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Pulmonary hypertension (PH) is defined as a mean pulmonary 
artery pressure ≥20 mmHg when diagnosed with right heart 
catheterisation,[1] or a right ventricular systolic pressure ≥40 mmHg 
(in the absence of pulmonary stenosis and acute right heart failure) 
as measured with transthoracic echocardiography.[2] Approximately 
75 million people suffer from PH globally,[3] and it occurs mainly in 
women.[4] It is associated with several conditions, such as HIV, left 
heart disease, schistosomiasis, chronic obstructive pulmonary disease 
and tuberculosis sequelae.[5-7] These conditions increase pulmonary 
vascular remodelling that results in increased pulmonary vasculature 
resistance and therefore PH. The current PH treatment regimens have 
made a significant clinical impact, as they improve clinical outcomes 
and quality of life to a certain degree.[1] However, they do not cure 
PH, suggesting that its pathophysiology is not fully understood,[8] and 

this limited impact of the current drugs on PH highlights a need for 
better treatment regimens. During the past 5 years, and particularly 
in the post-COVID-19  period, drug repurposing has been proposed 
as a novel way to augment the health benefits afforded by current PH 
drugs.[9] The articles on this topic are too many to list in full, but these 
three show the importance of the idea.[10-12]

A brief overview of the pathophysiology 
and treatment of PH
PH has a complex pathophysiology that includes an array of molecular 
factors and proteins that trigger myriad molecular pathways[13] such 
as increased proliferation of pulmonary artery smooth-muscle cells 
(PASMCs) and a cancer-like phenotype characterised by PASMC 
resistance to apoptosis and excessive proliferation of pulmonary artery 
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Synopsis
What the study adds. Pulmonary hypertension (PH) remains a fatal disease, and 80% of the patients live in developing countries where 
resources are scarce and specialised therapies are often unavailable. Drug repurposing is a viable option to try to improve treatment 
outcomes. 
Implications of the findings. We propose that another form of ‘drug’ repurposing is the use of medicinal plants, many of which have 
demonstrated benefits against pathological processes that are also key in PH, e.g. apoptosis, tumour-like growth of cells, proliferation, 
oxidative stress and mitochondrial dysfunction.
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endothelial cells (PAECs).[14] Other pathways include pulmonary 
inflammation, elevated oxidative stress, lung mitochondrial 
dysfunction, lung fibrosis and pulmonary vasoconstriction.[14] These 
pathways ultimately result in obliterative changes to the pulmonary 
arterioles, including thickening of the intima and medial layers[13] and 
plexogenic arteriopathy.[15] 

Treatment options for PH improve PH-related symptoms by 
targeting these molecular pathways. Drugs include endothelin-1-
receptor antagonists, phosphodiesterase type 5 inhibitors, soluble 
guanylate cyclase stimulators, prostacyclin analogues and prostacyclin-
receptor agonists.[16] PH survival without treatment used to average 
2.8 years, with survival rates of 68%, 48% and 34% at 1, 3 and 5 years 
after diagnosis, respectively.[17] However, with treatment, survival rates 
have improved to 97.2%, 91.5%, 84.2%, 80.2% and 75.9% at 1, 2, 3, 4 
and 5 years, respectively.[18] Great strides have therefore been made 
with regard to PH treatment, but there is room for improvement, as 
despite these drugs, patients still die from PH. This situation suggests 
that there is a need for better treatment strategies.[19] 

Drug repurposing in PH
The aim of drug repurposing[20] in PH is to reutilise drugs that were 
traditionally used for other diseases in the hope that they may provide 
health benefits for PH patients too. Accumulating literature suggests 
that there is indeed an instrumental role for drug repurposing in PH. 
For instance, imatinib, a tyrosine kinase inhibitor used in patients 
with chronic myelogenous leukaemia,[21] has been shown to have 
vasodilatory properties by blocking the platelet-derived growth 
factor-activated pathway of vascular remodelling.[22] It can therefore 
be linked to PH, which develops through a similar mechanism.[23] 
As a result, imatinib was repurposed for PH and has been shown to 
improve haemodynamics and pulmonary vascular resistance in PH 
patients.[24] Other examples are summarised in Table 1. 

Repurposing from an African perspective
Most Africans rely on medicinal plants as a source of healthcare.[42] 
The World Health Organization reports that ~80% of developing 
countries depend largely on medicinal plants for the treatment of 
ailments and diseases.[43] Over the years, African traditional plants 
have received attention for their health benefits, a characteristic 
that is attributed to their high polyphenol content.[44] There has 
been a close to 60% increase in the number of research outputs 
based on the potential health benefits of African medicinal plants 
in the past decade.[45] 

Many of these African medicinal plants have beneficial effects 
against diseases such as cancer,[46] diabetes,[47] inflammation[48] 
and bacterial respiratory diseases.[49] However, there is a paucity of 
studies investigating the potential of African medicinal plants in 
counteracting PH, and this is a pity, as these plants offer a niche for 
the discovery of novel therapeutic targets or adjunct therapies for 
PH. Such discoveries could equate to afforable therapies to assist PH 
patients in resource-limited developing-world settings. PH drugs are 
expensive and therefore inaccessible to many patients in developing 
countries, where most public health healthcare systems cannot afford 
to foot the high costs of pharmaceutical drugs. There is therefore 
a continued search for adjunct PH therapies that are effective and 
affordable.[50] For this purpose, few studies have investigated natural 

products or traditional herbs as an adjunct therapeutic approach 
in PH.[51-53] Some medicinal plants from India and Asia show 
considerable benefit against key aspects of PH pathophysiology,[51-53] 
but there is a paucity of such studies on African medicinal plants 
and PH. This is strange, as Africa boasts rich biodiversity and a wide 
range of plant species that have medicinal properties. We perused 
the literature for studies that have demonstrated the underlying 
mechanisms of these African medicinal plants, and we review 
whether they counteract molecular pathways in other diseases that 
are also involved in the pathogenesis of PH. We propose that these 
African medicinal plants could be used against PH and that this may 
also be observed as a form of ‘drug’ repurposing. Needless to say, 
more research is warranted.

Anti-inflammatory effects of African 
medicinal plants
Inflammation is usually triggered by damage to living tissues resulting 
from microbial infections, physical damage or defective immune 
responses.[54] Various mechanisms of action have been proposed to 
explain the anti-inflammatory activity of medicinal plants. These 
mechanisms include inhibition of 15-lipoxygenases,[55] elevation of 
nitric oxide (NO) production,[57] inhibition of phospholipase A2,

[56] and 
modulation of proinflammatory gene expression.[57] African medicinal 
plants have become synonymous with anti-inflammatory effects;[48] 
in fact, Aspalathus linearis (also known as rooibos) is a unique South 
African species that is considered a potent anti-inflammatory agent. 
Studies have shown that it achieves this action by limiting the cellular 
release of proinflammatory cytokines (tumour necrosis factor alpha 
(TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6)) in 
lipopolysaccharide-induced inflammation.[58,59] Similar effects have 
been shown with the African potato in a rat model of diclofenac-
induced inflammation[60] (Table 2). 

Antioxidant properties of African 
medicinal plants
African medicinal plants are well known for their ability to scavenge 
free radicals and activate cell antioxidant defence systems.[64] Their 
mechanism of action is complex, but reactive oxygen species (ROS) 
stimulate the translocation of nuclear respiratory factor 2 (Nrf-
2) to the nucleus, where it binds to antioxidant response element 
motifs to enhance redox defence[65] and the elevation of intracellular 
antioxidant gene and protein expression, as well as the increase of 
antioxidant enzyme activities.[66] Several African medicinal plants 
can counteract the deleterious effects of elevated oxidative damage to 
cell structures, including lipids, proteins and DNA. Aloe claviflora is 
a plant that can scavenge ROS and limit lipid peroxidation,[67] while 
Aloe vera and Aspalathus linearis induce antioxidant effects via the 
Nrf-2 pathway (Table 3).

Close to 90% of cellular ROS is produced by mitochondria,[68] 
while the same organelles are key role players in the optimal 
function of cellular antioxidant systems.[69] In the absence of 
proper mitochondrial regulation, antioxidant capacity is reduced, 
which leads to the excessive production of ROS that further impair 
mitochondrial function.[70] A. vera has been shown to improve 
mitochondrial function by reducing ROS production, while 
Moringa oleifera can do the same via an Nrf2/haem oxygenase 1 



AJTCCM  VOL. 30  NO. 2  2024   61

REVIEW

Table 1. A list of pharmaceutical drugs used for other diseases that could be repurposed for PH (some have recently been tested in 
a PH context)
Drug Approved for Effects in models of PH References
Imatinib Chronic myeloid leukaemia Improves haemodynamics and exercise capacity Frost et al.[24]

Tacrolimus Solid-organ transplantation Improves BMPR2 expression in peripheral blood 
mononuclear cells of human subjects

Spiekerkoetter et al.[25]

Anastrozole Breast cancer Improves 6-minute walk distance and reduces 
17β-oestradiol levels

Kawut et al.[26]

Paclitaxel Ovarian cancer Inhibits pulmonary vascular remodelling by FoxO1-
mediated autophagy suppression

Feng et al.,[27] 
Zhao et al.[28]

Etanercept Rheumatoid arthritis Prevents and reverses monocrotaline-induced PH by 
reducing inflammatory cell infiltration

Zhang et al.[29]

Carvedilol Congestive heart failure Reduces right ventricular systolic pressures in patients Cheong et al.[30]

Melatonin Jet lag Improves cardiac function, reduces oxidative stress, 
enhances antioxidant systems, and inhibits pulmonary 
vascular remodelling

Hung et al.,[31] 
Maarman et al.,[32] 
Wang et al.[33]

Hydroxychloroquine Malaria Attenuates PH by decreasing proliferation and increases 
apoptosis of pulmonary artery smooth-muscle cells in 
pulmonary hypertensive arteries.

Ryan[34]

Anakinra Rheumatoid arthritis Reduces inflammation and right ventricular dysfunction 
in PH via interleukin signalling 

Trankle et al.[35]

Rituximab Non-Hodgkin’s lymphoma Improves 6-minute walk distance Zamanian et al.[36]

Sotatercept Chemotherapy-induced 
anaemia, multiple 
myeloma, beta-
thalassaemia, and end-
stage kidney disease

Improves pulmonary vascular resistance in patients, and 
reduced N-terminal pro-B-type natriuretic peptide levels

Humbert et al.[37]

Dimethyl fumarate Multiple sclerosis Improves PH by blocking proinflammatory pathways and 
reducing the infiltration of immune cells in lung tissue. 

Grzegorzewska et al.[38]

Fasudil Angina and cerebral 
vasospasm

Reduces pulmonary vascular resistance in PH patients Fujita et al.,[39] 
Fukumoto et al.[40]

Nesiritide Acute decompensated 
heart failure

Ameliorates pulmonary capillary wedge pressure Michaels et al.[41]

PH = pulmonary hypertension; FoxO1 = forkhead box protein O1.

Table 2. African medicinal plants (tested in non-PH models) with anti-inflammatory activity that could be repurposed for PH
Plant Common name Experimental model Mechanism References
Hypoxis 
hemerocallidea

African potato Diclofenac-induced 
inflammation animal model 
of rats

Inhibition of iNOS and NF-κB Ojewole[60]

In vitro model Zulfiqar et al.[61]

Aspalathus linearis Rooibos tea Lipopolysaccharide-induced 
inflammation animal model 
of mice

Inhibition of proinflammatory 
cytokines (TNF-α, IL-1β and IL-6)

Ajuwon et al.,[58] 
Lee and Bae[59]

In vitro model Lee and Bae[59]

Ximenia caffra Large sourplum In vitro model Inhibits the messenger RNA 
expression of proinflammatory 
genes (IL-6, iNOS and TNF-α)

Zhen et al.[62]

Asparagus africanus Wild asparagus Carrageenan-induced rat paw 
oedema and inflammation in 
Swiss albino and Wistar rats 

Inhibition of inflammation by 
limiting proinflammatory cytokines

Ojewole[60]

Aloe ferox Aloe Carrageenan-induced rat paw 
oedema and inflammation

Inhibition of inflammation due to a 
high content of malic acid acylated 
carbohydrates

Mwale and Masika[63]

PH = pulmonary hypertension; iNOS = inducible nitric oxide synthase; NF-κB = nuclear factor kappa B; TNF-α = tumour necrosis factor alpha; IL-1β = interleukin 1 beta; IL-6 = interleukin 6.
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(HO-1) signalling pathway (Table 3). Mitochondrial dysfunction 
is considered a key component of PH that occurs specifically in 
PASMCs and PAECs.[71] Potent antioxidants[32,72] that could improve 
mitochondrial function and mitochondrial regulation have 
previously been highlighted as therapeutic targets for PH by our 
group.[13,73] It therefore follows that African medicinal plants may 
be able to show benefit in PH models by reducing ROS production, 
limiting oxidative stress and improving mitochondrial function. 

Antiprolific effects of African medicinal 
plants
African medicinal plants have potent antiprolific effects in a wide 
range of experimental models.[78] A root bark extract of Zanthoxylum 
paracanthum was tested in human breast cancer (HCC1395) 
and human prostate cancer (DU145) cell lines, where it showed 
antiprolific activity,[79] but the mechanisms remain poorly understood. 
The African cherry has demonstrated antiprolific activity in human 
prostate cancer cells, which is believed to be mediated via reduced 
apoptosis.[80] Other plants that have similar effects include Zingiber 
ocianale and Sutherlandia frutescens in human cancer cell lines[81,82] 
(Table 4).

In PH, proliferation is a key feature that leads to pulmonary 
arteriolar remodelling,[83] and because PASMCs and PAECs become 
resistant to apoptosis, PH has been deemed to have a cancer-like 
phenotype.[84] Furthermore, impaired apoptosis regulation in 
these cells is also a major determinant of PASMC proliferation in 
remodelling.[85] There are myriad mechanisms outside the scope of 
this review, but impaired apoptosis regulation and cell metabolism 
are instrumental. Given the evidence that African medicinal plants 
can induce antiprolific effects, it is therefore likely that that they 
may also provide benefit against the cancer-like phenotype observed 
in PH. 

African medicinal plants that have been 
tested in models expressing features 
of PH
Some African medicinal plants have been reported to induce therapeutic 
effects either in PH models or in experimental models that express 
certain key features of PH, including right ventricular hypertrophy, lung 
fibrosis, pulmonary inflammation, pulmonary artery vasoconstriction 
and endothelial cell proliferation (Table 5). These plants can reduce 
inflammation in PH models by decreasing inflammation factors such 
as nuclear factor kappa B (NF-κB), TNF-α, and type 1 and type 2 
T-helper (Th1 and Th2) cytokines.[88] African medicinal plants have 
polyphenols that give these plants the ability to counteract the features 
listed here, through potent antioxidant actions. Some of these plants can 
increase antioxidant enzyme activities of superoxide dismutase, catalase 
and glutathione peroxidase, while others can regulate mitochondrial 
function as a means to limiting ROS production.[89,90] Other plants 
induce vascular relaxation by increasing NO and endothelial NO 
synthase expression (Table 5). Extracts of these plants have also been 
reported to counteract vascular remodelling in PH models, doing 
so by suppressing epithelial-mesenchymal transition through the 
transforming growth factor beta 1 (TGF-β1)/Smad pathway,[91] which 
decreases the expression of p38 mitogen-activated protein[92] and causes 
reduction of endothelin 1.[93] 

Challenges and recommendations
Several challenges exist concerning the use of medicinal plants 
for the treatment of human diseases. It must be acknowledged 
that African medicinal plants often have pleiotropic effects,[102] 
and establishing a single mechanism is difficult. Other challenges 
include poor bioavailability,[103] nonspecific or pleiotropic 
actions,[42] mitohormesis,[104] drug interactions,[105] and poor 
pharmacokinetics[106] and lack of accurate/effective dosage and 

Table 3. African medicinal plants could be repurposed for PH owing to their highly relatable mechanisms of actions against 
pathways that are key to PH pathogenesis
Plant Common name Experimental model Mechanism References
Dacryodes edulis Safou plum Fructose-STZ diabetes induced 

rat model
Suppresses the expression of Nrf-2 
to induce antioxidant activity

Erukainure et al.[74]

Moringa oleifera Drumstick tree 
or moringa

In vitro model Suppresses H2O2-induced 
mitochondrial depolarisation and 
apoptosis through suppression 
of the mitochondrial-mediated 
apoptosis pathway, while it activates 
the Nrf-2/HO-1 signalling pathway

Kirindage et al.[75]

Lipopolysaccharide-induced 
inflammation model in mice

Decreased mitochondrial 
superoxide content, and restoration 
of the mitochondrial membrane 
potential in the LPS-induced 
macrophages

Sailaja et al.[76]

Aloe vera Aloe In vitro model Attenuates oxidative stress, initiates 
antioxidant defences, regulates 
mitochondrial dysfunction and 
suppresses apoptosis

Xu et al.[77]

Aloe claviflora Aloe In vitro model Inhibits lipid peroxidation and has 
ROS scavenging effects

Lindsey et al.[67]

PH = pulmonary hypertension; Nrf-2 = nuclear respiratory factor 2; H2O2 = hydrogen peroxide; HO-1 = haem oxygenase 1; LPS = lipopolysaccharide; ROS = reactive oxygen species.
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Table 4. African medicinal plants (tested in non-PH models) with antiprolific and apoptosis activity for smooth-muscle cell 
remodelling that could be repurposed for PH
Plant Common name Experimental model Mechanism References
Curculigo orchioides 
Gaertn

Golden eye 
grass or black 
musli

In a human breast cancer cell 
line (MCF-7)

Induced anti-cancer effects 
by increasing cell death of 
cancer cells

Singh[86]

Sutherlandia 
frutescens

Cancer bush LS180 colorectal cancer 
mini-tumours

Induced anti-cancer effects by 
limiting cancer cell metabolism

Gouws et al.[81]

Fagaropsis angolensis Murumu or dale Throat and colon cancer cell 
lines (Hep2 and CT-26.CL-25)

Induced antiprolific effects via 
the actions of polyphenols

Gaobotse et al.[87]

Zanthoxylum 
paracanthum

Kokwaro 
(Rutaceae)

Cancer cell lines (HCC1395, 
DU145, Vero E6)

Induced antiprolific activity Kaigongi et al.[79]

Prunus africana African cherry Human prostate cancer cells 
(PC3)

Induced antiprolific activity 
possibly mediated via an 
increase in apoptosis

Komakech et al.[80]

PH = pulmonary hypertension.

Table 5. A list of African medicinal plants that have demonstrated to have therapeutic actions in models that express features of PH
Plant Experimental model of PH Mechanism References
Terminalia arjuna Monocrotaline-induced 

PH rat model
Reduces right ventricle hypertrophy and medial wall 
thickness of pulmonary arteries through the decrease 
of lipid peroxidation, and NADPH oxidases protein 
expression in the lung and increases superoxide 
dismutase and catalase activity

Kapoor et al.,[94] 
Pawar and Bhutani[95]

Moringa oleifera Lam. Monocrotaline-induced 
PH rat model

Increases superoxide dismutase levels Chen et al.[96]

Securigera securidaca L. Broiler chicken reared at 
high altitude

Prevents the inactivation of NO through scavenging of 
superoxide ions

Ahmadipour[97]

Allium sativium (garlic) Acute hypoxic pulmonary 
vasoconstriction

Increases the action of endothelial NO synthase, 
thereby relaxing the vascular smooth muscles

Fallon et al.[98]

Allium macrostemon 
Bunge

Isolated pulmonary artery Initiates Ca2+/protein kinase A and endothelial NO 
synthase signalling pathway in endothelial cells

Han et al.[99]

Trifolium pratense L. Broiler chicken reared at 
high altitude

Increases NO synthase secretion Jiang and Yang[93]

Mimosa pigra L. Hypoxia-induced PH in rats Elevates NO production and decreases pulmonary 
artery pressure in hypoxia-induced PH

Rakotomalala et al.[92]

Centella asiatica Hypoxia-induced PH in rats Activates the NO-mediated signals by enhancing the 
phosphorylation of serine/threonine-specific protein 
kinase/eNOS, thus promoting NO production and 
protecting endothelial cells from hypoxia-induced 
apoptosis

Wang et al.[100]

Acacia senegal Waterpipe smoke exposure Prevents pulmonary inflammation and DNA damage, 
and restores the impairment of lung function via 
prevention of expression of NF-κB that induced an 
overexpression of Nrf2 in mice

Nemmar et al.[101]

Artemisia herba-alba 
Asso.

Broiler chicken Down-regulates and up-regulates Th1 and Th2 
cytokines, respectively, in chronic multisystemic 
inflammation in Algerian patients

Messaoudene et al.[88]

Trifolium pratense L. Broiler chicken Reduces endothelin 1 in lung tissues Jiang and Yang[93]
Mimosa pigra L. Hypoxia-induced PH in rats Decreases the expression of p38 mitogen-activated 

protein, thus ameliorating the proliferative endothelial 
cells of the lung tissue in rats

Rakotomalala et al.[92]

Aloe ferox Paraquat-induced 
pulmonary fibrosis in mice

Attenuates pulmonary fibrosis by suppressing the EMT 
process through the TGF-β1/Smads/p38 pathway

Zhang et al.[91]

PH = pulmonary hypertension; NADPH = nicotinamide adenine dinucleotide phosphate; NO = nitric oxide; Ca2+ = calcium ions; eNOS = endothelial nitric oxide synthase; NF-κB = nuclear factor kappa 
B; Nrf2 = nuclear respiratory factor 2; Th1 = type 1 T-helper; Th2 = type 2 T-helper; EMT = epithelial-mesenchymal transition; TGF-β1 = transforming growth factor beta 1.

http://CT-26.CL
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dose conversion from experimental studies to human trials.[107,108] 
However, great advances have been made in trying to overcome these 
challenges in experimental studies or clinical trials, such as the use of 
inductively coupled plasma-optical emission spectrophotometry[103] 
and nanoparticles[109] to improve, for example, bioavailability. The 
latter has had considerable success in previous studies. A point of 
caution is needed here, as conventional methods of nanoparticle 
production use polyvinyl alcohol, polyethylene glycol, and D-alpha-
tocopheryl polyethylene glycol 1000 succinate as stabilisers during 
synthesis. However, these are toxic, and researchers have been 
searching for stabilisers that are non-toxic. Studies have shown that 
plant extracts can also be used as stabilisers for the fabrication of 
stable poly (lactide-co-glycolide) nanoparticles.[110] We recommend 
that future studies test poly (lactide-co-glycolide) nanoparticles 
that have been enriched with a medicinal plant extract to enhance 
cellular uptake and increase bioactivity.[111] Most medicinal plants or 
herbs contain several bioactive compounds,[112] making it difficult 
to know which compounds in an extract have been loaded onto 
the nanoparticle, so it may be challenging to ensure consistent 
experimental outcomes across studies. We are of the opinion that 
where all or most of the individual compounds in an extract have 
been successfully captured onto nanoparticles, it may still provide 
significant health benefits or remarkably improve the actions of 
nanoparticles.[113,114] 

Conclusion
Drug repurposing offers a relatively novel approach to achieving 
better treatment outcomes in PH. Drugs that could be repurposed for 
PH include melatonin, anakinra, rituximab and nesiritide. African 
medicinal plants also have potential as adjuvant therapies for PH, 
as they have been reported to have few to no side-effects and the 
ability to counteract instrumental pathways or vascular remodelling, 
which makes them attractive therapeutic targets for PH. They may 
improve the quality of life of patients suffering from PH and could 
offer an affordable adjuvant in resource-limited settings. Viable 
options include A. linearis, Allium sativium, Trifolium pratense L., 
Mimosa pigra L. and Aloe ferox. However, the majority of these 
plants have never been tested in an experimental PH model, so our 
proposition is hypothetical at best. Regardless, we believe that future 
studies should investigate these and other African medicinal plants 
in appropriate models of PH, to test their efficacy and effectiveness. 
Perhaps one day we will be able to put Africa’s diverse flora to good 
use in PH research.
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