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Abstract
Proopiomelanocortin (POMC)deficiency causes severe obesity

through hyperphagia of hypothalamic origin. However, low

glucocorticoid levels caused by adrenal insufficiency mitigate

against insulin resistance, hyperphagia and fat accretion in

PomcK/K mice. Upon exogenous glucocorticoid replacement,

corticosterone-supplemented (CORT) PomcK/K mice show

exaggerated responses, including excessive fat accumulation,

hyperleptinaemia and insulin resistance. To investigate the

peripheral mechanisms underlying this glucocorticoid hyper-

sensitivity, we examined the expression levels of key

determinants and targets of glucocorticoid action in adipose

tissue and liver. Despite lower basal expression of 11b-
hydroxysteroid dehydrogenase type 1 (11b-HSD1), which

generates active glucocorticoids within cells, CORT-mediated

induction of 11b-HSD1 mRNA levels was more pronounced
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in adipose tissues ofPomcK/Kmice. Similarly, CORT treatment

increased lipoprotein lipase mRNA levels in all fat depots in

PomcK/K mice, consistent with exaggerated fat accumulation.

Glucocorticoid receptor (GR) mRNA levels were selectively

elevated in liver and retroperitoneal fat of PomcK/K mice but

were corrected by CORT in the latter depot. In liver, CORT

increased phosphoenolpyruvate carboxykinase mRNA levels

specifically in PomcK/K mice, consistent with their insulin-

resistant phenotype. Furthermore, CORT induced hyperten-

sion in PomcK/Kmice, independently of adipose or liver renin–

angiotensin system activation. These data suggest that CORT-

inducible 11b-HSD1expression in fat contributes to the adverse

cardiometabolic effects of CORT in POMC deficiency,

whereas higher GR levels may be more important in liver.
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Introduction

Glucocorticoids exert pleiotrophic effects on metabolism and

energy partitioning. Centrally, they increase food intake and

reduce energy expenditure, whilst peripherally, they promote

insulin resistance, fat accumulation (Dallman et al. 1993,

Kellendonk et al. 2002) and hypertension (Saruta 1996,

Whitworth et al. 2001). Polymorphisms in the human

glucocorticoid receptor NR3c1 gene (GR) are associated

with glucocorticoid hypersensitivity, visceral obesity, hyper-

tension and increased cardiovascular disease risk (Buemann

et al. 1997, Rosmond et al. 2000, Dobson et al. 2001, Ukkola

et al. 2001a,b, van Rossum et al. 2003). Many rodent models

of obesity are characterised by hypercorticosteronaemia, with

weight gain normalised following adrenalectomy and

reinstated by glucocorticoid replacement (Debons

et al.1982, Freedman et al. 1986, Sainsbury et al.1997,

Makimura et al. 2000). Although plasma glucocorticoid levels

are normal in human idiopathic obesity (Flier 2004), it has
been proposed that intra-adipose glucocorticoid action is

selectively increased, through increased adipose expression of

11b-hydroxysteroid dehydrogenase type 1 (11b-HSD1), the

intracellular enzyme that regenerates active glucocorticoids

from intrinsically inert 11-keto-glucocorticoids (Kotelevtsev

et al. 1997, Jamieson et al. 2000, Andrew et al. 2002).

Obese humans (Rask et al. 2001, Paulmyer-Lacroix et al.

2002, Lindsay et al. 2003, Kannisto et al. 2004) and some

rodent models of obesity (Livingstone et al. 2000, Masuzaki

et al. 2001) have selectively increased adipose levels of 11b-
HSD1 and transgenic overexpression of 11b-HSD1 in

adipocytes causes hyperphagia, obesity, insulin resistance

and hypertension despite unchanged systemic glucocorticoid

levels (Masuzaki et al. 2001, 2003). Hepatic overexpression of

11b-HSD1 has no effect on adiposity, but causes hypertension

and insulin resistance (Paterson et al. 2004). Conversely, mice

deficient in 11b-HSD1 are insulin sensitised and resist the

adverse metabolic effects of a high-fat diet (Kotelevtsev et al.

1997, Morton et al. 2001, 2004).
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Proopiomelanocortin (POMC) is a polypeptide precursor

which undergoes extensive post-translational modification to

yield a range of smaller, biological active peptides.These include

a-, b- and g-melanocyte-stimulating hormone and adreno-

corticotrophic hormone (ACTH), collectively known as

melanocortins. Inactivating mutations of the POMC gene in

humans and mice result in a complex phenotype. Loss of

melanocortin signalling within the hypothalamus causes

hyperphagia and obesity (Krude et al. 1998, Yaswen

et al.1999, Challis et al. 2004). Further, a failure to produce

ACTHwithin the anterior pituitary causes adrenal insufficiency

with low or absent circulating glucocorticoids (Krude et al.

1998, Yaswen et al.1999, Challis et al. 2004). PomcK/Kmice are

therefore unusual amongst rodent models in that obesity

develops in the absenceof circulatingglucocorticoids.However,

glucocorticoid treatment exacerbates hyperphagia and obesity

in adult PomcK/K mice and induces severe insulin resistance,

hyperleptinaemia and diabetes (Coll et al. 2005).

We have tested the hypothesis that increased glucocorticoid

action in peripheral tissues of glucocorticoid-treated PomcK/K

mice contributes to their apparent glucocorticoid hypersensi-

tivity and exaggeratedmetabolic syndrome-like phenotype.We

further demonstrate that glucocorticoid replacement induces

hypertension in PomcK/K mice, independently of renin–

angiotensin system (RAS) activation.
Materials and Methods

Animals and CORT replacement

ThegenerationofPomcK/Kmiceon a129/SvEvbackgroundhas

been described previously (Challis et al. 2004). All mice were

housed in standard conditions on a 12 h light:12 h darkness cycle

(lights on 0070 h) with ad libitum access towater and chow (4.5%
fat diet, Special Diet Services, Witham, UK). Eight-week-old

male mice (nZ5 per group) were treated with corticosterone

(25 mg/ml) in their drinking water, a dose that results in similar

plasma glucocorticoid levels and hypothalamic corticotrophin

releasing hormone (CRH)mRNA levels in PomcK/K and wild-

type mice (Coll et al. 2005). All animal protocols used in these

studieswere approvedunder the auspices of theUKHomeOffice

Animals (Scientific Procedures) Act 1986.
Blood pressure measurement

Systolic bloodpressurewasmeasured photoelectrically in the tail

of restrained conscious mice using an IITC model 179 analyser

(WoodlandHills, CA, USA). Prior to recordingmeasurements,
Figure 1 Mediators of GC action in adipose tissue of PomcK/K mice an
northern blot showing levels of 11b-HSD1 mRNA and 18S RNA in ep
mice, either untreated or treated for 10 days with corticosterone (cort). (
LPL (D) and PEPCK (E) mRNA levels in experimental mice. Epi, epidid
presented as percentage of the value in untreated wild-type mice (100
0.05, **P!0.01 and ***P!0.001.
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all mice underwent three periods of training to accustom them

to the procedure.Micewerewarmed at 32 8C for 30 min before

taking ten consecutive readings. The first five were discounted

and a mean value of systolic blood pressure was calculated from

the last five readings. Fivemice from each treatment groupwere

measured. All analogue recordings were analysed by an

independent observer who was blinded to the genotype of the

mice and any treatment they had received.
Plasma hormone and lipid measurements

Animals were killed between 0800 and 0900 h by cervical

dislocation. Trunk blood samples were collected into EDTA-

coated tubes (Sarstedt, Leicester, UK), centrifuged at 6000 g for

10 min and plasma stored at K80 8C until required for assay.

Non-esterified fatty acid (NEFA) and triglyceride levels were

determined by commercial kits (NEFA, Roche Diagnostics;

triglyceride, Dade Behring, Marburg, Germany). Plasma renin

and angiotensinogen concentrations were determined as

previously described (Morton et al. 2005).
Tissue morphology and hepatic triglyceride levels

Neutral lipids, cholesterol and fatty acidswere identified by light

microscopy at 40! magnification in cryostat liver sections

(30 mm) stainedwith oil redO (Sigma) and counter stainedwith

haematoxylin as previously described (Morton et al. 2005).

Hepatic triglycerides were extracted by homogenisation in

isopropanol (ten volumes) and then incubated at 37 8C for

45 min and measured spectrophotometrically in supernatants

(3000 g for 10 min) using reagent TR224221 (Alpha Labora-

tories, Eastleigh, Hampshire, UK).
RNA extraction and northern blot analysis

Pieces of liver and adipose tissues (inguinal, retroperitoneal and

epididymal) were rapidly frozen in dry ice, stored atK80 8C and

then homogenised inTrizol reagent (Invitrogen). TotalRNAwas

purified using a binding matrix (RNaid Plus kit, BIO 101;

Anachem,UK) and eluted in diethylpyrocarbonate-treatedwater

containing 400 U/ml RNasin (Promega) and 10 mmol/l

dithiothreitol. RNA (5–10 mg) was blotted and hybridised to
32P-labelled cDNA probes for mouse 11b-HSD1, GR,

angiotensinogen, phosphoenolpyruvate carboxykinase

(PEPCK), lipoprotein lipase (LPL) and 18S as previously

described (Morton et al. 2005). SpecificmRNAswere quantified

using a phosphorimager (Fuji BAS FLA 2000, Raytek, Sheffield,
d effects of CORT treatment on GC target genes. (A) Representative
ididymal adipose tissue of PomcK/K (K/K) and wild-type (C/C)
B–E) Quantitation of adipose tissue-specific 11b-HSD1 (B), GR (C),
ymal fat; ing, inguinal fat; retro, retroperitoneal fat. Data are
%) and are the meansGS.E.M.; nZ5 per group. Significance *P!
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UK) and Aida image analysis software (Raytek) and are expressed

in arbitrary units relative to 18S RNA.
Statistical analyses

The effects of genotype and corticosterone interactions were

assessed by two-way ANOVA followed by post hoc Tukey’s

tests for group differences. Significance was set at P!0.05.
Values are meansGS.E.M.
Results

PomcK/K mice have reduced intra-adipose GC action but
exaggerated CORT-mediated GC amplification

Corticosterone-treated PomcK/K and wild-type mice had

similar plasma corticosterone levels and hypothalamic CRH

mRNA levels (Coll et al. 2005). To examine potential

mechanisms of corticosterone hypersensitivity in PomcK/K

mice, 11b-HSD1 and GR mRNA levels were measured in

epididymal, inguinal and retroperitoneal adipose depots.

Adipose 11b-HSD1 mRNA expression was lower in all

untreated PomcK/K compared with wild-type mice (Fig. 1A)

and was dramatically increased by corticosterone in both

genotypes (Fig. 1A), with larger increases (two- to four-fold

greater) in PomcK/K mice.

Adipose expression of GR mRNA was higher in the

retroperitoneal fat of PomcK/K mice and restored to wild-

type levels by corticosterone treatment (Fig. 1B). GR mRNA

levels did not differ in inguinal and epididymal fat between

PomcK/K and wild-type mice, and were unaffected by

corticosterone treatment in either genotype (Fig. 1B).

To investigate mechanisms downstream of 11b-HSD1/GR

by which corticosterone treatment selectively increases fat mass

in PomcK/K mice, adipose levels of mRNA encoding LPL, a

glucocorticoid-regulated gene (Fried et al. 1993), were

measured. Although LPL mRNA levels were the same in

untreated PomcK/K and wild-type mice in all depots, adipose

LPL expression in PomcK/K mice was markedly increased by

corticosterone treatment (Fig. 1C) consistent with increased

triglyceride uptake, and fatmass inPomcK/Kmice. Inwild-type

mice, corticosterone treatment increased LPL mRNA only in

the inguinal depot, and to a lesser extent than in PomcK/Kmice

(Fig. 1C), suggesting adipose depot-dependent regulation of

LPL by glucocorticoids in non-obese mice, consistent with

previous data in rats (Freedman et al. 1986).

PEPCK is an enzyme essential for gluconeogenesis in liver

and glycerol synthesis in adipose tissue (Pilkis & Granner

1992, Reshef et al. 2003). PEPCK is a classical glucocorticoid

target gene which is positively regulated by glucocorticoids in

hepatocytes and negatively regulated in adipocytes (Sasaki

et al.1984, Nechushtan et al. 1987). Consistent with this,

adipose PEPCK mRNA levels were decreased in epididymal

and retroperitoneal fat by corticosterone treatment in wild-

type mice (Fig. 1D). Surprisingly, given their glucocorticoid
Journal of Endocrinology (2007) 194, 161–170
deficiency, PomcK/K mice had lower levels of PEPCK

mRNA in adipose tissue than in wild-type (Fig. 1D).

However, although corticosterone treatment in PomcK/K

mice decreased PEPCK expression in inguinal and retro-

peritoneal adipose tissue (significantly lower than in

corticosterone-treated wild-type mice; PZ0.01), it had no

effect on PEPCK mRNA levels in epididymal adipose tissue,

suggesting that other regulatory factors dominate PEPCK

expression in adipose tissue of PomcK/K mice (Fig. 1D).
PomcK/K mice are dyslipidaemic, and have unaltered hepatic
11b-HSD1 but higher GR mRNA levels

Hepatic 11b-HSD1 mRNA levels were similar between the

two genotypes (Fig. 2A) and unaffected by corticosterone

(Fig. 2A). Hepatic GRmRNA levels were higher in PomcK/K

compared with wild-type mice (Fig. 2B), but again

corticosterone had no effect on GR mRNA levels (Fig. 2B).

Hepatic PEPCK expression was lower in PomcK/K than in

wild-type mice (Fig. 2C) and was increased by corticosterone

treatment to levels equivalent to untreated wild-type mice. In

contrast, corticosterone decreased hepatic PEPCK mRNA

levels in wild-type mice (Fig. 2C).

PomcK/K mice showed markedly higher circulating trigly-

ceride levels (Fig. 3A) and hepatic lipid accumulation thanwild-

type mice (Fig. 3B), with sixfold higher levels of hepatic

triglyceride (P!0.001; Fig. 3C). However, corticosterone had

no effect on plasma triglyceride levels in either genotype

(Fig. 3A), nor did it worsen the liver phenotype (Fig. 3C).

PomcK/K and wild-type mice had similar plasma NEFA levels

which were unaffected by corticosterone (Fig. 3D).
CORT drives hypertension in PomcK/K mice independently of
adipose and liver RAS activation

PomcK/K mice had similar blood pressure to wild-type mice

(Fig. 4A). Corticosterone markedly increased blood pressure

only inPomcK/Kmice (Fig. 4A). Since hypertension following

transgenic expression of 11b-HSD1 in adipose or liver is

associated with increased levels of angiotensinogen in each of

these tissues respectively (Masuzaki et al. 2001, Paterson et al.

2004), we hypothesised that a similar mechanism may drive

corticosterone-mediated hypertension in PomcK/K mice. We

therefore examined key components of the RAS (Guyton

1991). PomcK/K mice had higher hepatic angiotensinogen

mRNA levels than controls (Fig. 4B). However, corticoster-

one did not alter hepatic angiotensinogen mRNA levels in

either genotype (Fig. 4B). Consistent with lower intra-adipose

GC action, adipose angiotensinogenmRNA levels were lower

in PomcK/K mice in all adipose depots (Fig. 4C). Corticos-

terone increased angiotensinogen mRNA levels specifically in

epididymal adipose tissue of both genotypes (twofold increase;

P!0.001; Fig. 4C) but had no effect on angiotensinogen

mRNA levels in inguinal or retroperitoneal adipose tissue of

either genotype (Fig. 4C). Plasma angiotensinogen
www.endocrinology-journals.org



Figure 2 Mediators of GC action in the liver of PomcK/K mice and
effects of CORT treatment on GC target genes. Liver mRNA
expression of (A) 11b-HSD1, (B) GR and (C) PEPCK in PomcK/K

(K/K) and wild-type (C/C) mice, either untreated or treated for
10 days with corticosterone (cort). Data are presented as
percentages of the value in untreated control mice (100%) and are
the meansGS.E.M.; nZ5 per group. Significance *P!0.05, **P!
0.01 and ***P!0.001.
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concentrations did not differ with genotype or corticosterone

(Fig. 4D). As has been found in another model of

glucocorticoid-deficient obesity (Morton et al. 2005), plasma

renin concentration was markedly higher in PomcK/K mice

(Fig. 4E) but this was unaffected by corticosterone (Fig. 4E).
Discussion

Increased glucocorticoid action specifically in adipose

(Masuzaki et al. 2001) or liver (Paterson et al. 2004) produces

distinct metabolic syndromes with hypertension. Increased

GR sensitivity is also associated with altered fat distribution,

hypertension and cardiometabolic disease (Buemann et al.

1997, Rosmond et al. 2000, Dobson et al. 2001, Ukkola et al.

2001a,b, van Rossum et al. 2003). We hypothesised that

altered tissue regeneration of active glucocorticoid and/or

peripheral tissue sensitivity to GCs might explain in part the

exaggerated fat accumulation, insulin resistance (Coll et al.

2005) and the hypertension observed in PomcK/K mice with

glucocorticoid replacement.

With fixed circulating glucocorticoid levels, 11b-HSD1

and GR expression levels are the key determinants of GC

action. PomcK/K mice had lower adipose but similar hepatic

levels of 11b-HSD1 mRNA levels to wild-type mice.

Corticosterone treatment dramatically and more markedly

increased 11b-HSD1 in the adipose tissue of PomcK/K mice.

This was accompanied by a marked increase in the expression

of the glucocorticoid-inducible (Fried et al. 1993) gene LPL,

which is consistent with the exaggerated accumulation of fat

in these mice. Intriguingly, these data suggest that, at least in

adipose tissue, 11b-HSD1 itself is a glucocorticoid target

gene. This finding is consistent with most (Hammami &

Siteri 1991, Jamieson et al. 1995, Voice et al. 1996, Bujalska

et al. 1999), but not all (Napolitano et al. 1998) previous

reports of glucocorticoid induction of 11b-HSD1 in a variety

of cell types. Although not specifically measured here,

increased adipose 11b-HSD1 activity is predicted to

selectively amplify intra-adipose glucocorticoid concen-

trations, particularly when circulating levels of substrate are

high. On the other hand, our data suggest that congenital

glucocorticoid deficiency has little impact upon hepatic 11b-
HSD1 levels in vivo and is not regulated by corticosterone. In

contrast, 11b-HSD1 mRNA levels are highly and positively

regulated by glucocorticoids in adipose tissue.

GR levels are another major determinant of cellular

glucocorticoid sensitivity (Vanderbilt et al. 1987, Geley et al.

1996). Small differences in GR mRNA levels can markedly

alter glucocorticoid responsiveness (Geley et al. 1996,

Reichardt et al. 2000). PomcK/K mice had elevated GR

mRNA levels in liver and retroperitoneal adipose tissue,

suggesting increased glucocorticoid sensitivity selectively in

these depots. Following corticosterone replacement in

PomcK/K mice, GR mRNA levels were restored to wild-

type levels in retroperitoneal adipose tissue but not in liver,

consistent with tissue- and time-specific differences in GR
Journal of Endocrinology (2007) 194, 161–170



Figure 3 Dyslipidaemia and fatty liver in PomcK/K mice. (A) Plasma triglyceride levels in PomcK/K (K/K)
and wild-type (C/C) mice, either untreated or treated for 10 days with corticosterone (cort). (B) Oil Red O
staining of neutral lipid in liver sections of wild-type mice (C/C, left upper panel), CORT-treated wild-type
mice (C/C, left bottom panel), PomcK/K (K/K, right upper panel) and CORT-treated PomcK/K (K/K, right
bottom panel). Magnification is 40!; red, oil red O; blue, haematoxylin (nuclei). (C) Hepatic triglyceride
content in PomcK/K (K/K) and wild-type (C/C) mice, either untreated or treated for 10 days with
corticosterone (cort). (D) Plasma levels of non-esterified fatty acids (NEFA) in PomcK/K (K/K) and wild-type
(C/C) mice, either untreated or treated for 10 days with corticosterone (cort). Data are meansGS.E.M.; (nZ6
per group). Significance ***P!0.001.
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autoregulation (Kalinyak et al. 1987, Dong et al. 1988,

Sheppard et al. 1990, Holmes et al., 1995, 1997, Reichardt

et al. 2000).

Corticosterone had no additional effects on the hyper-

triglyceridaemia and fatty liver of the PomcK/K mice, and did

not affect plasma NEFAs, which were normal in PomcK/K

mice. The corticosterone-driven caloric excess in PomcK/K

mice may drive a further increase in the flux of triglycerides

from the liver, that, coupled with increased adipose uptake via

LPL, maintains the circulating and liver triglyceride levels

constant and is consistent with increased adipose tissue mass in

corticosterone-treated PomcK/K mice (Coll et al. 2005).

Adipose PEPCK is critical for glyceroneogenesis and is thus

a key regulator of the level of fatty acid re-esterification

(reviewed in Reshef et al. 2003). Unexpectedly, since

glucocorticoids reduce adipose PEPCK, glucocorticoid-
Journal of Endocrinology (2007) 194, 161–170
deficient PomcK/K mice had lower levels of PEPCK

mRNA in all adipose depots. This was further decreased by

corticosterone treatment. The lower level of PEPCK mRNA

in untreated PomcK/K mice may be due to their higher fed

blood glucose levels (Nechushtan et al. 1987, Opherk et al.

2004), thus reducing the need for glyceroneogenesis to

generate glycerol phosphate for fatty acid re-esterification.

PomcK/K mice have lower hepatic expression of PEPCK.

This may not be due to the lack of glucocorticoid signalling in

liver, as mice with a liver-specific knockout of GR have

normal levels of PEPCK in liver (Opherk et al. 2004), but may

be related to the higher circulating levels of insulin in

PomcK/K mice compared with wild-type (Coll et al. 2005).

Insulin dominantly and negatively suppresses hepatic PEPCK

in the fed state (Pilkis & Granner 1992). In corticosterone-

treated wild-type mice, the repressive effect of insulin
www.endocrinology-journals.org



Figure 4 Corticosterone treatment increases blood pressure in PomcK/K mice: effect of CORT treatment on
the Renin-angiotensin system. Effect of 10 days corticosterone treatment (cort) on (A) systolic blood pressure,
(B) renin concentration, (C) plasma angiotensinogen, (D) angiotensinogen (Agt) mRNA in adipose tissue (AT),
and (E) angiotensinogen (Agt) mRNA levels in liver in wild-type (C/C) and PomcK/K (K/K) mice. Epi,
epididymal fat; ing, inguinal fat; retro, retroperitoneal fat. Data are meansGS.E.M., and for transcript levels
are expressed relative to levels in untreated wild-type mice (100%); nZ5 per group. Significance *P!0.05,
**P!0.01 and ***P!0.001.
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predominated. Indeed, the decreased levels of PEPCK in

these mice compared with untreated wild-type mice may

reflect the increase in insulin levels following corticosterone

(Coll et al. 2005). In contrast, hepatic PEPCK mRNA levels

doubled following corticosterone treatment in PomcK/K

mice, consistent with hepatic insulin resistance and marked

hyperinsulinaemia (Coll et al. 2005).

Blood pressure in PomcK/K mice is normal despite their

hypoadrenal state. This implies that secondary mechanisms

are invoked to maintain cardiovascular function when

circulating aldosterone and corticosterone concentrations

are chronically reduced (Coll et al. 2004). It seems likely

that the increased renin activity which we have observed in

PomcK/K mice is part of this adaptive process. However,

corticosterone replacement did not normalise renin activity

and selectively increased blood pressure in PomcK/K mice.

This was not attributed to a further activation of the

circulating RAS, since neither renin nor its substrate

angiotensinogen was increased. Indeed, the expression of

angiotensinogen mRNA in liver and adipose tissues did not

correlate with blood pressure. It seems likely that corticos-

terone augmented existing mechanisms that were already

sustaining vascular function. Apart from renin, these

secondary processes are likely to involve the hyper-

insulinaemic (Sowers 2004) state of PomcK/K mice (which

is exacerbated by corticosterone treatment; Coll et al. 2005),

the sympathetic nervous system (Rascher et al. 1979; which is

thought to explain glucocorticoid-induced hypertension in

normal mice) or structural adaptation of the vasculature

(Wallerath et al. 2004).

In summary, we show that increased adipose tissue-specific

sensitivity to glucocorticoids in PomcK/K mice may result in

part from exaggerated induction of 11b-HSD1 in adipose

tissue with corticosterone administration. Whilst acknowl-

edging that mRNA changes do not always translate to altered

protein (or enzyme activity) levels, these data nevertheless

suggest that 11b-HSD1 might be a more potent mediator of

intra-adipose GC action than the GR levels, whereas in liver,

higher GR levels contribute to the diabetogenic phenotype of

the PomcK/K mice.
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