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A B S T R A C T   

A controversy about the Swedish strategy of dealing with COVID-19 during the early period is how decision- 
making was based on evidence, which refers to data and data analysis. During the earliest period of the 
pandemic, the Swedish decision-making was based on subjective perspective. However, when more data became 
available, the decision-making stood on mathematical and descriptive analyses. The mathematical analysis 
aimed to model the condition for herd immunity while the descriptive analysis compared different measures 
without adjustment of population differences and updating pandemic situations. Due to the dubious in
terpretations of these analyses, a mild measure was adopted in Sweden upon the arrival of the second wave, 
leading to a surge of poor public health outcomes compared to the other Nordic countries (Denmark, Norway, 
and Finland). In this article, using data available during the first wave, we conduct longitudinal analysis to 
investigate the consequence of the shred of evidence in the Swedish decision-making for the first wave, where the 
study period is between January 2020 and August 2020. The design is longitudinal observational study. The 
linear regressions based on the Poisson distribution and the binomial distribution are employed for the analysis. 
We found that the early Swedish measure had a long-term and significant effect on general mortality and COVID- 
19 mortality and a certain mitigating effect on unemployment in Sweden during the first wave; here, the effect 
was measured by an increase of general deaths, COVID-19 deaths or unemployed persons under Swedish measure 
relative to the measures adopted by the other Nordic countries. These pieces of statistical evidence were not 
studied in the mathematical and descriptive analyses but could play an important role in the decision-making at 
the second wave. In conclusion, a timely longitudinal analysis should be part of the decision-making process for 
containing the current pandemic or a future one.   

1. Introduction 

Since the World Health Organization declared the coronavirus dis
ease 2019 (COVID-19) as a pandemic on 11 March 2020, countries 
around the globe have adopted different strategies of combating the 
transmission of COVID-19 while alleviating its negative impact on 
public health and the economy. Sweden was representative of those 
strategies, emphasizing the mitigation of transmission and taking step
wise mild measures (Erica, 2021; Kavaliunas, Ocaya, Mumper, Lind
feldt, & Kyhlstedt, 2020; Ludvigsson, 2020). On the other hand, the 
other Nordic countries, i.e., Denmark, Finland, and Norway, were 
representative of the common strategies, emphasizing the suppression of 

transmission and taking invasive measures (Erica, 2021; Lindström, 
2020, 2021). During the early period of the pandemic, the two strategies 
led to obvious different results; for instance, the COVID-19 mortality per 
100,000 individuals in Sweden versus the other Nordic countries is 
58.15 versus 7.34 between March 2020 and August 2020 and 69.71 
versus 13.40 between September 2020 and February 2021. The two 
periods represent two waves of the pandemic progression in the Nordic 
countries, each completing a cycle of rising, plateau, and decline and 
base for public health outcomes such as COVID-19 deaths. 

A major controversy about the Swedish strategy of dealing with 
COVID-19 concerns how the decision-making was made. As repeatedly 
stated by the Swedish public health agency, the de facto administrator 
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for handling the pandemic, the decision-making was based on evidence 
(Irwin, 2020; Lindström, 2020, 2021; Sayers 2020); see also CNN 
interview on 17 April with the former state epidemiologist Johan Gie
secke (1995–2005) (CNN, 2020). Notably, this statement is in line with 
the general framework of Epidemiology and Evidence-Based Medicine. 
Here, evidence refers to data and data analysis; data is observational as 
typical of a pandemic; data analysis compares different measures for 
public health and economic outcomes, and it can be mathematical, 
descriptive, or statistical. In addition, there are discussions in the liter
ature on the influence of social factors on decision-making (Erica, 2021; 
Irwin, 2020; Kavaliunas et al., 2020; Lindström, 2020, 2021; Ludvigs
son, 2020). The major social factors are the emphasis on individual 
freedom and choice, the stress on acquiring knowledge by self-learning 
in the Swedish culture, and the top-down consensus culture and the 
structure of media policy. Although these social factors impact 
decision-making, they do not directly affect public health and economic 
outcomes. Therefore, they are irrelevance to evidence and not included 
in the data analysis. 

During the very initial period of COVID-19, little data was available. 
Therefore, based on the subjective perspective, a mild measure was 
adopted in Sweden (Erica, 2021; Kavaliunas et al., 2020; Lindström, 
2020; Ludvigsson, 2020). As the pandemic progressed, data became 
available, often in the form of tables. Given data, the decision-making 
was based on mathematical analyses and descriptive analyses. The 
mathematical analysis only modeled the condition for herd immunity 
(Britton, Ball, & Trapman, 2020). Nevertheless, the mathematical 
analysis had a considerable impact on the decision-making of the 
Swedish strategy during the first and second waves of this pandemic 
(Irwin, 2020; Lindström, 2020, 2021; Sayers, 2020). Descriptive ana
lyses compared different measures of dealing with COVID-19 for public 
health and economic outcomes. However, they were only cross-sectional 
and without adjustment for population differences and updating 
pandemic situations. 

Based on descriptive analyses, a group of Swedish scientists (i.e., the 
Science Forum COVID-19) called for stricter measures like those in the 
other Nordic countries (Bjermeret al., 2020), together with WHO and 
others (BBC, 2020; Claeson & Hanson, 2020; Claeson & Hanson, 2021; 
Habib, 2020; Roxby & Gure, 2020; Vogel, 2020). Also, based on 
descriptive analyses, the curve gradually flattened of COVID-19 in
cidences and hospitalizations and COVID-19 and general deaths since 
May 2020 (Erica, 2021). The general mortality even fell lower in Sweden 
than in the other Nordic countries. Due to the dubious interpretations of 
the descriptive and mathematical analyses, the Swedish public health 
agency continued with the mild measure recommendations during the 
second wave. However, this led to a surge of poor public health out
comes compared to the other Nordic countries (Erica, 2021), see also the 
weekly reports from the public health agencies of the Nordic countries. 

On the other hand, pandemic progression is a complex stochastic 
process in which measures yield outcomes and outcomes in turn influ
ence subsequent measures. In this context, the measure taken during a 
period has not only a short-term effect on the immediate outcome in the 
same period but also a long-term effect on the outcomes in subsequent 
periods. In the decision-making, statistical analysis is essential, which 
can be cross-sectional and longitudinal and allows for adjustment of 
population differences and updating pandemic situations. To the best of 
our knowledge, most of the current statistical analyses in the literature 
only address the short-term influences of various measures on the 
outcome (Brauner, 2021; Flaxman et al., 2020; Haug et al., 2020; Kontis, 
2020; Soltesz et al., 2020). 

One can ask if there was any evidence being missed in the Swedish 
decision-making? What were the consequences of evidence missing? In 
this article, we conduct a longitudinal observational study to examine 
the causal effect of the Swedish strategy relative to the common strategy 
adopted by the other Nordic countries on public health and economic 
outcomes during the first wave of the pandemic. We compare our 
analytical results to descriptive analysis to investigate what was missed 

for the decision-making of the Swedish strategy of dealing with the 
second wave. Furthermore, using the same table data as with descriptive 
analyses, we demonstrate that statistical evidence can be provided in 
time for the decision makers. 

2. Material and the premises for statistical analyses 

2.1. Data sources 

All data are publicly available. The COVID-19 mortality and general 
mortality are obtained from the Swedish National Board of Health and 
Welfare (https://www.government.se/government-agencies/national- 
board-of-health-and-welfare–socialstyrelsen/), Statistics Denmark (htt 
ps://www.dst.dk/en), the Norwegian Institute of Public Health (htt 
ps://www.fhi.no/en/), the Finnish Institute for Health and Welfare 
(https://thl.fi/en/web/thlfi-en) and Statistics Finland (https://www.st 
at.fi/index_en.html). As recommended by the WTO, all four Nordic 
countries identified COVID-19 death as death for which a positive 
COVID-19 PCR test was recorded within the 30 days. 

Unemployment was measured as the number of unemployed persons 
aged 15–74, and the employment as the number of employed persons 
aged 15–74. These numbers were produced by the labor force surveys 
conducted in individual countries following the European Union Council 
Regulation. The labor force was the sum of employed and unemployed 
persons. Population density was measured as the number of inhabitants 
per square kilometers. These numbers are obtained from Statistics 
Sweden (https://www.scb.se/en), Statistics Denmark (https://www.dst. 
dk/en), Statistics Norway (https://www.ssb.no/en), and Statistics 
Finland (https://www.stat.fi/index_en.html). 

2.2. Pandemic progression with public health outcomes and the 
confounding adjustment 

For the sake of explication, we consider public health outcomes here. 
Economic outcomes will be similarly studied in Section 3.5. 

The public health outcomes refer to COVID-19 incidence, admission 
to hospitalization and intensive care, general death, and COVID-19 
death. However, the Nordic countries had different policies for admis
sion to hospitals and intensive care. For instance, Denmark had a much 
higher admission rate than Sweden (Erica, 2021; Kavaliunas et al., 2020; 
Lindström, 2020; Ludvigsson, 2020). Similarly, groups of tested people 
were hardly random samples from the population. Therefore, it would 
be problematic to analyze the admission to hospitalization and intensive 
care and the testing of COVID-19. On the other hand, reported deaths 
were far more reliable than incidence-related data; for instance, only a 
small number of early deaths attributable to COVID-19 might have been 
missed. Therefore, we use general death and COVID-19 death in this 
article as our public health outcomes. 

The initial period of the pandemic took place around weeks 10–18 in 
the Nordic countries; please note that week 1, 2020 corresponds to the 
dates from 30 December 2019 to 5 January 2020. Weeks 10–35 
completed a cycle of rising, plateau, and decline and base for the public 
health outcome, and are considered the first wave of the pandemic 
(Erica, 2021; Ludvigsson, 2020). Because it is impossible to know when 
measures became effective, we divide the entire follow-up into four 
periods of approximately equal length: weeks 1–9, 10–18, 19–26, and 
27–35. Let period t (t= 1, 2, 3) indicate the three periods during weeks 
10–35: period 1 for weeks 10–18, period 2 for weeks 19–26, and period 3 
for weeks 27–35. In Supplementary Materials, we conduct a sensitivity 
analysis to show that when alternatively dividing the entire follow-up 
into weeks 1–9, 10–17, 18–26, 27–35, the result only differs slightly, 
and the conclusion is the same. 

During weeks 1–9, the pandemic had not yet broken out, so no 
measure was adopted, and there was only the outcome y0 for general 
mortality. During period 1, the exposure was z1 = 1 for the Swedish 
measure or 0 for the common measure and yielded outcome y1. From 
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here and on, the common measures refer to those adopted by the other 
Nordic countries. During period 2, the exposure was z2 = 1 for the 
Swedish measure or 0 for the common measure and yielded outcome y2. 
During period 3, the exposure was z3 = 1 for the Swedish measure or 0 
for the common measure and yielded outcome y3. Here the outcomes y1,

y2 and y3 were general mortalities or COVID-19 mortalities. 
Outcome y0 represents the initial health status and has influences on 

outcomes y1, y2 and y3. Thus, it is a stationary covariate and may 
confound the causal effects of exposures z1, z2 and z3. Outcome y1 
represents the updating pandemic situation under exposure z1 and has 
influences on outcomes y2 and y3. Thus, it is also a covariate and may 
confound the causal effects of exposures z2 and z3. Outcome y2 repre
sents the updating pandemic situation under exposure z2 and has in
fluences on outcome y3. Thus, it is also a covariate and may confound 
the causal effect of exposure z3. 

Besides initial general mortality y0, there might exist other stationary 
covariates that characterize populations in the Nordic countries. How
ever, these countries are similar to one another in terms of economy, 
culture, and society, so most of the stationary covariates, such as gender, 
education, and socioeconomic status, have similar distributions among 
these countries and thus do not confound the causal effects of exposures 
z1, z2 and z3. As a result, there is no need to adjust for these covariates, as 
is a common practice in statistical analyses. Table 1 lists some charac
teristics of the populations in the Nordic countries. As seen in this table, 
the initial general mortality y0 and population density x differs 

considerably in different regions of these countries and may confound 
the causal effects of these exposures. Therefore, we divide Sweden into 
six regions: Stockholm, Skåne, Gothenburg, Halland, Västmanland, and 
the rest of Sweden. Because COVID-19 mortality was low in Norway, 
Denmark, and Finland, we do not divide these countries into small re
gions. The stationary covariates, exposures, outcomes, and follow-ups 
are summarized in Table 2. 

2.3. Assumption of no hidden confounding covariates and effect measure 

To summarize the confounding situation in the pandemic, we assume 
no hidden confounding covariates: (a) conditional on population density 
x and outcome y0, no other covariates confound the causal effect of the 
exposure sequence (z1, z2, z3); (b) conditional on population density x 
and outcome y1, no other covariates confound the causal effect of the 
exposure sequence (z2, z3); (c) conditional on population density x and 
outcome y2, no other covariates confound the causal effect of exposure 
z3. The assumption implies that to study the causal effects of exposures, 
we need to compare the outcomes of the exposures on the same level of 
population density and the most recent outcome before these exposures. 
With the assumption and data, we will estimate causal effects during the 
pandemic progression in Section 3 in the framework of sequential causal 
inference (Hernan & Robins, 2020; Wang & Yin, 2020). All causal effects 
will be measured by an increase of outcome y1, y2 or y3 under Swedish 
measure relative to the measures adopted by the other Nordic countries 

Table 1 
Characteristics of study populations in regimes of the Nordic countries before the breakout of COVID-19: (1) Stockholm, (2) Skåne, (3) Göteborg, (4) Halland, (5) 
Västmanland, (6) the rest of Sweden, (1–6) Sweden as a whole, (7) Denmark, (8) Norway, (9) Finland.   

Populations in regions 

Characteristics (1) (2) (3) (4) (5) (6) (1–6) (7) (8) (9) 

Population sizea, n 103 2377 1378 1726 334 276 4237 10328 5828 5328.2 5525.3 
Sexa, n 103 (%) 

Male 1190 
(50.06) 

688 
(49.93) 

870 
(50.41) 

168 
(50.30) 

139 
(50.36) 

2142 
(50.54) 

5196 
(50.31) 

2899 
(49.75) 

2685 
(50.39) 

2728 
(49.38) 

Female 1187 
(49.94) 

690 
(50.07) 

856 
(49.59) 

166 
(49.70) 

137 
(49.64) 

2096 
(49.46) 

5132 
(49.69) 

2928 
(50.25) 

2643 
(49.61) 

2797 
(50.62) 

Age groupa, n 103(%) 
0–19 years, 571 

(24.03) 
327 

(23.73) 
398 

(23.06) 
80 

(23.95) 
64 

(23.19) 
964 

(22.75) 
2404 

(23.28) 
1298 

(22.28) 
1255 

(23.55) 
1168 

(21.14) 
20–64 years 1426 

(60.02) 
781 

(56.68) 
992 

(57.47) 
181 

(54.19) 
152 

(55.07) 
2326 

(54.90) 
5858 

(56.72) 
3377 

(57.95) 
3154 

(59.20) 
3126 

(56.58) 
65- years 379 

(15.95) 
270 

(19.59) 
336 

(19.47) 
73 

(21.86) 
60 

(21.74) 
947 

(22.35) 
2065 

(20.00) 
1152 

(19.77) 
919 

(17.25) 
1231 

(22.28) 
Population densitya, n per km2 365 128 73 62 54 11 25 137 15 18 
General mortality rateb, n per 100,000 

person weeks 
13.8 17.6 18.0 17.5 19.5 20.4 18.0 18.4 15.9 19.4 

Unemployment ratec, % 7.0 11.1 7.0 6.3 9.0 8.6 7,6 5.4 3.8 7.7 

Over a long period of time, all four countries are similar in terms of social and economic systems, social welfare systems including public health policies, education 
systems, and cultural traditions. 
Due to slightly different categorization of these social characteristics among these countries, their statistics are not listed here. Interested readers are referred to official 
statistics available on the webpages of Statistics Sweden, Statistics Denmark, Statistics Norway, and Statistics Finland. 

a Based on December 2019. 
b Based on weeks 1–9, 2020 
c Based on quarter 1, 2020. 

Table 2 
A summary of population density, exposures, outcomes, and the follow-ups during different periods. The outcome can also be a covariate for the subsequent exposures. 
The study was conducted between August 2021 and October 2021. The geographical location of the study population was the Nordic countries (Sweden, Denmark, 
Norway, and Finland). The study population was those of the Nordic countries, and the demographics are given in Table 1.  

Period Population density (persons per km2) Exposure: 
1 for the Swedish measure 
0 for the common measure 

Outcome: 
Covid-19 mortality 
or general mortality 

Follow-up (Person weeks) 

Weeks 1–9 x none y0 p0 

Weeks 10–18 (Period 1) x z1 = 1 or z1 = 0 y1 p1 

Weeks 19–26 (Period 2) x z2 = 1 or z2 = 0 y2 p2 

Weeks 27–35 (Period 3) x z3 = 1 or z3 = 0 y3 p3  

X. Wang et al.                                                                                                                                                                                                                                   
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(common measure). 

3. Statistical analyses and the results 

3.1. Analytic strategy 

We will estimate three types of causal effects of Swedish measures 
relative to the common measures: short-term causal effects, sequential 
causal effects, and long-term causal effects. The short-term causal effect 
compares Swedish measure zt = 1 versus common measure 0 for the 
immediate outcome yt . The sequential causal effect compares Swedish 
sequence versus common sequence for a remote outcome, for instance, 
Swedish sequence (z1, z2, z3) = (1, 1, 1) versus common sequence (0,
0, 0) for the remote outcome y3. The exposures/exposure sequences are 
observed for these causal effects, so we can apply regressions to estimate 
them, that is, the Poisson distribution-based linear regression for general 
mortality and COVID-19 mortality as count numbers in follow-ups of the 
population and the binomial distribution-based linear regression for 
unemployment as a count number from a sample of the population. 

The long-term causal effect compares, for instance, mixed sequence 
(z1, z2, z3) = (1, 0, 0) to common sequence (0, 0, 0) for the remote 
outcome y3. Because mixed sequence cannot be observed, we cannot 
apply regression to estimate the long-term causal effect. Due to Robins 
(Hernan & Robins, 2020), sequential causal inference is developed to 
estimate long-term causal effects under unobserved sequences of expo
sures by using observed data. Notably, the new general formula 
(G-formula) reveals a rather intuitive observation that the causal effect 
of a sequence of exposures must be a sum of contributions of individual 
exposures in the sequence (Wang & Yin, 2020). The new G-formula al
lows us to estimate the long-term causal effect from the estimated 
short-term causal effect and the estimated sequential causal effect 
without introducing additional modeling assumptions. In the following 
subsections, we will describe statistical analyses and the results in detail. 

3.2. Short-term causal effects of the Swedish measures on public health 
outcomes 

There are three short-term causal effects (1), (2) and (3), as described 
and estimated below. To be precise, causal effect (1) is an increase in 
outcome y1 under the Swedish measure z1 = 1 relative to the common 
measure 0 during period 1. Causal effect (2) is an increase in outcome y2 
under the Swedish measure z2 = 1 relative to the common measure 0 
during period 2. Causal effect (3) is an increase in outcome y3 under the 

Swedish measure z3 = 1 relative to the common measure 0 during 
period 3. 

Because the outcomes are observed under both the Swedish and 
common measures, we conduct regression to estimate causal effects (1)– 
(3), as described in Appendix; the Poisson distribution-based linear 
regression yields the estimates, 95% confidence intervals (CIs), and p- 
values for these causal effects. The estimation of short-term causal ef
fects or their trend is often seen in the time series and panel data ana
lyses. In Appendix, we describe these regressions for causal effects (1)– 
(3) in detail. We also conduct descriptive analysis, in which the differ
ence in means estimates the causal effect. 

Table 3 presents the results of causal effects (1)–(3) from both sta
tistical analysis and descriptive analysis. As shown by statistical analysis 
(columns 2 and 4 of Table 3), the Swedish strategy continually improved 
its performance in terms of general mortality and COVID-19 mortality 
along weeks 10–18, 19–26, and 27–35 (periods 1, 2, and 3) and per
formed even better in terms of the general mortality during weeks 19–26 
and 27–35 (periods 2 and 3), i.e., flattened curve (Erica, 2021; Kava
liunas et al., 2020; Ludvigsson, 2020). Although descriptive analysis 
(columns 3 and 5) yields the same trend for causal effects (1)–(3) as 
statistical analysis (columns 2 and 4), it is not adjusted for confounding. 
Consequently, its interpretation is dubious. 

3.3. Sequential causal effects of the Swedish sequences on public health 
outcomes 

There are three sequential causal effects (4), (5), and (6), as 
described and estimated below. To be precise, causal effect (4) is an 
increase in outcome y2 during period 2 under the Swedish sequence (z1,

z2) = (1, 1) relative to the common sequence (0, 0) during periods 1 
and 2. Causal effect (5) is an increase in outcome y3 during period 3 
under the Swedish sequence (z2, z3) = (1, 1) relative to the common 
sequence (0, 0) during periods 2 and 3. Causal effect (6) is an increase in 
outcome y3 during period 3 under the Swedish sequence (z1, z2, z3) =

(1, 1, 1) relative to the common sequence (0, 0, 0) during periods 1, 2 
and 3. 

Usually, it is difficult to estimate the sequential causal effect because 
the outcomes are not observed under exposure sequences. However, in 
the context of the pandemic, the outcomes are observed under both the 
Swedish and common sequences, so causal effects (4)–(6) can be esti
mated by the regression, i.e., the Poisson distribution-based linear 
regression, which, as described in Appendix, yields the estimates, 95% 
CIs and p-values for these causal effects. Noticeably, it is impossible to 

Table 3 
The short-term causal effect of the Swedish measure relative to the common measure adopted by the other Nordic countries on public health outcome: estimate, 95% 
confidence interval, and the p-value. The descriptive analysis yields only crude estimates. All causal effects are measured per 100,000 individuals. The study was 
conducted between August 2021 and October 2021. The geographical location of the study population was the Nordic countries (Sweden, Denmark, Norway, and 
Finland). The study population was those of the Nordic countries, and the demographics are given in Table 1. 
Causal effect (1): An increase in outcome y1 under the Swedish measure z1 = 1 relative to the common measure z1 = 0 during period 1 (weeks 10–18). Causal effect (2): 
An increase in outcome y2 under the Swedish measure z2 = 1 relative to the common measure z2 = 0 during period 2 (weeks 19–26). Causal effect (3): An increase in 
outcome y3 under the Swedish measure z3 = 1 relative to the common measure z3 = 0 during period 3 (weeks 27–35).  

Causal effect 
⎛

⎝
Estimate
95% CI

p − value

⎞

⎠ for the short-term causal effect on public health 

General mortality COVID-19 mortality 

Statistical analysis Descriptive analysis Statistical analysis Descriptive analysis 

(1) 20.2 29.0 18.7 25.4 
(16.6, 23.7) (17.6, 19.8) 
<0.001 <0.001 

(2) − 2.2 14.9 14.4 21.2 
( − 7.4, 3.1) (12.8, 16.0) 

<0.4188 <0.001 
(3) − 17.6 − 5.7 1.9 3.1 

( − 22.5, − 12.6) (0.5, 3.3) 
<0.001 <0.007  
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estimate causal effects (4)–(6) by descriptive analysis. In Appendix, we 
describe these regressions for causal effects (4)–(6) in detail. Table 4 
presents the results of causal effects (4)–(6) from statistical analysis. 

Causal effects (4)–(6) are of little interest by themselves. However, 
we use them to obtain the following long-term causal effects of the 
Swedish measures. 

3.4. Long-term causal effects of the Swedish measures on public health 
outcomes 

There are three long-term causal effects (7), (8), and (9), as described 
and estimated below. To be precise, causal effect (7) is an increase in 
outcome y2 during period 2 under the mixed sequence (z1, z2) = (1, 0)
relative to the common sequence (0, 0) during periods 1 and 2. It de
scribes the long-term influence of the Swedish measure during period 1 
on the outcome during period 2. The mixed sequence and its outcome 
have never been observed, so the regression cannot estimate causal ef
fect (7). However, according to formula (18) in Theorem 2 of Wang and 
Yin (Wang & Yin, 2020), we have the following relationship between 
causal effects 

causal effect (4)= causal effect (7) + causal effect (2).

This formula is an example of the new G-formula (Wang & Yin, 
2020), which describes a rather intuitive observation that the causal 
effect of a sequence of exposures must be a sum of contributions of in
dividual exposures in the sequence. In Supplementary Materials, we 
describe this equality in more detail. Notably, the relationship between 
causal effects (4), (7), and (2) is implied by their exposure sequences (z1,

z2) = (1, 1), (z1, z2) = (1, 0), and z2 = 1. By applying this equality to 
causal effects (4) and (2) estimated from Section 3.3 and 3.2, we obtain 
the estimate, 95% CI, and p-value for causal effect (7). 

Causal effect (8) is an increase in outcome y3 during period 3 under 
the mixed sequence (z2, z3) = (1, 0) relative to the common sequence 
(0, 0) during periods 2 and 3, and it describes the long-term influence of 
the Swedish measure during period 2 on the outcome during period 3. 
According to formula (18) in Theorem 2 of Wang and Yin (Wang & Yin, 
2020) and as described in Supplementary Materials, we have the 

following relationship between causal effects 

causal effect (5)= causal effect (8) + causal effect (3).

Please note that the exposure sequences in causal effects (5), (8), and 
(3) are(z2, z3) = (1, 1), (z2, z3) = (1, 0), and z3 = 1. By applying this 
equality to causal effects (5) and (3) estimated from Section 3.3 and 3.2, 
we obtain the estimate, 95% CI and p-value for causal effect (8). 

Causal effect (9) is an increase in y3 during period 3 under the mixed 
sequence (z1, z2, z3) = (1, 0, 0) relative to the common sequence (0, 0,
0) during periods 1, 2 and 3, and it describes the long-term influence of 
the Swedish measure during period 1 on the outcome during period 3. 
According to formula (18) in Theorem 2 of Wang and Yin (Wang & Yin, 
2020) and as described in Supplementary Materials, we have the 
following relationship between causal effects 

causal effect (6)= causal effect (9) + causal effect (8) + causal effect (3).

Please note that the exposure sequences in causal effects (6), (9), (8), 
and (3) are(z1, z2, z3) = (1, 1, 1), (z1, z2, z3) = (1, 0, 0), (z2, z3) =

(1, 0) and z3 = 1. By applying this equality to causal effects (6), (8) and 
(3) estimated earlier, we obtain the estimate, 95% CI and p-value for 
causal effect (9). 

Table 5 presents the results of causal effects (7)–(9) from statistical 
analysis. As shown in Table 5, the early Swedish measure during weeks 
10–18 (period 1) had long-term causal effects (7) and (9): it led, per 
100,000 individuals, to 14.0 (95% CI 10.2–17.9) more general deaths 
during weeks 19–26 (period 2) and 10.1 (6.6, 13.6) more general deaths 
during weeks 27–35 (period 3) as well as 5.9 (4.4, 7.3) more COVID-19 
deaths during weeks 19–26 (period 2). 

3.5. Causal effects of the Swedish strategy on unemployment 

Here, we study the outcome of unemployment in an analogy to 
public health outcomes. We divide the first nine months of 2020 into 
quarters 1, 2, and 3. During quarter 1, measures were not adopted, and 
even if some measures had been taken, they should not have influenced 
unemployment in the current quarter, so there was only unemployment 
y1 from labor force p1 in quarter 1. During quarter 2, the exposure was 

Table 4 
The sequential causal effect of the Swedish sequence relative to the common 
sequence adopted by the other Nordic countries on public health outcome: es
timate, 95% confidence interval, and the p-value. All causal effects are measured 
per 100,000 individuals. The study was conducted between August 2021 and 
October 2021. The geographical location of the study population was the Nordic 
countries (Sweden, Denmark, Norway, and Finland). The study population was 
those of the Nordic countries, and the demographics are given in Table 1. 
Causal effect (4): An increase in outcome y2 during period 2 (weeks 19–26) 
under the Swedish sequence (z1, z2) = (1, 1) relative to the common sequence 
(0, 0) during periods 1 and 2 (weeks 10–26). Causal effect (5): An increase in 
outcome y3 during period 3 (weeks 27–35) under the Swedish sequence (z2, z3)

= (1, 1) relative to the common sequence (0, 0) during periods 2 and 3 (weeks 
19–35). Causal effect (6): An increase in outcome y3 during period 3 (weeks 
27–35) under the Swedish sequence (z1, z2, z3) = (1, 1, 1) relative to the 
common sequence (0, 0, 0) during periods 1, 2, and 3 (weeks 10–35).  

Causal effect 
⎛

⎝
Estimate
95% CI

p − value

⎞

⎠ for the sequential causal effect on public health 

General mortality COVID-19 mortality 

(4) 11.9 20.3 
(8.6, 15.2) (19.3, 21.2) 
<0.001 <0.001 

(5) − 17.4 3.3 
( − 22.1, − 12.6) (2.7, 4.0) 

<0.001 <0.001 
(6) − 7.3 3.15 

( − 10.6, − 4.0) (2.8, 3.5) 
<0.001 <0.001  

Table 5 
The long-term causal effect of the Swedish measure relative to the common 
measure adopted by the other Nordic countries on public health outcome: es
timate, 95% confidence interval, and the p-value. All causal effects are measured 
per 100,000 individuals. The study was conducted between August 2021 and 
October 2021. The geographical location of the study population was the Nordic 
countries (Sweden, Denmark, Norway, and Finland). The study population was 
those of the Nordic countries, and the demographics are given in Table 1. 
Causal effect (7): An increase in outcome y2 during period 2 (weeks 19–26) 
under the mixed sequence (z1, z2) = (1, 0) relative to the common sequence (0,
0) during periods 1 and 2 (weeks 10–26). Causal effect (8): An increase in 
outcome y3 during period 3 (weeks 27–35) under the mixed sequence (z2, z3) =

(1, 0) relative to the common sequence (0, 0) during periods 2 and 3 (weeks 
19–35). Causal effect (9): An increase in outcome y3 during period 3 (weeks 
27–35) under the mixed sequence (z1, z2, z3) = (1, 0, 0) relative to the common 
sequence (0,0, 0) during periods 1, 2, and 3 (weeks 10–35).  

Causal effect 
⎛

⎝
Estimate
95% CI

p − value

⎞

⎠ for the long-term causal effect on public health 

General mortality COVID-19 mortality 

(7) 14.0 5.9 
(10.2, 17.9) (4.4, 7.3) 
<0.001 <0.001 

(8) 0.2 1.4 
( − 4.9, 5.2) (0.2, 2.7) 

0.947 0.024 
(9) 10.1 − 0.2 

(6.6, 13.6) ( − 0.8, 0.4) 
0.001 0.505  
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z2 = 1 for the Swedish measure or 0 for the common measure, yielding 
an unemployment y2 in labor force p2. During quarter 3, the exposure 
was z3 = 1 for the Swedish measure or 0 for the common measure, 
yielding an unemployment y3 in labor force p3. Here, unemployment 
refers to the number of unemployed persons aged 15–74, and labor force 
to the number of both unemployed and employed persons aged 15–74. 

To adjust for confounding, we have the following assumption of no 
hidden confounding covariates: (a) conditional on population density x 
and outcome y1, no other covariates confound the causal effect of a 
sequence (z2, z3) of exposures; (b) conditional on population density x 
and outcome y2, no other covariates confound the causal effect of 
exposure z3. With the assumption and data, we will estimate four causal 
effects during the pandemic progression in the framework of sequential 
causal inference (Hernan & Robins, 2020; Wang & Yin, 2020). All causal 
effects are measured by an increase of outcome y2, or y3 under the 
Swedish measure relative to the common measure adopted by the other 
Nordic countries. 

We first estimate the following three causal effects: (1) an increase in 
unemployment y2 under the Swedish measure z2 = 1 relative to the 
comment measure 0 during quarter 2; (2) an increase in unemployment 
y3 under the Swedish measure z3 = 1 relative to the common measure 0 
during quarter 3; (3) an increase in outcome y3 during quarter 3 under 
the Swedish sequence (z2, z3) = (1, 1) relative to the common sequence 
(0, 0) during quarters 2 and 3. Causal effects (1)–(2) are the short-term 
causal effects of the Swedish measures on unemployment. Causal effect 
(3) is the sequential causal effect of the Swedish sequence on unem
ployment. Because unemployment is observed under both the Swedish 
measure or sequence and the common measure or sequence, we may 
conduct regression, i.e., the binomial distribution-based linear regres
sion, which, as described in Appendix, yields the estimates, 95% CIs and 

p-values for causal effects (1)–(3). 
Now we estimate causal effect (4), which is an increase in unem

ployment y3 during quarter 3 under the mixed sequence (z2, z3) = (1, 0)
relative to the comment sequence (0, 0) during quarters 2 and 3. It is the 
long-term causal effect of the Swedish measure during quarter 2 on 
unemployment during quarter 3. By the same argument as with the 
public health outcome, we have 

causal effect (3)= causal effect (4) + causal effect (2).

Please note that the exposure sequences in causal effects (3), (4), and 
(2) are (z2, z3) = (1, 1), (z2, z3) = (1, 0) and z3 = 1. By applying this 
equality to causal effects (3) and (2) estimated earlier, we obtain the 
estimate, 95% CI and p-value for causal effect (4). 

We also conduct a descriptive analysis, in which the difference in 
means estimates causal effects (1) and (2). Table 6 presents the results of 
causal effects (1)–(4) from both statistical analysis and descriptive 
analysis. 

The statistical analysis (column 2 of Table 6) reveals the following. 
First, as shown from causal effects (1) and (2), the Swedish strategy 
performed worse than the common strategy in terms of unemployment. 
Second, as demonstrated from causal effect (4), the Swedish measure 
during quarter 2 had a certain long-term mitigating influence on un
employment: it led to, per 100,000 individuals, only 96.1 (59.0, 133.3) 
more unemployment during quarter 3. 

With the descriptive analysis (column 3 of Table 6), causal effects (4) 
and (5) are not estimable. Therefore it is impossible to assess the long- 
term mitigating influence of the early Swedish measure on unemploy
ment. Furthermore, as shown from causal effects (1) and (2) in column 
3, the crude estimates obtained from the descriptive analysis are far 
more significant than those obtained from statistical analysis, possibly 
due to the fact that the initial unemployment rate differs considerably in 
these countries and confounds the causal effect. Therefore it is difficult 
to interpret these crude estimates. 

4. Conclusions and discussions 

This article conducts an observation longitudinal analysis for the first 
wave of the pandemic progression and has two major findings. First, the 
early mild measure had a long-term and significant influence on general 
mortality and COVID-19 mortality. Second, the early mild measure led 
to a certain degree of long-term mitigating effect on unemployment. 

The analysis in this article contributes to the literature in two aspects 
of evaluating public policies. First, to the best of our knowledge, the 
long-term causal effect of public policy is not sufficiently studied in the 
evaluation of public policies. Our analysis demonstrates that the long- 
term causal effect of public policy can be estimated in the framework 
of sequential causal inference (Hernan & Robins, 2020). Second, the 
data used for our analysis is the same table data as used for descriptive 
analyses. As demonstrated by our analysis, statistical analysis can be 
conducted at the same time as descriptive analysis. Statistical evidence 
from our analysis could have impacted the decision-making for the 
second wave of the pandemic in Sweden. 

Our statistical analysis may provide insight into two major paradoxes 
in the decision-making of the Swedish strategy. One major paradox 
concerns which evidence was used (Lindström, 2020, 2021). During the 
initial period of the pandemic, it was not realistic to design and conduct 
randomized trials for testing the influences of various measures, e.g., 
wearing a face mask. Similarly, it was difficult to design and conduct 
statistical analyses based on individual-level data. However, statistical 
analyses based on available table data were not conducted either to 
provide statistical evidence during the first and second waves, so the 
policy maker needed to rely on descriptive analyses. On the other hand, 
the evidence from descriptive analyses was dubious and of low level. 
Descriptive analyses might have missed crucial evidence such as the 
long term influence of the early Swedish measure, leading to the mild 
measure upon the arrival of the second wave. Our statistical analyses 

Table 6 
The causal effect of the Swedish strategy relative to the common strategy 
adopted by the other Nordic countries on unemployment: estimate, 95% con
fidence interval, and the p-value. The descriptive analysis yields only crude 
estimates for causal effects (1) and (2). All causal effects are measured per 
100,000 individuals. The study was conducted between August 2021 and 
October 2021. The geographic location of the study population was the Nordic 
countries (Sweden, Denmark, Norway, and Finland). The study population was 
those of the Nordic countries, and the demographics are given in Table 1. 
Causal effect (1): An increase in unemployment y2 under the Swedish measure 
z2 = 1 relative to the comment measure z2 = 0 during quarter 2. Causal effect 
(2): An increase in unemployment y3 under the Swedish measure z3 = 1 relative 
to the comment measure z3 = 0 during quarter 3. Causal effect (3): An increase 
in unemployment y3 during quarter 3 under the Swedish sequence (z2, z3) =

(1, 1) relative to the common sequence (0, 0) during quarters 2 and 3. Causal 
effect (4): An increase in unemployment y3 during quarter 3 under the mixed 
sequence (z2, z3) = (1, 0) relative to the common sequence (0, 0) during quar
ters 2 and 3. Causal effects (1) and (2) are the short-term causal effects of the 
Swedish measures on unemployment. Causal effect (3) is the sequential causal 
effect of the Swedish sequence on unemployment. Causal effect (4) is the long- 
term causal effect of the Swedish measure on unemployment.   

Causal effect 

⎛

⎝
Estimate
95% CI

p − value

⎞

⎠ for the causal effect on unemployment 

Statistical analysis Descriptive analysis 

(1) 585.0 2944.1 
(523.9, 646.0) 

<0.001 
(2) 528.4 2226.6 

(480.2, 576.5) 
<0.001 

(3) 624.5  
(576.9, 672.1) 

0.01 
(4) 96.1  

(59.0, 133.3) 
<0.001  
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based on table data might have provided medium-level evidence for the 
decision-making in place of randomized trials or statistical analyses 
based on individual-level data. 

The other major paradox concerns the postmodern view of science in 
Swedish society (Lindström, 2020, 2021; Lundberg, 2020). In short, the 
postmodern view emphasizes the existence of multiple truths of a 
particular scientific problem and advocates the subjective perception of 
truth (Inglehart, 1997). In contrast, the modern view emphasizes only 
one truth and advocates the finding of the objective truth. Without 
adjustment for confounding, descriptive analyses yielded evidence with 
multiple interpretations, i.e. multiple truths or multiple decisions. This 
observation is in agreement with the postmodern view of multiple 
truths. With adjustment for confounding, statistical analyses yielded 
evidence closer to the truth, i.e., a decision better than others. This 
observation is the modern belief in one objective truth. 

Notably, the two views of science agree on one point: it is impossible 
to find the truth, single or multiple. Our statistical analysis was built on 
the assumption of no hidden confounders. Although we could never 
prove the assumption, we could always assess its validity for some 
covariates by sensitivity analysis. As a compromise, the statistical 
analysis could provide essential aspects of the truth, which might have 
yielded a better decision. 

Up until now, several waves of the pandemic have come and gone. As 
a result, statistical analyses including randomized trials have been 
conducted in various countries. Thanks to the evidence provided by 
these studies, the strategies adopted by various countries including 
Sweden become more effective. On the other hand, most of these sta
tistical analyses were based on individual-level data and lagged far 
behind the progression of the pandemic; for instance, while statistical 
analyses focused on the effective period of the vaccine in combating the 
Delta variant of COVID-19, the pandemic already progressed to enter an 
era of the Omicron variant. Consequently, the current decision-making 
essentially stands on the current descriptive evidence and the old sta
tistical evidence. Therefore, it is desirable to conduct statistical analyses 
with available data and provide timely statistical evidences for the de
cision makers before randomized trials and statistical analyses based on 
individual-level data become possible. 

There are several limitations to our statistical analysis. The first 
limitation concerns the use of table data. Although statistical analysis 

based on table data may provide timely statistical evidence for the de
cision maker, the evidence is of low level compared to randomized trials 
and statistical analysis based on individual-level data. The second lim
itation concerns outcomes. The technical procedure of detecting and 
reporting COVID-19 death differed between these countries, particularly 
during the initial period of the pandemic, and this yielded certain biases 
in our analysis. The third limitation concerns exposures. In the current 
article, we broadly classified the strategies adopted by the other Nordic 
countries as the common strategy. This was clearly a simplifying 
approximation, which could help to focus on the Swedish strategy but 
omitted the differences with individual Nordic countries. The fourth 
limitation concerns covariates. Different countries might have different 
definitions for certain covariates, such as immigration status. Therefore 
it is not possible to adjust for immigration status in our analysis. It is less 
serious for our analysis because the Nordic countries have similar social- 
economic policies and cultures. However, it may become a serious 
problem if we compare Sweden with other countries. 
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Appendix 

Estimating causal effects on public health outcomes 

The outcomes y1, y2,and y3 are general mortalities or COVID-19 mortalities. They are measured as count numbers in the population. Hence, we 
assume that the outcome follows the Poisson distribution conditional on the history of stationary covariates, exposures, and previous outcomes. 

The population density x is measured by the number of inhabitants per square kilometers and it is a stationary covariate. During weeks 1–9, there 
was only general mortality y0 and the amount p0 of person weeks. Let r1 = y0/p0, which is the observed mortality rate before any measure was taken. 
As described in Section 2.2, let t = 1, 2, 3 indicate three periods: t = 1 for weeks 10–18, t = 2 for weeks 19–26 and t = 3 for weeks 27–35. Then during 
period t, we have exposurezt with zt = 1 for the Swedish measure and zt = 0 for the common measure, outcome yt for general mortality or COVID-19 
mortality and the amount pt of person weeks. Furthermore, we have the observed mortality rate rt = yt− 1/pt− 1 before measure zt. 

Causal effect (t) (t= 1, 2, 3) is an increase in outcome yt under the Swedish measure zt = 1 relative to the common measure zt = 0 during period t. 
With the person weeks pt, the regression model for the conditional expectation of yt given (x, rt , zt) is 

E(yt | x, rt, zt)= pt(αt + γtx+ δtrt + βtzt), for t= 1, 2, 3 

Here, the link function is identity function; the outcome is mortality yt during period t; the covariates are density x and mortality rate rt during 
period t − 1; the exposure is zt (Swedish or common measure); the amount pt of person weeks during period t is fixed as a constant. We use linear model 
with only the main effect of exposure zt for the following reasons. First, the exact functional form for the nuisance variables x and rt is unknown, and a 
reasonable assumption is linear form. Second, by sensitivity analysis, the effect modification of the main effect of exposure zt by x and rt is small. Third, 
under the assumption of no hidden confounding covariates, we have that 
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causal effect (t)=E(yt | x, rt, zt = 1) − E(yt | x, rt , zt = 0)= ptβt, t= 1, 2, 3,

which is a model parameter of the linear model. 
Causal effect (4) is an increase in outcome y2 during period 2 under the Swedish sequence (z1, z2) = (1, 1) relative to the common sequence (0, 0)

during periods 1 and 2. Denote the exposure sequence by w4 with w4 = 1 for the Swedish sequence (z1, z2) = (1, 1) and w4 = 0 for the common 
sequence (0, 0). The covariates are the population density x and the mortality rate r1 = y0/p0. With the person weeks p2, the regression model for the 
conditional expectation of y2 given (x, r1,w4) is 

E(y2 | x, r1,w4)= p2(α4 + γ4x+ δ4r1 + β4w4).

Under the assumption of no hidden confounding covariates, we have that 

causal effect (4)=E(y2 | x, r1, w4 = 1) − E(y2 | x, r1, w4 = 0)= p2β4.

Causal effect (5) is an increase in outcome y3 during period 3 under the Swedish sequence (z2, z3) = (1, 1) relative to the common sequence (0, 0)
during periods 2 and 3. Denote the exposure sequence by w5 with w5 = 1 for the Swedish sequence (z2, z3) = (1, 1) and w5 = 0 for the common 
sequence (0, 0). The covariates are the population density x and the mortality rate r2 = y1/p1. With the person weeks p3, the regression model for the 
conditional expectation of y3 given (x, r2, w5) is 

E(y3 | x, r2, w5)= p3(α5 + γ5x+ δ5r2 + β5w5).

Under the assumption of no hidden confounding covariates, we have that 

causal effect (5)=E(y3 | x, r2, w5 = 1) − E(y3 | x, r2, w5 = 0)= p3β5 

Causal effect (6) is an increase in outcome y3 during period 3 under the Swedish sequence (z1, z2, z3) = (1, 1, 1) relative to the common sequence 
(0, 0, 0) during periods 1, 2 and 3. Denote the exposure sequence by w6 with w6 = 1 for the Swedish sequence (z1, z2, z3) = (1, 1, 1) or w6 = 0 for the 
common sequence (0, 0, 0). The covariates are the population density x and the mortality rate r1 = y0/p0. With the person weeks p3, the regression 
model for the conditional expectation of y3 given (x, r1, w6) is 

E(y3 | x, r1, w6, )= p3(α6 + γ6x+ δ6r1 + β6w6).

Under the assumption of no hidden confounding covariates, we have that 

causal effect (6)=E(y3 | x, r1, w6 = 1) − E(y3 | x, r1, w6 = 0)= p3β6 

Based on the probability models and regression models (i.e., the Poisson distribution-based linear regression), we conduct the regressions to yield 
the estimates, 95% CIs and p-values for causal effects (1)–(6). From the estimated causal effects (1)–(6), we obtain the estimates, 95% CIs and p-values 
for causal effects (7)–(9) by applying the relationships between causal effects, as described in section 3.4 and Supplementary Materials. For the sake of 
consistency in evaluating the variability for all causal effects (1)–(9), we use the Monte Carlo simulation to generate 95% CIs and p-values for all these 
causal effects. 

Estimating causal effects on unemployment 

Unemployment refers to the number of unemployed persons aged 15–74, and labor force to the number of both umemployed and employed 
persons aged 15–74. The unemployment rate is the probability of unemployment among the labor force. Therefore, we assume that conditional on 
stationary covariates, exposures, and the previous unemployment rate, unemployment follows the binomial distribution with the sample size equal to 
the labor force and the probability equal to the unemployment rate. The regression models are described below. 

Causal effect (1) is an increase in unemployment y2 under the Swedish measure z2 = 1 relative to the common measure z2 = 0 during quarter 2. Let 
r2 =

y1
p1
, which is the observed unemployment rate during quarter 1 before exposure z2, where y1 is the unemployment and p1 is the labor force in 

quarter 1. The covariates are the population density x and the unemployment rate r2. With the labor force p2 in quarter 2, the regression model for the 
conditional expectation of y2 given (x, r2, z2) is 

E(y2 | x, r2, z2)= p2(α2 + γ2x+ δ2r2 + β2z2).

Under the assumption of no hidden confounding covariates, we have that 

causal effect (1)=E(y2 | x, r2, z2 = 1) − E(y2 | x, r2, z2 = 0)= p2β2.

Causal effect (2) is an increase in unemployment y3 under the Swedish measure z3 = 1 relative to the common measure z3 = 0 during quarter 3. Let 
r3 = y2/p2, which is the observed unemployment rate during quarter 2 before exposure z3. The covariates are the population density x and the 
unemployment rate r3. With the labor force p3 in quarter 3, the regression model for the conditional expectation of y3 given (x, r3, z3) is 

E(y3 | x, r3, z3)= p3(α3 + β3z3 + γ3x+ δ3r3).

Under the assumption of no hidden confounding covariates, we have that 

causal effect (2)=E(y3 | x, r3, z3 = 1) − E(y3 | x, r3, z3 = 0)= p3β3.

Causal effect (3) is an increase in outcome y3 during quarter 3 under the Swedish sequence (z2, z3) = (1, 1) relative to the common sequence (0, 0)
during quarters 2 and 3. Denote the exposure sequence by w4 with w4 = 1 for the Swedish sequence (z2, z3) = (1, 1) and w4 = 0 for the common 
sequence (0, 0). The covariates are the population density x and the unemployment rate r2 = y1/p1. With the labor force p3 in quarter 3, the regression 
model for the conditional expectation of y3 given (x, r2, w4) is 

E(y3 | x, r2, w4)= p3(α4 + γ4x+ δ4r2 + β4w4)
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Under the assumption of no hidden confounding covariates, we have that 

causal effect (3)=E(y3 | x, r2, w4 = 1) − E(y3 | x, r2, w4 = 0)= p3β4.

Based on the probability models and regression models (i.e. the binomial distribution-based linear regression), we conduct the regressions to yield 
the estimates, 95% CIs and p-values for causal effects (1)–(3). From the estimated causal effects (1)–(3), we obtain the estimates, 95% CIs and p-values 
for causal effect (4) by applying the relationship between causal effects, as described in section 3.5. For the sake of consistency in evaluating the 
variability for all causal effects (1)–(4), we use the Monte Carlo simulation to generate 95% CIs and p-values for all these causal effects. 
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