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Abstract 

Background: Thyroid cancer (TC) is the most common endocrine malignancy worldwide. The incidence of TC is high 
and increasing worldwide due to continuous improvements in diagnostic technology. Therefore, identifying accurate 
prognostic predictions to stratify TC patients is important.

Methods: Raw data were downloaded from the TCGA database, and pairwise comparisons were applied to identify 
differentially expressed immune-related lncRNA (DEirlncRNA) pairs. Then, we used univariate Cox regression analysis 
and a modified Lasso algorithm on these pairs to construct a risk assessment model for TC. We further used qRT‒PCR 
analysis to validate the expression levels of irlncRNAs in the model. Next, TC patients were assigned to high- and low-
risk groups based on the optimal cutoff score of the model for the 1-year ROC curve. We evaluated the signature in 
terms of prognostic independence, predictive value, immune cell infiltration, immune status, ICI-related molecules, 
and small-molecule inhibitor efficacy.

Results: We identified 14 DEirlncRNA pairs as the novel predictive signature. In addition, the qRT‒PCR results were 
consistent with the bioinformatics results obtained from the TCGA dataset. The high-risk group had a significantly 
poorer prognosis than the low-risk group. Cox regression analysis revealed that this immune-related signature could 
predict prognosis independently and reliably for TC. With the CIBERSORT algorithm, we found an association between 
the signature and immune cell infiltration. Additionally, immune status was significantly higher in low-risk groups. 
Several immune checkpoint inhibitor (ICI)-related molecules, such as PD-1 and PD-L1, showed a negative correlation 
with the high-risk group. We further discovered that our new signature was correlated with the clinical response to 
small-molecule inhibitors, such as sunitinib.

Conclusions: We have constructed a prognostic immune-related lncRNA signature that can predict TC patient 
survival without considering the technical bias of different platforms, and this signature also sheds light on TC’s overall 
prognosis and novel clinical treatments, such as ICB therapy and small molecular inhibitors.
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Introduction
In recent decades, the incidence of thyroid cancer (TC) 
has been increasing steadily over the past 30 years world-
wide [1]. With the development of diagnostic technol-
ogy, the detection rate of TC in the world has increased 
year by year, ranking fifth in the incidence of malignant 
tumors [2], and the growing incidence of TC is raising 
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serious public health issues worldwide. Even though 
most TCs have a relatively good prognosis, approximately 
10% of patients with differentiated thyroid cancer (DTC) 
may progress to invasive disease, 5% progress to distant 
metastasis, and approximately 20–30% may relapse [3].

The immune system is now considered to have an 
important role in the elimination of cancer cells and 
sheds light on the mechanisms of cancer–immune eva-
sion, contributing to tumor outgrowth [4, 5]. Although 
immunosurveillance prevents the development of most 
tumors in normal individuals, cancer cells can still deploy 
escape strategies such as initiating immune checkpoints 
[6]. Immune checkpoint inhibitors (ICIs) can restore 
the normal work of the immune system by suppressing 
the signal of "rest from work", which is sent by immune 
checkpoints, and then launch an attack on tumor cells 
[7]. Immune checkpoint blockade (ICB) immunotherapy 
has shown durable responses and improved clinical out-
comes for patients across most malignancies, including 
thyroid cancer. Growing evidence has proven that ICI-
related genes such as PD-1 and PD-L1 are expressed in 
ATC and DTC [8]. Pembrolizumab, an anti-PD-1 anti-
body, may be effective for patients with TC because of 
the KEYNOTE-158 trial, which shows that approximately 
60% of patients in this program achieved disease control 
[9].

In addition, several studies have demonstrated that 
tyrosine kinase inhibitors (TKIs) can prevent the pro-
liferation and tumorigenicity of thyroid cancer cells. 
Treatment with small-molecule tyrosine kinase inhibi-
tors, including gefitinib, pazopanib, lenvatinib, and axi-
tinib, are approved by the FDA to treat thyroid cancer 
[10]. Some clinical trials were performed to evaluate the 
efficacy and safety of these inhibitors [11]. Neverthe-
less, TKIs are promising new agents for the treatment of 
patients with thyroid cancer.

Long noncoding ribonucleic acids (lncRNAs) belong 
to the family of noncoding RNAs and are functionally 
defined as transcripts > 200 nucleotides in length with 
no protein-coding potential [12]. In the past few years, 
lncRNAs have attracted much attention due to their pre-
viously underappreciated transcriptional regulation, and 
they can function as both oncogenes and tumor suppres-
sors [13]. It is clear that lncRNAs play crucial roles in the 
regulation of various biological and pathological behav-
iors of malignant tumors, especially in tumorigenesis and 
progression [14, 15].

Moreover, a growing body of studies has shown that 
the expression of lncRNAs is linked to the immune 
response and tumor progression. In addition, lncRNAs 
have an essential role in the development of immune cells 
and in pathogen response pathways. Notably, individual 
lncRNAs can act functionally through modular domains 

and often link protein activity to DNA or RNA targets 
through interactions with both [16]. Aberrant lncRNA 
expression has been observed in various cancers [17]. 
Recently, an increasing number of lncRNAs have been 
discovered to play an important role in TC tumorigen-
esis and development. Peng et al. [18] summarized rep-
resentative lncRNAs in thyroid cancer, such as NEAT1, 
HOTAIR, PTCSC2, GAS8-AS1, MEG3, BANCR, GAS5, 
and MALAT1 et al., which are highly linked to the bio-
logical behavior of thyroid cancer and show significant 
value in diagnosis and treatment. Recent study showed 
that the expression level of lncRNA n384546 was upreg-
ulated in TC patients and that its interference inhibited 
cancer cell proliferation, invasion, and migration [19]. 
Reliable prognostic models related to tumor immune 
infiltration may affect the diagnosis, evaluation and treat-
ment decisions of tumors. LncRNAs have recently been 
used to establish prognostic signatures. Huang et al. [20] 
constructed an immune-related lncRNA signature to pre-
dict the survival outcome of patients with breast cancer. 
Xu et al. [21] built a signature based on seven immune-
related lncRNAs, which showed reliable prognostic value 
in hepatocellular carcinoma and may predict the out-
come of immune checkpoint blockade (ICB) therapy.

In this study, we established a novel method to con-
struct a predictive signature for TC based on immune-
related lncRNA pairs, which did not need to consider the 
technical bias of different platforms. Next, to explore the 
latent role of this signature, we integrated the immune 
model with clinical factors of TC patients to build a 
composite prognostic index, which allowed improved 
estimation of prognosis. We also explored the correla-
tion between the signature and several aspects, such as 
immune cell infiltration, immunosuppressive biomark-
ers, and small-molecule tyrosine kinase inhibitor efficacy. 
Overall, our new model might provide insight into the 
prognosis and clinical treatment of TC.

Materials and methods
Data download and preprocessing and differential 
expression analysis
The gene expression data and clinical data of TC patients 
were downloaded from The Cancer Genome Atlas 
(TCGA, http:// cance rgeno me. nih. gov/) to perform a 
comprehensive analysis. The RNA-seq profiles of 558 
cases comprised 500 thyroid carcinoma samples and 58 
normal thyroid samples. We also included clinical data 
from 504 TC patients with an overall survival time of 
0  days. Samples from the TCGA database were divided 
randomly into a training set (n = 252) and an internal test 
set (n = 252) at a ratio of 1:1. Next, the data were anno-
tated to distinguish the mRNAs and lncRNAs for fur-
ther analysis. We retrieved 2483 immune-related genes 
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(IRGs) from the ImmPort database (https:// immpo rt. 
niaid. nih. gov) and performed Pearson correlation to 
identify the association between immune-modulating 
genes and all lncRNAs. LncRNAs with a correlation coef-
ficient |R|≥ 0.4 and P ≤ 0.001 were considered related 
to immune genes and were used for further analysis. 
Screening of the DEirlncRNAs was based on logFC > 1 
and FDR < 0.05 using the limma R package [22].

Pairing immune‑related lncRNAs
We performed cyclical pairwise comparisons between 
the DEirlncRNA expression values to generate a score 
for each irlncRNA pair and established a 0-or-1 matrix. If 
the expression level of lncRNA1 was higher than that of 
lncRNA2, this pair was assigned a score of 1; otherwise, 
the score was 0. To prevent biases and unrepeatability, we 
validated the expression quantities of the lncRNA pairs. 
After removing lncRNA pairs scoring 0 or 1 in more than 
80% and less than 80% of the total pairs, the remaining 
pairs were considered valid matches to build the prog-
nostic signature.

Construction of a novel signature based on the DEirlncRNA 
pairs
Univariate Cox regression analysis (P < 0.001) was first 
implemented to identify the prognostic irlncRNA pairs 
with TC by using R (survival package). Subsequently, 
least absolute shrink age and selection operator (LASSO) 
Cox regression was conducted by utilizing the Glm-
net R package to reduce the number of pairs [23]. Lasso 
regression was carried out to acquire a well-balanced 
prognostic model by running 1000 cycles. Then, 14 pairs 
of immune-related lncRNAs were ultimately identi-
fied as our prognostic model, and the risk score of each 
TC patient was calculated based on the following for-
mula: RiskScore = . Here, n was the number of selected 
lncRNA pairs, βi was the coefficient of pair i, and  Pi was 
the expression of lncRNA pair i. To validate the sensi-
tivity and accuracy of the model, time-dependent ROC 
curve analysis was performed by utilizing the Surviv-
alROC package in R. The AUC was calculated for ROC 
curves, and sensitivity and specificity were calculated to 
assess the performance of the risk score. The optimal cut-
off score based on the 1-year ROC curve was identified to 
separate the patients into low-risk and high-risk groups.

Reverse‑transcription quantitative PCR
To validate the bioinformatics analysis results, 14 sin-
gle lncRNAs of 14 DEirlncRNA pairs were selected to 
perform quantitative real-time PCR (qRT‒PCR) analy-
ses. Twelve matched tumor and peritumor samples of 
PTC were collected from the First Affiliated Hospital of 
China Medical University. Total RNA was extracted from 

tissue samples using TRIzol (Invitrogen, United States), 
and then RNA was reverse transcribed into cDNA with 
the QuantiTect Reverse Transcription Kit (Takara, 
Shiga, Japan). Gene expression was analyzed by qRT‒
PCR, which was performed with SYBR Premix Ex TaqII 
(Takara) and a LightCycler 480 system (Roche, Indianap-
olis, IN, USA). GAPDH was used for data normalization, 
and these data were analyzed by 2−ΔΔCT. The primer 
sequences are listed in Additional file 1: Table S1.

Validation of the risk assessment model
We estimated the prognostic capability of the risk score, 
sex, age and tumor stage (TNM stage and clinical stage) 
for overall survival in terms of time-dependent AUC val-
ues. The survival difference between subgroups was eval-
uated by Kaplan‒Meier survival analysis. The survival 
curve was visualized using the survival and survminer 
packages in R. The specific risk score value of each sam-
ple based on the signature was also used for visualization 
in R. We further performed principal component analysis 
(PCA) to assess the accuracy of the classification accord-
ing to different risk scores. To predict the reliability and 
stability of the constructed model, Pearson’s χ2 test was 
used to assess the association between the signature 
and clinical features. The risk score differences between 
groups of conventional clinical features were compared 
by the Wilcoxon signed rank test. The analysis results 
were visualized by a strip chart and box diagrams. More-
over, we used univariate and multivariate Cox propor-
tional hazards analyses of the risk score and other clinical 
characteristics to examine whether the model could be 
used as an independent variable. Then, the prognostic 
model was further validated in the internal validation set, 
including the training set and test set.

Correlation between the risk model and immune cell 
infiltration
The CIBERSORT algorithm was performed to estimate 
the tumor-infiltrating immune cell profiles of the sam-
ples in the TC dataset, followed by quality filtering, and 
only 509 tumor samples with P < 0.05 were selected for 
the following analysis. To further explore whether the 
risk model was related to immune cell infiltration in TC, 
other methods, such as TIMER, XCELL, QUANTISEQ, 
MCP-counter, EPIC, and CIBERSORT-ABS, were also 
used. We applied the Wilcoxon signed-rank test to com-
pare the tumor-infiltrating immune cells among different 
risk groups. A box chart was used to visualize the results. 
To assess the relationship between the model and the 
infiltrated immune cells, Spearman correlation analy-
sis was performed. The results of the Spearman rank 
correlation coefficients are shown in the lollipop-style 
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mutation diagram. We visualized the results using the 
ggplot2 package in R.

Correlation between the risk model and the molecules 
related to ICIs
An ESTIMATE algorithm [24] was used to estimate the 
proportion of stromal cells (stromal score) and immune 
cells (immune score) that infiltrated the tumor tissue 
between low-risk and high-risk cases. We also compared 
the expression of the major markers of cytolytic activ-
ity (GZMA,PRF1) and the HLA gene between the high- 
and low-risk groups. The limma package was applied to 
explore the expression of ICI-related molecules among 
the different risk groups, and the results are shown in 
violin plots developed using the ggpubr package in R.

Analyses of the model ability in clinical treatment
Small-molecule inhibitors such as gefitinib, pazopanib, 
lenvatinib, axitinib, AMG-706 (also known as mote-
sanib), tipifarnib, sunitinib, and sorafenib, which are now 
approved by the FDA, have shown great curative effects 
in thyroid cancer. To evaluate the ability of the signature 
to treat thyroid cancer, we calculated the IC50 values of 
these drugs in the THCA dataset. We performed the Wil-
coxon signed-rank test to analyze the differences among 
groups, and the results are displayed in box plots utilizing 
the pRRophetic, ggpubr, and ggplot2 R packages.

Results
Identification of differentially expressed irlncRNAs 
(DEirlncRNAs)
This study was carried out based on the flowchart shown 
in Fig.  1a. First, RNA sequencing (RNA-seq) transcrip-
tome data of TC were downloaded from the TCGA data-
base. A total of 505 available TC patients were included 
in our study, and the baseline characteristics of all the 
patients are shown in Table  1. A total of 1148 irlncR-
NAs were identified by performing a coexpression anal-
ysis (shown in Additional file  2: Table  S2). Next, we set 
the thresholds as the log fold change (FC) > 1.0 or < -1.0 
and false discovery rate (FDR) < 0.05 and identified 200 
DEirlncRNAs between tumor and normal thyroid tissues 
(Fig.  1b), including 117 upregulated and 83 downregu-
lated genes (Fig. 1c).

Construction of a novel prognostic signature based 
on DEirlncRNA pairs for TC
First, a total of 200 DEirlncRNAs were screened by pair-
wise comparison, and 13,349 DE-irlncRNA pairs were 
constructed. With single factor Cox regression analy-
sis, prognosis-related DE-irlncRNA pairs were further 
selected. Then, lasso-penalized Cox analysis was con-
ducted to narrow the number of lncRNA pairs to 14 over 

1000 repetitions (Fig. 2a, b). Next, we constructed a risk 
assessment model that contained these 14 DEirlncRNA 
pairs using a risk score method and calculated the risk 
score of each sample. We performed receiver operating 
characteristic (ROC) analysis at 1  year (area under the 
curve (AUC) = 0.973) and identified the optimal cutoff 
point at 0.868 to divide 497 patients into high- and low-
immune risk groups (Fig. 2c, d). We further investigated 
the prognostic value of the signature by plotting the dis-
tributions of the risk score and survival time (Fig. 2e, f ). 
Low-risk TC patients exhibited a superior clinical out-
come compared with high-risk TC patients. Then, 3-, 5-, 
and 10-year ROC curves were plotted and showed that 
the model had the ability to predict the survival out-
come of TC patients with high accuracy and sensitivity 
(Fig. 2g).

Expression levels of fourteen DEirlncRNAs
We further validated the expression of 14 single lncRNAs 
of DEirlncRNA pairs in 12 matched tumor and peritumor 
samples using qRT‒PCR analysis. Compared with the 
peritumor controls, the expression levels of LINC00900, 
DCST1-AS1, HAGLROS, LINC02560, AL158206.1, 
SMIM25, AC090673.1, AC012038.2, and LINC01614 
was significantly increased (P < 0.05), whereas ELN-AS1, 
AC093585.1, AC005237.1, and LBX2-AS1 were signifi-
cantly decreased in PTC tissues (P < 0.05) (Additional 
file  3: Fig. S1), which was consistent with the bioinfor-
matics results obtained from the TCGA dataset.

Clinical assessment and evaluation of the signature
Based on the validated optimal cutoff point, 45 TC 
patients with higher risk scores were included in the 
high-risk group, and 452 TC patients with lower risk 
scores were included in the low-risk group. The PCA 
results confirmed the reliability of this kind of classifi-
cation (Fig.  2h). Kaplan‒Meier survival analysis showed 
that low-risk TC patients exhibited a significantly better 
prognosis than high-risk TC patients (P < 0.001, Fig.  2i). 
Furthermore, we assigned THCA patients into different 
subgroups according to clinical characteristics, includ-
ing sex (male and female), N stage (N0 and N1), stage 
(stage I + II and stage III + IV) and T stage (T1 + T2 and 
T3 + T4). KM analysis also showed that high-risk patients 
had a worse overall survival than low-risk patients, which 
indicated that the signature prediction was excellent 
(P < 0.001, Fig. 3).

Signature as an independent prognostic predictor
A series of chi-square tests were performed to explore 
the relationship between the risk of TC and common 
clinical features, including age, sex, TNM stage, and clini-
cal stage. The strip chart (Fig.  4a) and scatter diagrams 
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showed that age, N stage, clinical stage, and survival sta-
tus (Additional file 4: Fig. S2) were significantly related to 
the risk of TC. Furthermore, we compared the AUCs of 
the 1-year ROC curves of the risk score to those of other 
clinical features and found that the risk score achieved 
a higher AUC value among these factors (Fig. 4b). Next, 

univariate and multivariate Cox regression analyses were 
performed to validate prognostic factors associated with 
TC. Univariate analysis showed that age (P < 0.001, haz-
ard ratio (HR) = 1.153, 95% confidence interval (CI) 
[1.095 ~ 1.213]), stage (P < 0.001, HR = 2.929, 95% CI 
[1.896–4.527]), T stage (P = 0.005, HR = 2.384, 95% CI 

Fig. 1 Identification of immune-related lncRNAs in TC. (a) Analysis workflow of this study. (b) The heatmap shows the expression level of 
differentially expressed immune-related lncRNAs (DEirlncRNAs) in the TCGA dataset (blue, lower expression; red, higher expression). (c) The volcano 
plot represents the result of DEirlncRNA analysis of the THCA dataset (green: downregulated genes; black: no differentially expressed genes; red: 
upregulated genes)
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[1.291–4.405]), and risk score (P < 0.001, HR = 4.714, 
95% CI [3.015–7.371]) were significantly associated with 
prognosis, whereas only age (P = 0.040, HR = 1.061, 95% 
CI [1.003–1.122]) and risk score (P = 0.005, HR = 3.409, 
95% CI [1.750 − 6.641]) independently predicted the clin-
ical outcome of TC patients by multivariate Cox regres-
sion analysis (Fig. 4c, d, Table 2).

Internal validation of the signature
We further validated the prognostic model in the train-
ing (Additional file 5: Fig. S3) and testing sets (Additional 
file  6: Fig. S4). The results from two Kaplan‒Meier sur-
vival analyses indicated that the risk score was closely 
linked to OS (P < 0.001) in the training and testing sets. 
Moreover, the PCA revealed a significant disparity in 
patients between the high- and low-risk groups. We next 
performed a time-dependent ROC analysis in the train-
ing cohort, and the results showed an area under the 
curve (AUC) of 0.929, 0.956, and 0.951 at 1 year, 3 years, 
and 5  years, respectively. In the testing cohort, the pre-
dictive efficacy (AUC values of 0.976, 0.942, and 0.981, 
respectively) was validated similarly. Univariate and mul-
tivariate Cox regression analyses showed that the risk 
score could independently predict the clinical outcome of 
TC patients in both sets. This result confirmed the overall 
accuracy and validity of the prognostic signature.

Correlation of the risk assessment model with immune cell 
infiltration in TC
The TME is essential for cancer prognosis and is 
composed of tumor cells, stromal cells, and infiltrat-
ing immune cells. We next investigated whether the 

signature was associated with the TME in TC patients. 
The proportion of tumor-infiltrating immune subsets 
was determined based on the CIBERSORT algorithm, 
and 21 kinds of immune cell profiles were detected in 
the TC samples (Fig. 5a, b). We found that the risk score 
had a significant relationship with the infiltration levels of 
immune cells. Correlation analysis was conducted using 
the Spearman correlation test, and the results were dis-
played in a lollipop diagram (Fig. 6a). The data are listed 
in Additional file 7: Fig. S5. The high-risk samples showed 
a negative association with tumor-infiltrating immune 
cells, such as CD8 + T cells, CD4 + T cells, neutrophils, B 
cells, NK cells and M1 macrophages, compared with the 
low-risk samples, whereas they were positively associated 
with Tregs, myeloid dendritic cells, monocytes, and can-
cer-associated fibroblasts, as analyzed by the Wilcoxon 
signed-rank test (Fig. 6b, Additional file 8: Table S3).

Assessment of immune status in the THCA subtypes
We further evaluated the transcript levels of granzyme 
A (GZMA) and perforin (PRF1) in different risk groups. 
We found increased expression of GZMA in the low-
risk group compared with the high-risk group (P < 0.01, 
Fig. 7a), whereas PRF1 (P > 0.05, Fig. 7b) showed no sig-
nificant difference. The levels of human leucocyte antigen 
(HLA)-related gene expression were further studied, as 
shown in Fig. 7c. The results suggested that the low-risk 
group had higher expression levels of HLA genes than 
the high-risk group. Through the ESTIMATE algorithm, 
we explored the different characteristics of the immune 
microenvironment in the two risk groups. Compared 
with the high-risk group, the ESTIMATE score, immune 
score, and stromal score were all higher in the low-risk 
group (Fig. 7d). The results indicated that this phenom-
enon might be associated with the immunosuppressive 
microenvironment.

Correlation of the signature with genes related to ICIs in TC
Immune checkpoint blockade has revolutionized cancer 
treatment, and ICB therapy has already been applied in 
thyroid cancer patients. Therefore, we employed seven 
key ICI-related genes, PDCD1 (also called PD-1), CD274 
(also called PD-L1), PDCD1LG2 (also called PD-L2), 
CTLA-4, LAG3, CD74, and IDO1, to investigate whether 
these ICI-related molecules were related to our new 
signature. The results indicated that the high-risk score 
group showed a negative correlation with the expres-
sion of PD-1 (P < 0.01, Fig. 8a), PD-L1 (P < 0.001, Fig. 8b), 
LAG3 (P < 0.01, Fig.  8c), CTLA-4 (P < 0.001, Fig.  8e), 
PD-L2 (P < 0.05, Fig.  8f ), and CD74 (P < 0.001, Fig.  8g), 
whereas IDO1 (P > 0.05, Fig.  8d) showed no significant 
difference.

Table 1 Clinical characteristics of the thyroid cancer patients

Characteristic Type n Proportion (%)

Age  < 55 339 67.26

 >  = 55 165 32.74

Gender Female 368 73.02

Male 136 26.98

Stage Stage I 399 79.17

Stage II 77 15.28

Stage III 22 4.36

Stage IV 6 1.19

T stage T1 144 28.57

T2 167 33.13

T3 170 33.73

T4 23 4.57

M stage M0 496 98.41

M1 8 1.59

N stage N0 272 53.97

N1 232 46.03
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The signature as an indicator in TC treatment
As a personalized medical treatment, small-molecule 
inhibitors have been widely applied in the clinical treat-
ment of thyroid cancer. We next investigated the rela-
tionship between the signature and the half maximal 
inhibitory concentration (IC50) of some common 
inhibitors in the THCA dataset. As shown in Fig. 9, the 
high-risk samples were positively related to the IC50 of 
gefitinib (P < 0.01, Fig.  9a), sunitinib (P < 0.001, Fig.  9b), 
and tipifarnib (P < 0.001, Fig. 9c) but negatively related to 
axitinib (P < 0.001, Fig. 9e), AMG-706 (P < 0.001, Fig. 9f ), 
and pazopanib (P < 0.01, Fig.  9g). In addition, lenvatinib 

and sorafenib showed no relationship with the signature 
(P > 0.05, Fig. 9d, h).

Discussion
Thyroid cancer is the most common type of cancer of 
the endocrine system, and its incidence has increased 
almost threefold over the past decades [25]. Traditional 
clinical characteristics, such as TNM stage, can be used 
to predict the severity related to TC, but it is difficult 
to accurately estimate the risk of recurrence [26]. Thus, 
it is imperative to establish powerful tools that can be 

Fig. 2 Construction of a risk assessment model and confirmation of the signature. (a, b) Results of the lasso regression. (c) The cutoff value of the 
one-year ROC curve was used to separate the patients. (d) Fourteen DEirlncRNA pairs were identified to construct the signature. (e) Distribution of 
lncRNA model risk scores. (f) Survival status of TC patients in the subgroups. (g) ROC analysis of the risk scores for overall prognosis prediction. The 
3-(red), 5-(green), and 10-year (blue) ROC curves of the model suggested that all AUC values were over 0.95. (h) PCA plot of the lncRNA model. (i) 
Kaplan‒Meier curve presenting survival in the high-risk and low-risk sets
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Fig. 3 The prognostic value of the signature. THCA patients were assigned to different subgroups, including sex (male and female), N stage (N0 and 
N1), stage (stage I + II and stage III + IV) and T stage (T1 + T2 and T3 + T4)

Fig. 4 The clinical value of the signature. (a) Strip chart, which was labeled as follows: < 0.001 = ***, < 0.01 = **, and < 0.05 = *. (b) Comparison of the 
1-year ROC curves of the risk score with those of other clinical features showed the superiority of the risk score. (c, d) Univariate and multivariate Cox 
regression analyses were applied to identify prognostic factors associated with TC
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effectively applied to aid in the diagnosis, prognosis, and 
treatment of patients with TC.

Accumulating evidence reveals that since lncRNAs 
have high tissue and cancer specificity, they might play 
an active role in cancer initiation, development and pro-
gression. An increasing number of studies have shown 
that lncRNAs promote tumor cell proliferation, invasion, 
metastasis, and angiogenesis and can serve as an excel-
lent tool to modulate therapeutic decisions in cancer. 
Increasing evidence suggests that lncRNAs are involved 
in TC tumorigenesis and progression as important regu-
latory factors [27]; thus, lncRNAs have attracted much 
attention as potential targets in the diagnosis and treat-
ment evaluation of TC. For example, Liu et  al. found 
that MALAT1 may have an oncogenic function in PTC 
and may thus be a potential diagnostic marker for PTC 
[28]. In our research, a few of the DEirlncRNAs in the 
model have already been revealed to play roles in vari-
ous cancers, such as HAGLROS, LBX2-AS1, LINC00900, 
LINC01614, AC090673.1, and especially TC, while oth-
ers were found to be related to TC for the first time. For 
instance, Li et  al. demonstrated that LBX2-AS1 acti-
vated FSTL3 by binding to the TF RARα to hasten the 
proliferation, migration, and invasion of thyroid cancer 
[29]. HAGLROS was included in a prognostic model for 
TC, which was significantly correlated with TC recur-
rence [30]. Li et  al. [31]constructed a prognostic model 
composed of seven lncRNAs, including LINC01614, 
AC090673.1, and LINC00900, which could serve as 
potential biomarkers for THCA prognosis. Nevertheless, 
it is necessary to validate whether this immune-related 
lncRNA model could be a helpful predictive indicator 
in TC. Many researchers are currently focused on con-
structing signatures with both coding genes and non-
coding RNAs, which can assess the survival status of 
patients with malignant carcinoma [32, 33]. Unlike most 
traditional risk models, our newly constructed signa-
ture involved two-lncRNA pairwise comparisons and 

relative ranking based on gene expression entirely from 
the same TC patient. Although from different sequencing 
platforms, our prognostic model does not require gene 
expression data normalization. Previous studies have 
supported the effectiveness of this method [34, 35].

In the current study, we established an immune-related 
lncRNA model and evaluated its prognostic value as 
well as its correlation with immune cell infiltration, ICI-
related genes, and TKIs in TC. First, we performed a dif-
ferential coexpression analysis to identify DEirlncRNAs 
based on data from TCGA. LncRNA pairs were system-
atically identified through pairwise comparisons in the 
same sample without the need for data normalization. In 
addition, univariate analysis with Lasso regression analy-
sis was performed on the pairs to validate the most suit-
able variables. Fourteen significant DEirlncRNA pairs 
with maximum prognostic values were determined with 
multiple repeats and random stimulation. Next, we used 
these pairs to develop the predictive risk score model. 
Then, we calculated not only the 3-, 5-, and 10-year AUC 
values of the ROC curve but also identified the optimal 
cutoff point of the 1-year ROC curve to separate TC 
patients into high- and low-risk groups. Furthermore, 
Kaplan‒Meier curves, time-dependent ROC curves, and 
Cox proportional hazards regression analysis showed 
that the model had independent predictive value for TC 
prognosis. Finally, we evaluated the relationship between 
this novel model and tumor-infiltrating immune cells, 
ICI-related molecules, and small-molecule inhibitor 
validity.

Immune infiltrates in the tumor microenvironment 
(TME) play a vital role in tumor development and pro-
gression and affect the clinical outcomes of cancer 
patients [36]. Dysfunction of the immune status in the 
TME contributes to the development and progression 
of cancer, and this is the basis of many immunotherapy 
studies. Moreover, tumor immunotherapy is now con-
sidered to have an important role in the elimination of 

Table 2 Independence of the signature for predicting the clinical outcomes of TC

(a) The univariate analysis illustrated the clinicopathological factors related to TC prognosis. (b) The multivariate analysis revealed the clinicopathological factors 
related to TC prognosis

Id Univariate analysis Multivariate analysis

HR 95%CI P HR 95%CI P

Age 1.153 1.095 ~ 1.213  < 0.001 1.061 1.003 ~ 1.122 0.040

Gender 0.523 0.189 ~ 1.448 0.212 1.601 0.330 ~ 7.768 0.559

Stage 2.929 1.896 ~ 4.527  < 0.001 1.286 0.290 ~ 5.709 0.741

T 2.384 1.291 ~ 4.405 0.005 0.779 0.264 ~ 2.304 0.652

M 2.731 0.359 ~ 20.794 0.332 2.701 0.119 ~ 61.347 0.652

N 1.494 0.556 ~ 4.014 0.426 0.533 0.235 ~ 3.618 0.908

Riskscore 4.714 3.015 ~ 7.371  < 0.001 3.409 1.750 ~ 6.641  < 0.001
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Fig. 5 TIC profile in tumor samples and correlation analysis. (a) Proportions of the 21 kinds of TICs explored by the CIBERSORT algorithm. (b) 
Correlations between 21 immune cell components
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cancer cells and sheds light on the mechanisms of can-
cer immune evasion, contributing to tumor outgrowth. 
Recent studies have suggested that lncRNAs play a cen-
tral role in innate and adaptative cancer immunity regu-
lation [37]. Immune-related lncRNA pairs as signatures 
are better at predicting prognosis than single lncRNAs. 
Therefore, it is necessary to explore more immune-
related lncRNAs in tumors for future clinical practice. In 
this research, we carried out pairwise comparisons of a 
given set of immune-related lncRNAs and expression val-
ues. Thus, our prognostic signature could help address 
batch effects between different platforms and overcome 
the reprocessing and normalization of data.

Immune cell infiltration reflects the TME and report-
edly impacts the outcome of TC progression. Immune-
related lncRNAs are correlated with the development of 
TC. To explore the relationship between the prognostic 
model and immune-infiltrating cells, we applied seven 
commonly accepted methods, including TIMER [38, 39], 
CIBERSORT [40], XCELL [41], QUANTISEQ [42], MCP-
counter, [43] EPIC [44], and CIBERSORT-ABS [45]. By 
integrating analyses, we found that the levels of Tregs, 
myeloid dendritic cells, monocytes and cancer-associated 
fibroblasts in the high-risk group were higher than those 
in the low-risk group, while the levels of neutrophils, 

M1 macrophages, NK cells, CD8 + , CD4 + T cells, and 
B cells were significantly negatively correlated with the 
risk of signature. These results were consistent with the 
findings of some previous experimental studies, which 
aimed to determine the correlation between each cell 
type and the aggressiveness of TC. For example, it has 
been reported that neutrophils play an antitumor role 
and can be beneficial to the prognosis of TC [46], which 
is consistent with the findings of our analysis. Our results 
also revealed that the abundance of Tregs was more asso-
ciated with the high-risk group, which is similar to the 
findings of previous literature. In those studies, the levels 
of Tregs were higher in PTC than in multinodular goiter 
patients, and Tregs were consistently present in extrag-
landular invasion and lymph node metastasis [47, 48]. 
Monocytes have been observed to promote the occur-
rence and development of tumors, and their high density 
is closely related to thyroid tumor invasion and reduced 
survival, which was also confirmed in our study [49]. 
Dendritic cells (DCs) are the sentinel antigen-presenting 
cells (APCs) of the immune system [50], which suggests 
that the high level of DCs observed in the high-risk group 
could favor antigen presentation to T cells. Existing evi-
dence shows that CD8 + , CD4 + T cells, and B cells play 
a protective role in the PTC tumor microenvironment 

Fig. 6 Immune infiltration status in different risk groups. a Correlation between tumor immune infiltration and the immune-related lncRNA 
signature. b The P value comparing the risk score and tumor-infiltrating immune cells



Page 12 of 16Song et al. BMC Medical Genomics          (2022) 15:183 

Fig. 7 Differential immune features in the high-risk and low-risk subgroups. (a, b) The gene expression of GZMA and PRF1 in high- and low-risk 
groups. (c) The expression of HLA-related genes in high- and low-risk groups. (d) Stromal Score, Immune Score and ESTIMATE Score in the two risk 
subgroups (< 0.001 = ***, < 0.01 = **, and < 0.05 = *)

Fig. 8 Correlation between ICI target genes and the immune-related lncRNA signature. (a–g) The high-risk score group showed a negative 
correlation with the expression of PD-1 (a), PD-L1 (b), LAG3 (c), CTLA-4 (e), PD-L2 (f), and CD74 (g), whereas IDO1 (d) showed no significant 
difference. (< 0.001 = ***, < 0.01 = **, and < 0.05 = *)
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(TME) [6]. In a wide immunohistochemical characteriza-
tion of the immune network in patients with chronic lym-
phocytic thyroiditis concurrent with DTC, high CD8 + T 
lymphocyte infiltration was associated with improved 
disease-free survival. In addition, CD4 + T cells often dif-
ferentiate into helper T cells, producing cytokines, and 
cooperating with CD8 + T cells to kill cancer cells [48]. 
A study indicated that B cells could promote carcinogen-
esis by inducing immunosuppression [51]. Natural killer 
(NK) cells are a family of innate immune cells, which play 
a central role in antiviral immunity and tumor immu-
nosurveillance. A recent experimental study found that 
IL-12 immunotherapy could inhibit tumor growth and 
prolong survival by reactivating both CD8 + T and NK 
cells [52]. These observations can be further explored for 
a holistic understanding of the nuances of immune cell 
infiltration in the TC microenvironment.

The granzyme-perforin pathway is a primary method 
by which cytotoxic lymphocytes destroy cancer cells 
[53]. GZMA is a member of the granzyme family and 
is mainly secreted by cytotoxic cells, such as cytotoxic 
T cells and natural killer (NK) cells. PRF1 form mem-
brane pores releasing granzymes leading to the cytolysis 
of the target cells [54]. We found that GZMA was highly 
expressed in the low-risk group, which is consistent 
with the higher NK cell percentage in the low-risk group 
(Additional file 7: Fig. S5). The ESTIMATE algorithm was 
used to explore the underlying mechanisms that cause 

PTC immune differences, and we found that the low-risk 
subset had higher stromal and immune scores. This find-
ing is consistent with previous studies concluding that 
patients with high TME scores exhibit a stronger anti-
tumor immune response, re likely to benefit more from 
immunotherapy, and survive longer [55]. Pioneering 
investigations have revealed that immunotherapy target-
ing immune checkpoints and human leukocyte antigen 
(HLA) provide great hope for the clinical treatment of 
human cancers [56]. The results showed that the expres-
sion levels of HLA-related genes were significantly higher 
in the low-risk group. Subsequently, we studied the inter-
action between the risk score and immune-related func-
tions. The above findings further explained the reasons 
for the tumor-promoting status in the low-risk group and 
revealed the immunosuppressive microenvironment pre-
sent in this group.

Recently, ICB immunotherapy has been viewed as a 
promising cancer therapeutic modality for malignant 
tumors. The identification of PD-L1 as an immunostat 
blockade has led to the development of several cancer 
immunotherapies. For RAI-refractory PTC patients, 
recent evidence has shown that overexpression of PD-L1 
together with lymphocyte infiltration into the tumor 
TME is significantly associated with the effectiveness of 
ICB [57, 58]. Liotti et  al. [59] observed a positive PD-1 
effect on TC cell proliferation and migration through 
SHP-2 action on the Ras pathway. In this study, we found 

Fig. 9 Correlation between common TKIs and the immune-related lncRNA signature. (a–h) The high-risk samples were positively related to the 
IC50 of gefitinib (a), sunitinib (b), and tipifarnib (c) but negatively related to axitinib (e), AMG-706 (f), and pazopanib (g). Lenvatinib (d) and sorafenib 
(h) had no relationship with the signature. (< 0.001 = ***, < 0.01 = **, and < 0.05 = *)
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that patients in the low-risk subgroup had higher expres-
sion of common immune checkpoint molecules such as 
PD-1, PD-L1, LAG3, CTLA-4, PD-L2, and CD74, which 
are commonly expressed in human cancer. This phenom-
enon could indicate that low-risk patients might have a 
better, more beneficial response from ICB immunother-
apy. Tyrosine kinase inhibitors (TKIs) are an innovative 
personalized strategy that target pro-oncogenic kinases, 
including EGFR, MET, PDGFR, VEGFR-1, VEGFR-2, 
RAF, FGFR, and RET. Our signature showed that the risk 
score was related to some of these inhibitors, such as gefi-
tinib, sunitinib, and tipifarnib, indicating that this new 
model might be a novel method for assessing the efficacy 
of systemic therapy based on a genetic understanding of 
TC. In addition, some clinical trials have applied PD-1 
and PD-L1 inhibitors in combination with TKIs, RAIs, or 
chemotherapy to manage and defeat deadly TC. Our sig-
nature may provide new insight to predict which patients 
are more suitable for these treatments, either alone or in 
combination.

To the best of our knowledge, a prognostic model 
based on irlncRNA pairs in TC has not been reported to 
date. Our predictive model is based on a 0-or-1 matrix 
and could be applied in an individualized manner while 
eliminating batch bias. In addition, our signature first 
combined DElncRNA pairs with ICB and TKI efficacy 
for analysis. Various additional methods were used to 
support the prognostic value and feasibility of this new 
model.

However, this lncRNA-based prognostic signature had 
several limitations. First, the establishment and valida-
tion of the model was based only on the TCGA database, 
which might lead to selection bias. To verify the predic-
tive values of the risk assessment model, a larger external 
dataset of TC should be analyzed, preferably validated 
using GEO datasets. Unfortunately, no survival informa-
tion of THCA could be obtained from the GEO cohort. 
Second, the research on the relationship between DEl-
ncRNA pairs and ICB and TKI efficacy was based on the 
inference of several algorithms and has not been experi-
mentally verified. In addition, the calculation formulas of 
this prognostic signature may be too complex for clinical 
application. However, more experimental studies are still 
needed to validate our observations.

Conclusion
In conclusion, we constructed an immune-related 
lncRNA pair model without considering the techni-
cal bias of different platforms. As such, our novel model 
could be used without the need to eliminate batch effects 
and could serve as an independent single-sample esti-
mate of the survival risk subgroup of TC patients. The 
model may provide new possibilities for translation to 

clinical practice for TC patients and help in distinguish-
ing those who could benefit from ICB immunotherapy 
and TKI therapy.
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