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Abstract

Background: With the increasing amount of high-throughput genomic sequencing data, there is a growing demand
for a robust and flexible tool to perform interaction analysis. The identification of SNP-SNP, SNP-CpG, and higher order
interactions helps explain the genetic etiology of human diseases, yet genome-wide analysis for interactions has been

for genetic epistasis testing.
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very challenging, due to the computational burden and a lack of statistical power in most datasets.

Results: The wtest R package performs association testing for main effects, pairwise and high order interactions in
genome-wide association study data, and cis-regulation of SNP and CpG sites in genome-wide and epigenome-wide
data. The software includes a number of post-test diagnostic and analysis functions and offers an integrated toolset

Conclusions: The wtest is an efficient and powerful statistical tool for integrated genetic epistasis testing. The
package is available in CRAN: https://CRAN.R-project.org/package=wtest.

Background
The etiology of complex disorder involves an interplay
of polygenic biomarkers, lifestyle and environmental fac-
tors [1]. Robust and efficient statistical tools are needed
to perform interaction analysis in high volume genome
data. Besides SNP-SNP interactions, the analysis of inter-
actions of SNPs and cytosine-phosphate-guanine (CpQG)
sites might provide novel insight into the regulatory
mechanism DNA methylation and gene expression under-
lying complex diseases.

Here we introduce a software that provides estimations
for different types of genetic associations, including the
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main effect, second or higher order interaction, and gene-
methylation interaction. This package is built upon the
W-test [2] to perform epistasis testing. The statistic com-
pares distributional differences of a set of biomarkers in
cases and controls and follows a chi-squared distribution
with data-set adaptive degrees of freedom. The method
has the advantage of correcting p-value bias caused by
complicated genetic architectures. Flexible implementa-
tion options are provided. The package can calculate SNP-
CpG epistasis for biomarkers located in physical proximity
of the input genome and epigenome. A number of post-
test diagnostic, visualization and statistical genetic anal-
ysis functions are provided for model diagnosis. This is
the first statistical software providing functions for direct
gene-methylation interaction and high-order interaction
evaluations in genome and epigenome dataset.
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Implementation

Design

The wtest package is based on the W-test [2] to measure
the association between binary phenotype and categori-
cal genetic data. To test the association of a subset marker,
a k by 2 contingency table can be formed, where k is the
number of non-empty category combination formed by
the SNP-set, and 2 is the binary phenotype. The statistic
tests for the existence of distributional difference of a sub-
set in the case group from a comparison control group,
and it takes the following form,

k . . 2
p1i/(1 = p1y) ] 9
W=h log~————/SE;| ~ 1
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where n7; and ng; are the number of cases and controls
in the i cell of the contingency table; Ny and Nj are
the total cell counts of cases and controls; p1; = n1;/Ny
and po; = no;/Np are the conditional cell probabilities of
the i cell of the contingency table; and SE; is the stan-
dard error of the i log odds ratio. The W-test follows
a chi-squared distribution of f degrees of freedom. The
scalar /1 and degree of freedom f take forms of covari-
ance matrices of the log odds ratios and are estimated
from bootstrapped samples under the null hypothesis
by the large sample theory. The W-test inherits a data-
set adaptive degree of freedom that absorbs the genetic
variation not attribute to phenotypes, therefore robust
to complicated genetic architectures. In this software,
we further extend it to evaluate high-order interaction
effect and gene-methylation interaction effect. For gene-
methylation interaction, methylation data are clustered
into two categories according to high and low methy-
lation levels by two-mean clustering algorithm. We also
use a novel triangular network diagram to display inter-
action effects up to the third order. Extensive simulation
studies testing the power and type I error of the W-
test can be found in Wang, Sun et al. (2016) [2] and
Sun et al. (2017) [3].

Implementation

Figure 1 demonstrates the major functions in the pack-
age and illustrates the implementation step by step using
example data in the package. The implementation is per-
formed in two steps: (1) Estimation of parameters /%
and f; (2) Testing by the W-test. Step 1. Estimation of
parameters /4 and f. In genotype data, the /f{) function is
called, and in genotype and methylation data, the func-
tion hfsnps.meth() is called. Parameter /% is the scaler in
Eq. (1) and f is the degrees of freedom of a chi-squared
distribution of the W-test. The two parameters are esti-
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mated using bootstrap samples with permutated pheno-
types (null hypothesis) for B times. Simulations suggest
that the estimation converges at B > 400 when the num-
ber of variables is 1000 and the number of subjects is 1000
(Additional file 1). If step 1 is not performed, the p-value of
W-test will be calculated by default #and f: h = k/(k — 1)
and f = k — 1. In this case, k is the integer categorical
combinations formed by the marker set. When k = 2,
the W-test is equivalent to the odds ratio test for a 2-by-2
table.

Step 2. Testing by the W-test. The wtest() evaluates
main and second order interaction and wtest.high() eval-
uates third or higher order interaction in genotype data.
The wtest.snps.meth() calculates SNP-CpG interactions
for genome and epigenome data. Oftentimes users are
interested to explore the interactions among biomarkers
with a certain level of main effect signals. The input.pval
option in the function can be used to screen candi-
date SNPs according to their p-values to form interaction
sets. While the output.pval option allows the convenient
output of interaction sets reaching a p-value threshold.
In function wtest.snps.meth(), positions of the biomark-
ers are input alongside the genome and epigenome data
sets, and the window size to calculate cis-regulation rela-
tionship can be specified. The methylation.recode() func-
tion transforms the methylation data into high and low
methylated levels. For high order interaction calculation,
a simple check for sample size can be done by esti-
mating the average number of cell counts formed by
a set, and a high order is feasible if the number is at
least two. A reference table could be found in Additional
file 2 with suggested sample sizes for various order of
interactions.

Diagnostic checking for test statistic distribution can
be performed by w.diagnosis(), which plots the W-
test statistics histograms from the observed data and
the curve of the chi-squared distribution using esti-
mated parameters, indexed by the number of cate-
gorical combinations k. Close overlaying of the den-
sities indicates the goodness of fit of estimation.
An example is shown in the real data application
section. The w.qqplot() function assists the diagnos-
tic of probability distribution and degree of population
stratification.

Results

Real data example

The software is applied to a number of real data analy-
sis with novel biomarker findings and interesting impli-
cations [2-9]. Here we demonstrate its usage by two
data sets: a genotypic dataset for bipolar disorder from
the Genetic Association Information Network (GAIN)
project, and a gene-methylation data for the lipid control
treatment.
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Example Analysis of genotype data

Input data

# Load wtest package

library(wtest)

# Load genotype data of diabetes
data(diabetes.geno)

# Load phenotype data of diabetic status
data(phenotypel)

-
Main effect calculation (order =1)
# Step 1. hf calculation for main effect
<- hf(data = diabetes.geno, w.order = 1, B = 100)
# Step 2. W-test calculation for main effect

w1 <- wtest(data = diabetes.geno, y =phenotypel,
w.order = 1, hfl = h(1)

-

Pairwise interaction (order = 2)

# Step 1. hf calculation for pairwise interaction

hf2 <- hf(data = diabetes.geno, w.order = 2, B = 50)

# Step 2. W-test calculation for pairwise interaction

w2 <-wtest(data = diabetes.geno, y = phenotypel,
w.order = 2, input.pval = 0.3, input.poolsize
= 50, output.pval = 0.01, hfl = h{l, hf2 =
hf2)

-

High-order interaction (order = 3)

# Step 1. hf calculation for 3-way interaction

hf.high <- hf(data = diabetes.geno, w.order =3, B = 30,
n.marker = 10)

# Step 2. W-test calculation for 3-way interaction

w3 <-wtest.high(data = diabetes.geno, y = phenotypel,

w.order = 3, input.pval = 0.3,

input.poolsize = 50, output.pval = 0.5,
hfl = h{l, hfhigh.order = hf.high)

Fig. 1 Integrated genetic epistasis testing and functions

Example Analysis of genotype methylation data

Input data for gene-methylation interaction
# Load SNP and CpG position data

data(SNP.pos)

data(CpG.pos)

# Load genotype and methylation data

data(genotype)

data(methylation)

#Load phenotype data for gene-methylation analysis
data(phenotype2)

g

Gene-methylation interaction
# Recode methylation data
methylation <- methylation.recode(methylation)
# Step 1. hf calculation for gene-methylation interaction
hf.pair <- hf.snps.meth(B = 80, geno = genotype, meth =
methylation, y =phenotype?2,
geno.pos = SNP.pos, meth.pos =
CpG.pos, window.size = le4)
# Step 2. W-test calculation for gene-methylation interaction
result <- wtest.snps.meth(geno = genotype, meth =
methylation, y =phenotype?2,
geno.pos = SNP.pos, meth.pos =
CpG.pos, window.size = le4, hf =
hf.pair, output.pval = 0.1)

Diagnosis

P-values diagnosis by Q-Q plot

# Input the /f estimation from step 1

w.qqplot(data = diabetes.geno, y = phenotypel, w.order = 1,

hfl = htl, cex =.5)

abline(0,1)

Probability distribution diagnosis

# Input the /f estimation from step 1

w.diagnosis(data = diabetes.geno, w.order = 2, n.rep = 100,
hf2 = hf2, main=NULL, xlab=NULL,
ylab=NULL)

Application I. GAIN bipolar disorder dataset
This data contains 653 bipolar disorder patients and 1767
healthy controls, and 46,181 SNPs of chromosome 6 [10].
The result of % and f estimation can be found in Addi-
tional file 3. At second order interaction (order = 2),
setting input.pval = 0.001 and output.pval = 0.001,
the function would output second order epistasis marker
pairs with p-value < 0.001. Figure 2 is the diagnostic
plot for this estimation using w.diagnosis() function. The
estimated red color chi-square curve follows closely with
the histogram of the test statistics calculated from the
observed data, showing a good estimation of the parame-
ters.

Data analysis identified one SNP with significant main
effect: rs2495982 near GRM4, p-value = 2.06 x 1077,

GRM4 is a major excitatory neurotransmitter in central
nervous system and it is a susceptible gene for bipolar dis-
order and schizophrenia [11, 12]. For interaction effects,
a number of SNP sets surpassed the Bonferroni corrected
significance level. The top SNPs identified from different
orders of interaction are listed in Additional file 4, and the
interaction network up to the third order is plotted in a
triangular network in Fig. 3. Each colored triangle in the
network indicates a significant third order interaction, and
the bold edge shows a significant second order interaction.
It could be seen from the plot that the strongest interac-
tion is formed by the gene set (SYNEI, BTBD9, RPL12P2)
in the middle of the plot, in which BTBD?9 plays a key role
and extends to form significant combinations with FGD2
and CDKALI1. The BTBD9Y is reported to be associated
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Fig. 2 Diagnostic plot by w.diagnostics. At each combination size k, the estimated red color chi-square curve follows closely with the histogram of
the W-test statistics calculated from the observed data, showing a good estimation of the parameters

with neuropsychiatric disorders such as restless legs syn-
drome in Schizophrenia and the Tourette Syndrome [13,
14]. The gene encodes the BTB/POZ domain-containing
protein that involved in protein-protein interactions [15],
and is highly expressed in brain tissues [16]. It is very
encouraging to discover this gene with known physical
protein interaction function from pure computational and
statistical perspective.

Application Il. gene-methylation interaction analysis for lipid
control data

This application was originally reported in Sun et al
2018 [3]. The data set contains 476 diabetic patients
undergone lipid control treatments, and 150,000 can-
didate SNP-CpG pairs within 10kb genome distance
(window.size = 10,000). The phenotype is whether or
not a subject responded to the treatment, calculated by

ZNF184 BTBD9 BTN2A1 o _
° Significant main effect
= Significant second order interaction
RPL12P2 GRM4 RBBP4P3 R o . ‘ .
Significant third order interaction
GRIK2 FGD2 'BTBD9 CDKAL1  BTN2A1 -log(p-value)
- |
27-29 .
RBBP4P3 SEBRER / 1o 0426
21-23
BTN2A1 RPL12P2 18-20
FGD2 RBBP4P3  OSTM1 15-17
<14
BTBD9 BTN2A1
Fig. 3 Triangular network for third order genetic interactions
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Table 1 Gene-methylation interaction in lipid control data
SNP CpG Distance(kb) Gene MAF P-value

1 1512288568 €g13342435 127 MPPED2 0.003 749 x 1070
2 rs11031153 cg13342435 3.86 MPPED2 0.003 749 x 1076
3 116921036 cg13342435 1.35 MPPED2 0.001 868 x 1070
4 rs11237066 cg13340272 452 GUCY2E 0.120 157 x 107
5 1s7119411 cg17432267 3.75 Cllorfe3 0430 165 x 107>

comparing the before and after treatment triglyceride
levels [3]. The /& and f are estimated by kf.sups.meth(),
and the gene-methylation interactions are calculated by
wtest.snps.meth(). Table 1 summarized the top 5 markers
identified by gene-methylation interaction associations.
The cluster of genes is found to be involved in neu-
ronal and retinal functions, including MPPED?2 [17] and
GUCY?2E [18].

Performance

The speed of the wtest package is evaluated on a lap-
top computer of 1.6GHz Intel Core i5 processor and 4GB
RAM. Simulation data are used to compare the speed of
different methods. On a data set consists of 5000 subjects
and 100 SNPs, when B = 200, n.sample = 1000, the
time elapsed for estimating /# and f is 40.5s. After & and
f calculation or assuming default values, the time used to
evaluate main effects is 0.04s, and took 1.69s for second
order interaction. In the same environment, the running
time for existing tests for interaction yields 36.41s by chi-
squared test and 130.56s by logistic regression. In the real
data set, the genome-wide main effect calculation on 5000
subjects and 500,000 SNPs took around 5 min; and second
order interaction calculation on 8000 SNPs used around
35h.

Conclusions

Genetic epistasis testing is important to fathom the mas-
sive genomic data, and it also provides a way to explore
the relationship between diseases and various types of
biomarkers. This package offers an integrated toolset
to analyse the association of genetic signals at all lev-
els: from main effects, high order interactions, to gene-
methylation interactions. The software is available in
CRAN from https://CRAN.R-project.org/package=wtest
under the GPL-2.0 license.

Availability and requirements

Project name: wtest

Project home page: https://CRAN.R-project.org/package=
wtest

Operation systems: Platform independent
Programming language: R (>= 3.1), C++

License: GPL (>= 2)

Restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512920-019-0638-9.

Additional file 1: Convergency simulation study. The coefficient of
variance of h at different B for pairwise interactions. Simulated dataset
contains 1000 subjects and 1000 SNPs. A convergent h and f estimation is
reached at 8 > 400.

Additional file 2: Reference table of sample size estimation. When the
averaged MAF is 0.3 and the sample size is greater than the estimated
sample size, no more than 25% cells have averaged cell count less than 2 in
the contingency tables.

Additional file 3: h and f estimation for main effects, second order
interaction, and third order interaction analysis.

Additional file 4: Top three identified sNPs at different levels of
interaction orders. Note: Bonferroni corrected significant thresholds: main
effect p-value < 1.1 x 1079, second order interaction p-value

< 469 x 10~'", and third order interaction p-value < 3.05 x 10~'°. Gene:
the gene located within 35kb of the identified SNPs.
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