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Abstract: Autophagy is a highly conserved homeostatic cellular mechanism that mediates
the degradation of damaged organelles, protein aggregates, and invading pathogens through
a lysosome-dependent pathway. Over the last few years, specific functions of autophagy have
been discovered in many tissues and organs; however, abnormal upregulation or downregulation of
autophagy has been depicted as an attribute of a variety of pathologic conditions. In this review, we
will describe the current knowledge on the role of autophagy, from its regulation to its physiological
influence, in metabolic age-related disorders. Finally, we propose to discuss the therapeutic potential
of pharmacological and nutritional modulators of autophagy to treat metabolic diseases.
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1. Introduction

The term “autophagy” was introduced by Christian de Duve, a Belgian cytologist and biochemist
who discovered and described the structure and function of lysosomes over 40 years ago [1].
This process is important for maintaining sources of energy at critical times in response to nutrient
stress, embryo development, and metabolic functions.

Autophagy exists in three major separate forms: microautophagy, chaperone-mediated autophagy,
and macroautophagy. Of these, the most prevalent and best studied form is macroautophagy, hereafter
in this review referred to as autophagy. In the general form of the process, cytoplasmic structures
targeted for destruction are sequestered within double-membrane vesicles, called autophagosomes,
and delivered to the lysosome by fusion for breakdown. The degradation products are transported
back to the cytoplasm, where they can be reused for biosynthesis or energy production. In specific
conditions, autophagy also selectively targets damaged or unwanted organelles, such as mitochondria,
endoplasmic reticulum, and peroxisomes to lysosomes for removal.

The molecular regulation and machinery of general autophagy has been extensively described in
several other reviews, and will only be briefly presented [2,3].

Autophagy is tightly regulated by more than 30 highly conserved genes called autophagy-related
(Atg), which were initially characterized in Saccharomyces Cerevisiae [4–7], followed by the discovery
of almost all of their mammalian orthologues [8]. Autophagosome formation is induced by
metabolic stressors and orchestrated by two major complexes that control the recruitment of specific
proteins into newly forming autophagosomal membranes. One complex engaged in the early
steps encompasses the unc-51-like autophagy activating kinase 1 or ULK1 (also called Atg1) which
interacts with Atg13, Atg101, and the focal adhesion kinase family-interacting protein of 200 kDa
(FIP200). Another indispensable complex requires the class III phosphatidylinositol 3-kinase (PI3K)
Vps34, which recruits the autophagy specific proteins Beclin-1 (the mammalian ortholog of yeast
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Atg6), p150/Vps15, Atg14L, or Ambra1 at the assembly sites of the phagophore. The elongation
of membranes for the formation of the autophagosome requires two ubiquitin-like conjugating
systems. Firstly, the Atg12-Atg5-Atg16L1 system, in which Atg12 is conjugated to Atg5 by Atg7
(similar to an E1 ubiquitin-activating enzyme) and Atg10 (similar to an E2 ubiquitin-conjugating
enzyme). Then the conjugated Atg12-Atg5 complex interacts with Atg16L1 and associates with
phagophores, where it is localized at the outer membrane of nascent autophagosomes, but dissociates
before the achievement of autophagosome formation. Secondly, ubiquitin-like reactions involve
the microtubule-associated protein 1 light chain 3 (MAP1LC3/Atg8/LC3). It should be mentioned
that mammalian Atg8s can be divided into two subgroups based on their amino acid sequence
homology, where LC3A, B, and C constitute the LC3 subfamily, and GABARAP, GABARAPL1,
GATE-16 (also known as GABARAPL2), and GABARAPL3 constitute the GABARAP/GATE-16
subfamily. Both LC3 and GABARAP/GATE-16 subfamilies are essential for the autophagic process,
acting differentially at early stages of autophagosome biogenesis. Thus far, LC3B is the only Atg8
mammalian ortholog that has been extensively studied and identified as a factor associated with
autophagic membranes. The cytosolic form of LC3, LC3-I is generated by the cleavage of pro-LC3
by Atg4 family proteins. LC3-I is then conjugated to the lipid phosphatidylethanolamine (PE) by
Atg7 and Atg3 to form LC3-II [9]. Since LC3-II is specifically associated with autophagosomes, the
level of LC3-II is correlated with the number of autophagosomes and is considered an indicator of
autophagosome formation [10]. LC3 functions as a receptor for the protein p62/sequestosome 1
(p62/SQSTM1), which is a multi-domain adaptor protein located at the autophagosome membranes,
and is itself degraded by autophagy [11,12]. Moreover, p62/SQSTM1 has an ubiquitin-binding domain,
which serves to link ubiquitinated proteins to the autophagic machinery allowing their degradation.

The mature autophagosomes traffic along microtubules using the dynein-dynactin complex,
where autophagosomes fuse with endosomes or lysosomes mediated by an endosomal sorting
complexe involving soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs),
GTPase Rab7 proteins, and lysosomal-associated membrane proteins, LAMP-1 and LAMP-2. It was
recently demonstrated that the transcription factor EB (TFEB), which has an important function in
organelle biogenesis and metabolic processes, exhibits a major role in regulating lysosomal function and
autophagy. For instance, TFEB can bind to the promotor regions of several autophagy genes, thereby
regulating the biogenesis of autophagosomes and the fusion of autophagosomes with lysosomes [13].

In the final step of the autophagic process, the encapsulated “cargo” is degraded by lysosomal
proteases and released back into the cytosol [14]. Mounting evidence supports that autophagy exerts
a critical influence on multiple human metabolic pathophysiological processes and becomes insufficient
in aging organisms. This review provides a summary of our current knowledge on the role of
autophagy in metabolic age-related diseases including diabetes, obesity, non-alcoholic steatohepatitis,
and atherosclerosis.

2. Autophagy in Metabolic Diseases

2.1. Diabetes

2.1.1. Pancreatic β-Cell Function and Autophagy

Glycemia is tightly regulated by the pancreatic islets of Langerhans, where β-cells are specialized
cells that secrete the hypoglycemic hormone insulin when glycemia increases, leading to glucose uptake
in the liver via glycogenesis [15]. Numerous in-vitro and in-vivo studies have demonstrated that
autophagy plays a crucial role in the maintenance of β-cell function and survival [16,17]. For instance,
an impaired autophagic process results in reduced β-cell mass and pancreatic insulin content, due to
increased apoptosis and decreased proliferation of β-cells [18–20]. Mice harboring a β-cell-specific
deletion of Atg7 (Atg7f/f: RIP-Cre) showed Langerhans islet morphological abnormalities and
degeneration, p62/SQSTM1 and polyubiquitinated protein accumulation in β-cells, as well as impaired



Cells 2018, 7, 149 3 of 18

insulin secretion [21]. Thus, under a standard diet, basal autophagy is essential for β-cell function and
normal insulin secretion.

Since pancreatic β-cells undergo extensive proinsulin biosynthesis, a functional endoplasmic
reticulum (ER) is critical to convert pro-insulin to the mature form of insulin, facing a high
protein-folding burden. Thereby, autophagy through the degradation of misfolded proteins or
dysfunctional regions of the ER promotes the homeostasis of β-cells [22–24]. It should be noted
that the unfolded protein response (UPR) is induced when the ER responds to an overload of unfolded
proteins. The resulting ER stress, which consists of protein translation interruption, misfolded protein
degradation, and molecular chaperone synthesis, has been described as a stimulus for autophagy.
β-cells are also highly susceptible to oxidative stress, and hyperglycemia-induced oxidative stress leads
to impaired insulin secretion and β-cell death [25]. Induction of the antioxidant nuclear factor erythroid
2-related factor 2 (Nrf2) in β-cells prevents cellular damage and apoptosis through the transcription of
autophagy genes, while its knockout results in decreased β-cell mass [26]. Interestingly, autophagy
can also promote Nrf2 activation through p62/SQSTM1-mediated disruption of its interaction with
the Kelch-like ECH-associated protein 1 (KEAP1) [27,28]. KEAP1 is a repressor protein that binds to
Nrf2 and promotes its degradation by the ubiquitin-proteasome pathway. In addition, autophagy can
also prevent oxidative stress through the selective degradation of dysfunctional mitochondria, termed
mitophagy. However, long-term exposure to glucose and fatty acids, leading to glucolipotoxicity, results
in high levels of reactive oxygen species (ROS) overwhelming the mitophagy machinery, and causes the
accumulation of dysfunctional mitochondria [29]. Consequently, impaired mitophagy leads to reduced
glucose responsive insulin secretion in β-cells [30,31]. Thus, the management of glucolipotoxicity,
oxidative and ER stresses, and altered mitochondria by autophagy is essential for β-cell protection.

Recently, it has been described that short-term nutrient deprivation stimulates β-cell crinophagy,
a secretory insulin granule-specific autophagic process, while longer starvation is required to induce
classical autophagy in β-cells [32,33]. Free fatty acids, including palmitate and cholesterol, stimulate
β-cell autophagy, thereby preventing the activation of apoptosis [34,35]. Interestingly, omega-3 fatty
acids and vitamin D trigger autophagy in β-cells, which plays a protective role in a mouse model
of streptozotocin (STZ)-induced pancreatic β-cell failure [36,37]. Finally, glucagon like peptide-1
(GLP-1) receptor agonists (exendin-4 and liraglutide), as well as a dipeptidyl peptidase-4 (DPP-4)
inhibitor (MK-626), have been shown in vitro and in vivo to stimulate β-cell autophagy and improve
β-cell function, protecting them against glucolipotoxicity or tacrolimus-induced β-cell death [38–41].
Therefore, autophagy exerts a critical role in β-cell function and survival under normal conditions,
but also acts as an adaptive mechanism in stress conditions by avoiding detrimental effects of β-cell
failure and apoptosis.

2.1.2. Autophagy Involvement in Type 2 Diabetes Mellitus

Diabetes mellitus is a chronic disease affecting more than 420 million people worldwide,
characterized by hyperglycemia resulting from a reduced capacity to process glucose. Type 2 diabetes
(T2D), also called non-insulin-dependent diabetes, is the most frequent type diagnosed in adults,
and occurs as a result of poor diet, physical inactivity, obesity, and ageing, and could often be
avoided. The two main pathogenic axes of TD2 are insulin resistance and β-cell failure; however,
dysregulated autophagy has been described as an important contributing factor [42]. Insulin resistance
is first accompanied by pancreatic β-cell adaptation, with increased β-cell mass and insulin secretion
(hyperinsulinemia) to prevent a rise in blood glucose [43]. Nevertheless, these events are followed by
β-cell failure and decline, which prevent β-cell adaptation, leading to insufficient pancreatic insulin
secretion and impaired insulin action.

An increased number of autophagosomes has been described in rodent β-cells, from
insulin-resistant and diabetic models, and human β-cells isolated from islets of T2D patients showed
an accumulation of p62/SQSTM1 and autophagic vacuoles [15]. A blockage of β-cell autophagic
flux, caused by lysosomal defects in response to chronic glucolipotoxicity, has been proposed as
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a causal mechanism [33,44,45]. Autophagy impairment could contribute to diabetes development,
since in the Atg7f/f:RIP-Cre mouse model, two groups described in β-cells a reduced serum insulin
level and an impaired glucose tolerance [18,21]. The effect of a global autophagy insufficiency has
been evaluated on systemic metabolism and diabetes development. Atg7+/− heterozygote mice
displayed no anomalies in their systemic metabolic profile in a basal metabolic state. Similarly to
Atg7f/f:RIP-Cre mice, Atg7+/− mice develop severe and persistent diabetes only when they are crossed
with leptin-deficient (ob/ob) mice or fed a high-fat diet (HFD) [46]. This observation is supported by
several reports showing that HFD upregulates β-cell autophagy, and conversely the inhibition of β-cell
autophagy aggravates deleterious metabolic effects, highlighting the crucial role of autophagy in β-cell
adaptation under metabolic stress [46–49]. In agreement with these results, the overexpression of Atg5
improved the metabolic profile of aged mice, including insulin sensitivity, thanks to an enhanced
autophagic activity fighting the increase of metabolic stress [50].

Islet amyloid polypeptide (IAPP), co-secreted with insulin for glycemic regulation, can form
extracellular and intracellular aggregates associated with β-cell death. The accumulation of IAPP
occurs only in human diabetes, thus suggesting that the role of autophagy in human diabetes would
be better than in murine diabetes. To test this hypothesis, transgenic mice overexpressing the human
IAPP (hIAPP) were cross-bred or not with Atg7f/f: RIP-Cre mice. Only β-cell autophagy-deficient
mice developed diabetes, thus showing the important role of autophagy in the protection against
hIAPP-induced diabetes [42,51–53]. Consistently, the administration of the autophagy enhancer
trehalose to HFD-fed mice reduced hIAPP oligomers and islet amyloid deposits, as well as β-cell
apoptosis, and ameliorated their global glucose profile [42]. In conclusion, β-cell autophagy is a crucial
protective mechanism against the combined effects of metabolic stress and toxic hIAPP oligomers, and
its induction could be considered in the treatment of diabetes.

2.2. Obesity

2.2.1. Nutrient Status and Autophagy

Autophagy serves as an internal source of stored nutrients under conditions of nutrient limitation.
Conversely, food intake leads to a transient increase of plasma amino acid levels, and some of
them, especially branched-chain amino acids, including leucine, inhibit autophagy by activating the
mechanistic target of rapamycin complex 1 (mTORC1) through a Rheb GTPase-dependent signaling
pathway [54,55]. Interestingly p62/SQSTM1 and the leucyl-tRNA synthetase can sense amino acid
sufficiency, leading to mTORC1 activation, whereas the GCN2 kinase can conversely sense amino acid
deficiency to inhibit mTORC1 [56–58]. During short-term fasting, autophagy induction and reduced
protein synthesis prevent the depletion of amino acids and lead to an increase in the intracellular
glutamine level, while long-term malnutrition depletes amino acid levels [59].

Similarly to amino acids, glucose inhibits autophagy through the Rheb-dependent activation
of mTORC1, but also via the insulin-PI3K-Akt pathway, leading to tuberous sclerosis complex
2 (TSC2) phosphorylation and mTORC1 activation [60]. Glucose deficiency is accompanied by
a decreased ATP level and a higher AMP/ATP ratio, resulting in AMP-activated protein kinase
(AMPK) activation and TSC2 phosphorylation, ultimately leading to mTORC1 inhibition-dependent
induction of autophagy [60]. Sirtuin 1 (Sirt1) has also been implicated in the glucose-mediated
regulation of autophagy, by mediating forkhead box O1 (FoxO1) deacetylation and upregulation of the
small Rab7 GTPase involved in the late autophagosome-lysosome fusion [61,62].

Regarding fatty acids, it has been described in vitro and in vivo that elevated lipid content
inhibits autophagosome–lysosome fusion, and that intracellular fatty acid-derived metabolites, such as
ceramides and acyl-CoA, also alter autophagy homeostasis [63]. However, some free fatty acids,
such as palmitic acid and oleic acid, promote autophagy in an mTORC1-dependent or -independent
manner, via c-Jun N-terminal kinase (JNK) and protein kinase C (PKC) signaling pathways [64,65].
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In turn, autophagy regulates lipid homeostasis by the selective degradation of lipid droplets (LDs) and
avoids lipotoxicity [66].

Nutritional changes also affect autophagy in the adipose tissue, which is known to regulate
adipocyte differentiation and adipokine secretion. Hence, overnutrition has been described to
dysregulate autophagy, which in turn disturbs adipose tissue homeostasis [67–69].

A recent report described that intermittent fasting delays metabolic pathological processes by
improving mitochondrial health, DNA repair, and autophagy [70]. Currently, it is assumed that
fasting and physical activity promote autophagy, while nutritional excess suppresses autophagy.
In accordance, our hunter-gathering ancestors would have had higher levels of autophagy compared
to most individuals nowadays, who consume a cholesterol-rich diet combined with a sedentary
lifestyle, and therefore risk developing “autophagy deficiency” [71].

2.2.2. Dysregulated Autophagy in Obesity

Obesity is a global health concern given its growing scale, with more than one-third of overweight
(BMI 25–29.9 kg/m2) or obese (BMI ≥ 30 kg/m2) adults worldwide, and its role in the development of
chronic metabolic diseases and cancer is well established [72]. Obesity is primary linked to excessive
or unbalanced food intake associated with inadequate energy expenditure, due to our sedentary
modern lifestyle of high-caloric food intake; however, is also promoted by genetic and environmental
factors affecting neurohormonal regulation. Nutrient excess triggers metabolic stress, characterized
by increased lipid levels and inflammation, and results in obesity-related complications, such as
dyslipidemia, insulin resistance, diabetes, hypertension, fatty liver, and heart disease.

During obesity, autophagy inhibition occurs because of the mTORC1 chronic activation induced
by hypernutrition [73,74]. Using genetic and dietary models of obesity, a severe downregulation
of autophagy was observed, particularly the expression level of Atg7 in the liver [75]. Autophagy
deficiency generally unfavorably influences local or global metabolism, thus promoting a vicious
circle of metabolism dysregulation. In contrast, the accumulation of autophagosomes in liver
and adipose tissues has been reported in obese patients and genetically or diet-induced obese
animal models [73,76,77]. Although mTORC1 activation in response to nutrient excess inhibits
autophagy, it is not surprising that increased autophagy is observed in obese expanded adipose
tissue characterized by a pro-inflammatory environment, suggesting that upregulated autophagy
might serve as a compensatory mechanism. For example, excessive activation of autophagy in adipose
tissue could limit excessive inflammation and adipogenesis, whereas autophagy deficiency in the
hypothalamus impairs the central control of energy balance [76,78,79]. These observations highlight
that the intricate link between obesity and autophagy needs to be further studied.

Mouse models with whole-body or tissue-specific deletion or mutation of autophagic genes
display obesogenic metabolic phenotypes, or are predisposed to HFD or genetic-induced obesity [80].
For instance, the specific deletion of Atg7 in murine hypothalamic neurons leads to hyperphagia and
obesity, indicating that autophagy plays a crucial role in leptin hunger hormone sensitivity [81].
Interestingly, haploinsufficiency in the key autophagy regulator Atg7 did not directly result in
metabolic abnormalities in the absence of nutrient stress, but rather in a predisposition to diabetes in
a genetic or diet-induced obesogenic context. This observation underlines that autophagy insufficiency
perturbs the metabolic adaptation during stress, thereby facilitating the transition from obesity to
diabetes mellitus [46].

Additionally, the epigenetic modulation through coactivator-associated arginine
methyltransferase (CARM1)-dependent histone arginine methylation and SUV39H-dependent histone
lysine methylation has been shown to regulate autophagy in response to nutrient starvation and
HFD-induced obesity, respectively [82,83]. Today, the treatment of obesity and its related health
problems is mainly focused on lifestyle modification and behavioral therapy, since the pharmacological
management remains challenging [59].
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2.3. Liver Diseases

2.3.1. Hepatic Metabolism and Autophagy

Autophagy was first evidenced in rodent liver tissues in the 1960s, and early studies in
hepatocytes and liver tissue have shown a regulation of autophagy via hormones and amino acids [84].
Macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA) co-exist in the liver.
Moreover, the hepatic energy balance is connected to autophagy, since starvation-induced autophagy
predominantly takes place in the liver. Using perfused rat livers and in vivo experiments in mice, it
has been demonstrated that the autophagic degradation of proteins proceeds at a rate of ∼1.5% of
the total liver protein/hour under nutrient-rich conditions, and was enhanced approximately two- to
three-fold during starvation. Because the liver is the major organ that produces and supplies blood
glucose, the conversion of glucogenic amino acids needed for glucose production has been suggested
to be an important metabolic contribution to liver autophagy [85,86]. Indeed, perfusion of a rat liver
with glucagon significantly stimulates autophagic protein degradation, and enhances intracellular
utilization of glucogenic amino acids through its effect on gluconeogenesis [87]. The liver is the
major site for lipogenesis and lipid metabolism, and recently, an alternative pathway of lipid droplet
(LD) degradation by autophagy has been revealed in mouse hepatocytes, termed lipophagy [88].
The selective uptake of LDs by autophagosomes contributes to the generation of free fatty acids which
are catabolized by β-oxidation and then produce energy and ketone bodies. The precise steps required
to initiate and carry out autophagy of the LDs and the molecular adapters involved remain to be
elucidated. The small GTPase Ras-related protein Rab7, involved in endocytosis, has been shown
to induce the uptake of LDs in nutrient-deprived hepatocytes [89]. Recently, the transcription factor
upstream stimulating factor 1 (USF1) has been shown to contribute to abnormal lipid accumulation in
the liver by suppressing autophagy via the regulation of mTOR transcription [90].

Most studies have focused on a model in which LDs are sequestered by autophagy and
delivered to the lysosome for acid lipase-mediated lipolysis. Recently, the existence of a cooperative
mechanism between lipophagy and CMA was suggested, in which the LD-associated proteins, called
perilipins, are degraded by CMA. This facilitates lipolysis by cytosolic lipases and assembly of
autolipophagosomes for subsequent lysosomal lipid degradation [91]. In light of the critical role of
autophagy in liver metabolism regulation, it is not surprising that age-related dysfunctional autophagy
has been associated with metabolic diseases, as well as liver-specific disorders. The interplay between
autophagy and fatty liver disease will be described in the next section.

2.3.2. Hepatic Autophagy and Fatty Liver/Non-Alcoholic Steatohepatitis

Obesity and T2D are often associated with non-alcoholic fatty liver disease (NAFLD), one of the
most common chronic liver diseases in the Western countries. NAFLD encompasses from simple
steatosis (non-alcoholic steatosis (NAS)) to steatohepatitis (non-alcoholic steatohepatitis (NASH)) with
progressive fibrosis leading to cirrhosis and liver dysfunction. NAFLD is currently considered as
the hepatic manifestation of the metabolic syndrome. Because lipophagy participates in selective
degradation of LDs, it has been suggested that alterations in autophagy may play a role in the
pathophysiology of disorders resulting from excessive lipid accumulation, such as NAFLD. Several
genetic interventions have provided evidence that autophagy is a crucial mechanism in liver and
metabolic disorders. Mice with a hepatocyte-specific deletion of Atg7 develop hepatomegaly and
markedly increased liver triglycerides and cholesterol content, mimicking NAFLD [88,92]. Insulin
resistance is thought to be critical to the development of NAFLD, and insulin downregulates autophagy
in response to nutrient supplies, but autophagy modulates insulin sensitivity as well. The complex
interrelationship between autophagy and both insulin resistance and lipid accumulation has been
evidenced by several in vitro and in vivo studies. For instance, in the livers of mice with insulin
resistance and hyperinsulinemia, the activity of autophagy and the expression of some key autophagy
genes were suppressed. The insulin suppression of autophagy involves the regulatory effect of FoxO1
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on the expression of several autophagy genes [93]. Conversely, autophagy activity and levels of Vps34,
Atg12, and Gabarapl1 transcripts were increased in the livers of mice with streptozotocin-induced
insulin deficiency [93]. Moreover, a severe downregulation of Atg7 expression in the liver was
observed in both genetic and dietary models of obesity. While the knockdown of Atg7 resulted in
impaired insulin signaling and elevated ER stress, the restoration of the Atg7 expression in the liver
dampened ER stress, and enhanced the hepatic action of insulin and systemic glucose tolerance in
genetically ob/ob mice [75]. Accumulating evidence obtained from human studies indicates that hepatic
autophagy flux is impaired in livers from patients with biopsy-proven NAS or NASH, compared
to livers from subjects with a histologically normal liver. Furthermore, in NASH patients there is
a significant increase in hepatic messenger RNA levels of markers of ER stress (activating transcription
factor 4 (ATF4), glucose-regulated protein 78 (GRP78), and C/EBP homologous protein (CHOP))
and autophagy (Beclin-1) compared with NAS patients. Similarly, the protein levels of GRP78,
CHOP, and p62/SQSTM1 are significantly elevated in NASH compared with NAS patients [94].
Rubicon, a Beclin-1-interacting negative regulator of autophagosome-lysosome fusion, is shown to be
up-regulated in association with autophagy impairment in the livers of mice fed an HFD, as well as in
patients with NAFLD. In addition, hepatocyte-specific Rubicon knockout mice displayed significant
improvement of liver steatosis on an HFD, as well as attenuation of autophagy impairment in the
liver [95]. These findings were substantiated by those of autophagy-promoting pharmaceutical agents
like rapamycin, caffeine, or carbamazepine that alleviate liver steatosis [96]. CMA, a critical regulator
of lipid metabolism, is also involved in the pathogenesis of liver disease, since hepatocyte-CMA
deficient mice spontaneously develop massive steatosis with reduced mitochondrial fatty oxidation and
augmented de novo lipogenesis [97]. Inflammasome activation is also a common characteristic of NASH,
and human livers with steatosis or NASH present decreased TFEB and increased p62/SQSTM1, LC3-II,
and NLR family pyrin domain containing 3 (NLRP3) expression. Ezetimibe, a widely prescribed drug
for hypercholesterolemia, enhances autophagy flux and concomitantly ameliorates lipid accumulation
and apoptosis in palmitate-exposed hepatocytes. In macrophages, ezetimibe blocks the NLRP3
inflammasome pathway in an autophagy-dependent manner and modulates hepatocyte-macrophage
interaction via extracellular vesicles. In vivo studies revealed that ezetimibe attenuates lipid
accumulation, inflammation, and fibrosis in liver-specific Atg7 wild-type and haploinsufficient mice
by autophagy induction through AMPK activation and TFEB nuclear translocation [98]. Recently,
human polymorphisms in the immunity-related GTPase family M (IRGM) gene have been associated
with an increased risk for NAFLD by affecting autophagy. This strongly supports the role of impaired
autophagy in human liver disorders [99]. Summarizing the above studies, hepatic autophagy has
major implications in liver diseases associated with metabolic complications.

2.4. Atherosclerosis

2.4.1. Vascular Function and Autophagy

The link between vascular function and autophagy has been described in several in vitro and
in vivo studies. Vascular endothelial cells (EC) guarantee the normal hemostasis function by secreting
the von Willebrand factor (vWF) required for the adhesion of platelets to the injured vessel wall.
The secretion of vWF is altered in mice harboring an endothelial cell-specific deletion of Atg7 or Atg5,
and a similar alteration in hemostasis is also observed with pharmacological inhibition of autophagic
flux [100]. While these results propose that autophagy may regulate thrombosis by controlling vWF
secretion, the involved mechanisms remain to be elucidated.

Shear stress is the mechanical force caused by the sliding of the blood on the surface
of the endothelium. Multiple EC functions are regulated by shear stress, including gene
expression, proliferation, migration, morphogenesis, permeability, thrombogenicity, and inflammation.
The induction of autophagy under steady laminar shear stress protects ECs from oxidative stress.
In addition, the activation of autophagy up-regulates the expression of the endothelial nitric oxide
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(NO) synthase and inhibits the expression of the pro-inflammatory and vasoconstrictor peptide
endothelin-1 [101–103]. Recently, it has been shown that defective endothelial autophagy not only curbs
endothelial alignment with the direction of blood flow, but also promotes an inflammatory, apoptotic,
and senescent phenotype [104]. The angiogenic function of EC is also regulated by autophagy,
since Atg5 silencing reduces tube formation and migration, whereas in contrast the induction of
autophagy by over-expression of Atg5 increases angiogenesis. The generation of ROS and the activation
of Akt have been suggested as important contributors in the regulation of autophagy-induced
angiogenesis [105]. Altogether, these findings demonstrate that autophagy is involved in regulating
important endothelial functions, such as hemostasis, vascular tone, and angiogenesis.

Vascular smooth muscle cells (VSMC) possess remarkable plasticity, with the ability to reprogram
their expression pattern as contractile, synthetic, osteochondrogenic, and macrophage-like phenotypes.
Autophagy has been described as a critical determinant during the process of VSMC plasticity and
phenotypic changes in response to cellular stress. Treatment of VSMC with platelet-derived growth
factor (PDGF) induces autophagy through an AMPK-independent and mTOR-independent mechanism,
resulting in the removal of contractile proteins and the up-regulation of the synthetic phenotype
markers osteopontin and vimentin [106]. Notably, autophagy has been recently described to regulate
VSMC contraction and relaxation [107]. Vascular calcification is driven by the osteogenic differentiation
of VSMC within the vessel wall [108]. Autophagy was identified as a novel adaptive mechanism
against phosphate-induced VSMC calcification, by regulating apoptosis and mineralizing matrix vesicle
releases from VSMC [109]. Cholesterol loading or oxidized lipid exposure of cultured VSMC triggers
the expression of macrophage markers [110] and autophagy induction [109,111]. However, a presumed
correlation between the autophagy process and macrophage features of VSMC remains to be elucidated.
Within normal unloaded macrophages, cytoplasmic neutral lipases are responsible for LD breakdown.
However, in lipid-laden macrophages, it has been proposed that LDs are delivered to the lysosome via
an autophagy-dependent process, where they undergo subsequent lysosomal acid lipase-dependent
lipolysis [112,113].

2.4.2. Atherosclerosis and Dysregulated Autophagy

Atherosclerosis is a chronic arterial disease and a major cause of vascular death worldwide.
The disease is progressive, complex, and often associated with ageing and cardiovascular risk
factors, including hypercholesterolemia, hypertension, obesity, diabetes, and cigarette smoking.
Atherosclerosis involves the build-up of fibrous and fatty deposits, called plaques, in the vessel wall of
large- and medium-sized arteries, ultimately leading to a complex plaque that impedes blood flow.
Its major clinical manifestations, such as myocardial infarction, stroke, and peripheral arterial disease,
are the result of rupture or ulceration of an “unstable” atherosclerotic plaque [114]. Several autophagy
stimuli are present within the developing plaque, such as inflammatory cytokines, ROS, oxidized
lipid species, growth factors, and metabolic stress [115]. The classical markers of autophagy, including
LC3-II, p62/SQSTM1, and Beclin-1, have been identified by immunoblot and immunofluorescence
microscopy analysis in both human atheroma lesions and in ApoE-null mice that spontaneously
develop atherosclerosis [116]. Interestingly, the progression of atherosclerotic plaques in ApoE-null
mice is accompanied by autophagy deficiency, as assessed by the accumulation of p62/SQSTM1 in
atherosclerotic aortas. The general consensus is that successful autophagy of damaged components
has a beneficial effect against atherogenic stressors and promotes plaque cell survival [115]. Loss of EC
or VSMC participates in the thinning of the fibrous cap, resulting in plaque fragilization and rupture.
Interestingly, the exposure of EC to oxidized LDL leads to an autophagy process involving surface
expression of lipid phosphatidylserine, an “eat-me” phagocytic signal, via a mechanism involving
Beclin-1 [117,118]. Consequently, it is assumed that autophagy is anti-atherogenic by favoring cell
survival, oxidizing LDL processing, and the clearance of pro-thrombotic apoptotic cells. More recently,
using gain- or loss-of-expression approaches, it has been reported that mitophagy plays a major role
in VSMC fate after exposure to oxidative and metabolic stress by favoring cell survival or enhancing
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apoptosis, respectively. Indeed, PINK1 or Parkin knockdown by small-interfering RNAs, increases
the cytotoxic response of human VSMC challenged with oxidized LDL, whereas PINK1 or Parkin
overexpression has cytoprotective effects [119]. The importance of autophagy in atherosclerosis
progression was further demonstrated in ApoE-null mice with specific VSMC deletion of Atg7
that exhibited accelerated atherosclerotic plaque development after 10 weeks of HFD, as shown
by increased plaque cell death, inflammation, and fibrous cap thinning [120,121]. The absence
of autophagy in ApoE-null mice harboring a conditional deletion of Atg5 within macrophages
enhances plaque formation and leads to macrophage inflammasome hyperactivation accompanied
by increased interleukine-1β production [122]. Similarly, defective macrophage autophagy led to
increased apoptosis and oxidative stress in advanced lesional macrophages, promoted plaque necrosis,
and worsened phagocytic clearance in Atg5-deficient macrophages/Low density lipoprotein receptor
(LDLR)-null mice [123]. Recent data have shown that Atg5-null macrophages developed further
p62/SQSTM1 accumulation at the sites of large cytoplasmic ubiquitin-positive inclusion bodies.
Aortas from atherosclerotic mice and plaques from human endarterectomy samples displayed an
increased abundance of p62/SQSTM1 and polyubiquitinated proteins that colocalized with plaque
macrophages [124]. Together, these data strongly support that the dysregulation of autophagy may be
a contributing factor in the progression of atherosclerosis.

3. Pharmacological Modulation of Autophagy in Metabolic Age-Related Diseases

Currently, no pharmacological intervention aimed at specifically modulating autophagy
is available for use in human disorders. However, some metabolic and hepatic disorders
have been demonstrated to respond to behavioral and pharmacological autophagy-modulatory
interventions [125]. The activation of autophagy by caloric restriction or physical training improves
insulin sensitivity in old rats [126] and in obese mice [127]. Caloric restriction mimetics (CRMs),
which would pharmacologically mimic the beneficial effects of caloric restriction or fasting,
have gained increasing attention. For example, metformin, the first-line antidiabetic drug, activates
AMPK and induces autophagy. Interestingly, both caloric restriction and metformin significantly
improve body weight and glucose homeostasis, along with hepatic steatosis in ob/ob mice by
stimulating autophagic flux [128]. Similarly, the CRM resveratrol potentiates the effect of a low
dose of rapamycin, and the combination decreases obesity and prevents hyperinsulinemia in
male mice on HFD [129]. Berberine (BBR), an isoquinoline plant alkaloid, displayed glucose- and
cholesterol-lowering properties. Interestingly, BBR has been shown to reduce glycemia and plasma
cholesterol in diabetic patients, and has been hypothesized that its anti-hyperglycemic activity involves
enhanced AMPK signaling, thus promoting autophagy [130,131]. The natural polyamine spermidine
has prominent cardioprotective and neuroprotective effects in aged rodent models [132]. Daily
administration of the polyamine spermine to mice fed an HFD prevented adiposity and improved
glucose tolerance [133]. Thus, supplementation with CRMs could be a new therapeutic strategy
for diabetes or a metabolic syndrome with lipid overload. Recently, a novel autophagy enhancer
MSL (4-(4-fluorophenyl) sulfonyl-5-methylthio-2-phenyloxazole), was identified by high-throughput
screening, and it displays increased LC3-I to LC3-II conversion without mTOR inhibition. MSL
accelerates intracellular lipid clearance, and its administration improved the metabolic profile of
ob/ob mice and ameliorated inflammasome activation [134]. Furthermore, the disaccharide trehalose
invokes the activation of autophagic flux. Its mechanism of action has been recently uncovered
and involves TFEB-dependent thermogenesis in hepatocytes, concomitant with the upregulation of
hepatic and white adipose tissue expression of UCP1 (uncoupling protein 1 (mitochondrial, protein
carrier)) [135]. Ezetimibe, a drug approved by the Food and Drug Administration (FDA) for the
treatment of hypercholesterolemia, improves NAFLD and alleviates oxidative stress by the activation
of AMPK, which in turn phosphorylates p62/SQSTM1 [136]. The pharmacological inhibition of calcium
channels using the FDA-approved drug verapamil successfully activates autophagic flux and reduces
body weight, hepatic LD accumulation, insulin resistance, and steatohepatitis of HFD-fed obese mice,
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suggesting that calcium channel blockers can be used to treat general NAFLD pathologies [137].
The autophagy inducer rapamycin and its derivatives (everolimus), which act via the inhibition
of mTOR, have been tested as plaque-stabilizing compounds. Interestingly, when everolimus is
administrated by a local stent in cholesterol-fed rabbits, a remarkable reduction in the content of
macrophages, but not in the amount of VSMC, was observed [138]. The inhibition of translation
by dephosphorylating the downstream mTOR target p70 S6 kinase is associated with a selective
apoptotic cell death of macrophages, a huge degradation of long-lived proteins, the processing of
LC3, and a cytoplasmic vacuolization. Therefore, since macrophage efferocytosis and autophagic flux
decline, along with the progression of atherosclerosis [122,123], the selective clearance of lesional
macrophages via everolimus-induced autophagy might be a promising therapeutic strategy to
stabilize atherosclerotic plaques. Nevertheless, therapy using mTOR inhibitors is correlated with
adverse side effects, including hypercholesterolaemia and hyperglycemia, which can negatively affect
plaque stability [113]. In addition, chronic rapamycin treatment, at a dose used to extend lifespan,
impaired hepatic glucose homeostasis by the induction of gluconeogenesis, an effect mediated by
mTORC2 disruption [139]. Taken together, these observations confirm the valuable therapeutic
interest of the use of pharmacological and nutritional autophagy activators in patients with metabolic
age-related disorders.

4. Conclusions

In this review, we have described the crucial involvement of autophagy in metabolic homeostasis
and its important role in many metabolic-age related disorders (Figure 1). Despite the availability
of numerous cell-based and animal models that provided fundamental insights into the autophagic
process, additional studies are required to fully understand the tissue-specific regulation of autophagy
during ageing. Since autophagy declines with age, the development of therapeutic strategies tackling
this age-related deficiency is a promising field of research.

Cells 2018, 7, x 10 of 18 

 

the downstream mTOR target p70 S6 kinase is associated with a selective apoptotic cell death of 

macrophages, a huge degradation of long-lived proteins, the processing of LC3, and a cytoplasmic 

vacuolization. Therefore, since macrophage efferocytosis and autophagic flux decline, along with the 

progression of atherosclerosis [122,123], the selective clearance of lesional macrophages via 

everolimus-induced autophagy might be a promising therapeutic strategy to stabilize atherosclerotic 

plaques. Nevertheless, therapy using mTOR inhibitors is correlated with adverse side effects, 

including hypercholesterolaemia and hyperglycemia, which can negatively affect plaque stability 

[113]. In addition, chronic rapamycin treatment, at a dose used to extend lifespan, impaired hepatic 

glucose homeostasis by the induction of gluconeogenesis, an effect mediated by mTORC2 disruption 

[139]. Taken together, these observations confirm the valuable therapeutic interest of the use of 

pharmacological and nutritional autophagy activators in patients with metabolic age-related 

disorders. 

4. Conclusions 

In this review, we have described the crucial involvement of autophagy in metabolic 

homeostasis and its important role in many metabolic-age related disorders (Figure 1). Despite the 

availability of numerous cell-based and animal models that provided fundamental insights into the 

autophagic process, additional studies are required to fully understand the tissue-specific regulation 

of autophagy during ageing. Since autophagy declines with age, the development of therapeutic 

strategies tackling this age-related deficiency is a promising field of research. 

 

Figure 1. Autophagy in metabolic-age related diseases. Metabolic age-related stress triggers metabolic
syndrome, characterized by obesity or metabolic complications, including atherosclerosis, non-alcoholic
fatty liver disease (NAFLD), and diabetes mellitus. In all these pathologies, alterations in the autophagic
process seem to play a crucial role in disease onset and progression.
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