factors for cancer. These results are 
invaluable for the management of cancer patients. Patient classification may be improved, 
and a suitable therapy can be given to patients by diagnosing with DAMPs (90).

The regulation of DAMPs signaling can be a potential therapeutic target to reduce 
inflammation and treat diseases (Figure 1). Administration of neutralizing HMGB1 antibodies 
or truncated HMGB1-derived A-box protein ameliorated arthritis in collagen-induced arthritis 
rodent models (38). Clinical trials with HSP inhibitors have also been reported. For non-small 
cell lung cancer (NSCLC), HSP27, HSP70, and HSP90 inhibitors are under investigation in 
clinical trials (91). In addition, treatment with dnaJP1, which is a synthetic peptide derived 
from DnaJ (HSP40), had a curative effect in RA patients without critical side effects (92). 
Taken together, DAMPs can be useful therapeutic targets for various human diseases, 
including cancer and autoimmune diseases.

7/14https://doi.org/10.4110/in.2018.18.e27

DAMPs in Inflammatory Diseases

https://immunenetwork.org

https://immunenetwork.org


CONCLUSION

In this review, we have described the general concept of DAMPs, which play a key role in 
sterile inflammation, and discussed the possibility of DAMPs as biomarkers and therapeutic 
targets for various human inflammatory diseases. Although it is clear that DAMPs are closely 
related to the progress of inflammatory diseases, there are several questions that remain 
unclear. For example, there is little information on the interacting regions for DAMPs and 
their PRRs. It will be important to define the interacting regions for DAMPs and PRRs for 
the development of specific inhibitory molecules that can interfere with the interaction and 
thereby regulate inflammation. In addition, the development of medications that can inhibit 
the release of DAMPs will also be a promising therapeutic strategy. However, the inhibition 
of DAMPs should be taken into careful consideration for the treatment of human diseases, 
because DAMPs themselves can be effective therapeutic agents for the inhibition of tumor 
progression via ICD. Therefore, further research on DAMPs will be essential to significantly 
improve current medical problems.
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Stress and tissue injury

Stimulation of DAMPs secretion (vicious cycle)

Inflammatory
diseasesProinflammatory cytokines

DAMPs

PRRs• Biomarkers
• Therapeutic targets

Figure 1. DAMPs as biomarkers and potential therapeutic targets. 
DAMPs are released upon cellular stress or tissue injury and activate the innate immune system by interacting with PRRs to produce proinflammatory cytokines. 
Chronic inflammation can contribute to the development of various inflammatory diseases, which in turn stimulate the secretion of DAMPs, thus establishing a 
vicious cycle of DAMPs production and inflammation.
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