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Particle swarm optimization (PSO) algorithm is a population-based intelligent stochastic search technique used to search for food
with the intrinsic manner of bee swarming. PSO is widely used to solve the diverse problems of optimization. Initialization of
population is a critical factor in the PSO algorithm, which considerably influences the diversity and convergence during the
process of PSO. Quasirandom sequences are useful for initializing the population to improve the diversity and convergence, rather
than applying the random distribution for initialization.)e performance of PSO is expanded in this paper to make it appropriate
for the optimization problem by introducing a new initialization technique named WELL with the help of low-discrepancy
sequence. To solve the optimization problems in large-dimensional search spaces, the proposed solution is termed as WE-PSO.
)e suggested solution has been verified on fifteen well-known unimodal and multimodal benchmark test problems extensively
used in the literature, Moreover, the performance of WE-PSO is compared with the standard PSO and two other initialization
approaches Sobol-based PSO (SO-PSO) and Halton-based PSO (H-PSO). )e findings indicate that WE-PSO is better than the
standard multimodal problem-solving techniques. )e results validate the efficacy and effectiveness of our approach. In
comparison, the proposed approach is used for artificial neural network (ANN) learning and contrasted to the standard
backpropagation algorithm, standard PSO, H-PSO, and SO-PSO, respectively. )e results of our technique has a higher accuracy
score and outperforms traditional methods. Also, the outcome of our work presents an insight on how the proposed initialization
technique has a high effect on the quality of cost function, integration, and diversity aspects.

1. Introduction

Optimization is considered the most productive field of
research for many decades. Advanced optimization algo-
rithms are required, as the problems of the real world evolve
time towards complexity. )e key purpose is to obtain the
fitness function’s optimum value [1]. )e classification is an
attempt to identify groups of certain categories of data.
Moreover, the training data have many features that play a
significant role in segregating the knowledge according to
the classes’ prearranged categories. Globally, a massive
growth is recognized in various data classification applica-
tions, such as organic compound analysis, television

audience share prediction, automatic abstraction, credit card
fraud detection, financial projection, targeted marketing,
and medical diagnosis [2]. In evolutionary computation,
data classification builds its model based on the genetic
process and natural evolution [3]. )ese techniques are
adaptive and robust, which perform global exploration in-
stead of candidate solutions for the extraction of information
on large datasets.

)e fundamental domain of artificial intelligence is
swarm intelligence (SI), which discusses the developmental
methods that govern the multiagent mechanism by systemic
architecture and are influenced by the behaviour of social
insects such as ants, wasps, bees, and termites. )ey are also
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encouraged by other social animal colonies, such as bird
flocking or fish schooling [4]. In the research of cellular
robotic systems, first, the word SI is defined by Beni and
Wang [5]. Researchers have been associated with social
insect communities for decades, but for a long time, re-
searchers have not established the composition of their
collective behaviour. Moreover, the society’s autonomous
agent is preserved as a nonsophisticated single, as it can deal
with complicated issues. Complex tasks are accomplished
effectively through an association with the single members of
society as it strengthens the capacity to perform actions. In
the field of optimization, different techniques of swarm
intelligence are used.

Particle swarm optimization (PSO) is considered the
most efficient population-based stochastic algorithm, sug-
gested by Kennedy and Eberhart in 1995 [6], employed to
deal with the global optimization problems. It has become
the most successful technique to solve the optimization
problems listed in the diversified domain of engineering due
to simplicity and effectiveness. PSO includes the increment
of the population in the candidate solution known as the
swarm, which is investigating the new search spaces to
aggregate the transformation of “flock of birds” while
seeking the food. )e communication of the information
among all individuals is known as particles and all indi-
viduals lodged with findings of the rest of the swarm. Each
individual follows the two essential rules for seeking: to
return its old best point and ensure the best location of its
swarm. With the advent of PSO, new methods were also
encouraged to face the global problems with optimization in
terms of solutions for fuzzy systems, artificial neural net-
works (ANNs) design, and evolutionary computing. ANNs’
design [7] and function minimizations [8] are the most
promising applications of evolutionary computing for
solving complex optimization problems. PSO and evolu-
tionary algorithms (EAs) have been efficiently used to
measure the learning parameters, weight factors, and design
of artificial neural networks [9, 10].

In the field of swarm evolutionary computing, the
performance of PSO and other EAs are affected by the
generation of random numbers during the initialization of
the population into the multidimensional search space. PSO
tends to achieve maximum performance when executed in
the low dimensional search space. )erefore, the perfor-
mance is expected to be low when the dimensionality of the
problem is too high, which causes the particles to stick in the
local solution [1, 11, 12]. Perseverance of the aforesaid
behaviour becomes intolerable for a variety of real-life ap-
plications that contain a lot of local and global minima.
Immature performance explains the reason for an inade-
quate population distribution of the swarm. It often implies
that optimum solutions are more difficult to find if the
particles do not accurately cover the entire search space,
which could omit the global optimum [13–15].)is issue can
be resolved by introducing a well-organized random dis-
tribution to initialize the swarm. )ese distributions can
vary in structural design depending upon the family. Ex-
amples include pseudorandom sequences, probability se-
quences, and quasirandom sequences.

One of the classical ways of generating random numbers
is by an inbuilt library (implemented in most programming
languages, e.g., C or C++). )e numbers are allocated
uniformly by this inbuilt library. Research has proved that
this technique is not useful for the uniform generation of
random numbers and does not appear to obtain the lowest
discrepancy [16]. Also, pseudorandom sequences of normal
distributions reported better results compared to randomly
distributed sequences [17]. Based on the design of the
problem, the output of probability sequences, quasirandom
sequences, and pseudorandom sequences varies. Due to
variance in the generation of random numbers, pseudo-
random sequences are better than quasirandom sequences
for globally optimal solutions.

At this point, after a brief analysis of genetic algorithms,
evolutionary algorithms, and PSO, we can infer that there is
an insufficient amount of research has been performed to
implement the pseudorandom sequences for population
initialization. Despite this fact, to initialize the particles in
the search space, we have proposed a novel pseudorandom
initialization strategy called the WELL generator translated
as (Well Equi-distributed Long-period Linear). We have
compared the novel techniques with the basic random
distribution and low-discrepancy sequence families, such as
Sobol and Halton sequences on several complex unimodal
and multimodal benchmark functions. )e experimental
findings have shown that WELL-based PSO initialization
(WE-PSO) exceeds the other traditional PSO, PSO with
Sobol-based initialization (SO-PSO), and PSO with Halton-
based initialization (H-PSO) algorithms. Moreover, we have
conducted the ANN training on real-world classification
problems with quasirandom sequences. To compare the
classifier’s output, nine datasets were taken from the famous
UCI repository. )e results demonstrate that WE-PSO of-
fered better results on real-world dynamic classification
problems compared to PSO, SO-PSO, and H-PSO,
respectively.

)e remainder of the paper is structured as follows: in
Section 2, related analysis is discussed. A general overview of
the artificial neural network is found in Section 3. In Section
4, the standard PSO is packed. )e proposed technique is
described in Section 5. In Section 6, the findings are
explained. Discussion, conclusion, and potential work are
described in Section 7.

2. Related Work

2.1. Modified Initialization Approaches. Researchers have
adopted various random number generators, i.e., pseudo-
random, quasirandom, and probability sequences, to refine
the efficiency of population-based evolutionary algorithms.
)e concept of using random number generator to initialize
a swarm into multidimensional search space is not new. A
comparison of low-discrepancy sequences with simple
uniform distribution was carried out by the authors in [18]
to assign the initial positions to particles in the search region.
)e study in [18] covers only the role of benchmark min-
imization function to verify the performance of different
low-discrepancy sequence versions. Similarly, Kimura and
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Matsumura [19] optimized a genetic algorithm using the
improved PSO variant to initialize the swarm based on the
Halton sequence. )e Halton series is under the umbrella of
low-discrepancy sequences. )e authors of [20] generated
the comprehensive compression of Faure, Sobol, and Halton
sequences, and after evaluation of the competitive outcomes,
they declared a Sobol sequences as winner among others.

Van der Corput sequence associated with the quasir-
andom family was first carried out in [21]. For the initial
parameters d� 1 and b� 2, the van der Corput sequences
were generated, where d represents the problem dimensions
and b is the base. )e experimental results showed that for
the difficult multidimensional optimization problems, the
van der Corput sequence-based PSO outperforms the other
quasirandom sequences, such as Faure sequence, Sobol
sequence, and Halton sequence, respectively. Although,
Halton-based PSO and Faure-based PSO gave better per-
formance, when the optimization problem was low in di-
mensionality. Moreover, many researchers used the
probability distribution to tune the different parameters of
evolutionary algorithms.)e family of probability sequences
falls under the Gaussian distribution, Cauchy distribution,
beta distribution, and exponential distribution, respectively.
)e authors in [22] tuned the PSO parameters using random
sequences followed the use of an exponential distribution.
Also, a detailed comparison of probability distributions is
present in [23]. )e experimental results revealed that the
PSO based on exponential distribution performed well
compared to the PSO based on Gaussian distribution and
PSO based on beta distribution.

Similarly, the researchers applied a torus distribution
[24] to initialize the improved Bat algorithm (I-BA). Torus-
based initialization enhanced the diversity of swarm and
showed better performance. In [2], the readers can find the
source for applying several variations of probabilistic,
quasirandom, and the uniform distribution in BA.

)ere are also other independent statistical methods to
produce random numbers, apart from the probability dis-
tribution, pseudorandom distribution, and quasirandom
distribution, used by various researchers to select an initial
location of particles in multidimensional search space. )e
nonlinear simplexmethod (NSM) is an initializationmethod
proposed by Parsopoulos and Vrahatis in [25]. )e ini-
tialization based on centroidal Voronoi tessellations (CVTs)
was suggested by Richards Ventura in [26]. )e search
region is divided into several blocks for the CVTprocess. In
the first division of blocks, each particle gets a spot. )e
remaining particles, which have not been allocated a block
yet, are further separated into subblocks. To allocate a block
to a particle every time, the CVT generator used different
permutations. )e distance function is determined to dis-
perse particles into blocks, and the less distant particles first
reserve the entire block in the swarm. )e initialization
approach based on the CVT method is compared with the
simple random distribution and the numerical results il-
lustrated that PSO based on CVT was much better for the
initialization of population.

A new technique called opposition-based initialization
(O-PSO), inspired by opposition-based learning particles,

was suggested by the authors in [27]. Certain particles took
their positions in the opposite direction of search space, and
O-PSO contributed to increasing the probability of having a
global optimum at the beginning. To discover the search field
in the opposite direction, which was parallel to the same
direction, O-PSO enhanced the diversity of particles. Since
good behaviour and poor behaviour were experienced in the
human world, it was not possible for the entities to be
entirely good and bad at the same time. )is natural phe-
nomenon governed by the O-PSO to choose the initial
position for the particles in the opposite direction, as well as,
in the same direction. Within this theory, the entire swarm
was symbolized by the same and opposite particles. )e
experimental results revealed that proposed O-PSO per-
formed well on many multidimensional dynamic bench-
mark functions compared to the simple PSO that
implemented the uniform distribution for initializing the
particles, and the experimental results depicts that O-PSO
performed better on several multidimensional complex
benchmark functions. Gutiérrez et al. [28] conducted a
research of three distinct PSO initialization methods: the
opposition-based initialization, the initialization of or-
thogonal array, and the chaotic initialization.

2.2. Artificial Neural Network Training Using PSO. )e
processing of real-world problem with the initialization of
various strategies using the ANN classifier produced a high
effect on the performance of the evolutionary algorithms.
)e classifier with the prearranged initialization techniques
was shown to have precision compared to the one using the
random distribution.

In [4, 5], optimization of the hidden layer in the neural
network was performed. For the optimization process, the
author manipulated the uniform distribution-based ini-
tialization of feedforward neural networks. Subasi in [29]
classified the EMG signals using the uniform random dis-
tribution-based PSO along with SVM to diagnose the
neuromuscular anarchy. Similarly, the improved swarm
optimized functional link artificial neural network (ISO-
FLANN) was proposed by Dehuri in [30] using random
number initialization following uniform distribution. Op-
timal Latin Hypercube Design (OLHD) initialization ap-
proach was proposed by the authors in [31] and evaluated on
several data mining problems with the other quasirandom
sequences, such as Faure, Halton, and Sobol sequences. )e
proposed OLHD was better than quasirandom sequences in
terms of efficiency measures.

In [32], the authors introduced the training of NN with
particle swarm optimization (NN-PSO) for anticipating the
structural failure in reinforced concrete (RC) buildings. )e
weight vectors for NN was calculated by incorporating PSO
on the basis of minimum root mean square error. )e in-
troduced NN-PSO classifier was sufficient to handle the
structural failure in RC buildings. Xue et al. [33] presented a
new strategy for the feedforward neural network (FNN)
classifier, in which a self-adaptive parameter and strategy-
based PSO (SPS-PSO) was integrated to reduce the di-
mensions of large-scale optimization problems. A new
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algorithm by using PSO was proposed in [34], which can
spontaneously finalize the most appropriate architecture of
deep convolutional neural networks (CNNs) for the clas-
sification of images, termed as psoCNN. A novel NN-based
training algorithm by incorporating PSO is proposed in [35]
called LPSONS. In the LPSONS algorithm, the velocity
parameter of PSO was embedded with Mantegna Levy flight
distribution for improved diversity. Additionally, the pro-
posed algorithm is used to train feedforward multilayered
perceptron ANNs. In [36], PSO was used for feature en-
gineering of diabetic retinopathy, and after it, the NN
classifier was applied for the classification of diabetic reti-
nopathy disease.

After conducting a thorough literature review, we can
infer that the particle efficiency and convergence velocity are
highly dependent on the swarm initialization process. If all
the particles with a proper pattern cover the entire search
space, there are more chances that the global optimum will
be found at an early stage of PSO.

3. Particle Swarm Optimization

PSO is a global optimization technique that plays an im-
portant role in the fields of applied technology and has been
widely deployed in numerous engineering applications, such
as preparation of heating systems, data mining, power al-
location of cooperative communication networks, pattern
recognition, machine learning, optimizing route selection,
and information security to name a few. PSO works on the
application of candidates. To maximize a problem, the
optimal solution is represented by each candidate who is
designated as a particle.)e current location of the particle is
defined by the n-dimensional search space and is repre-
sented by the vector solution x. In the form of a fitness score
carried out by particles, each solution is translated. In the n-
dimensional search space at the kth direction, position
vector x can be calculated by provoking each particle p.
Velocity vector v can be defined as the motion of particles
and the step size of an entire swarm in the search space is
other than position vector p.

PSO begins with the population, consisting of n particles
that fly at the iteration ki in the d-dimensional search space
to look for the optimal solution. Swarm mutation can
transform the objective feature into the desired candidate
solution. For updating the position and velocity of the
particles, the following two equations are used:

vz+1 � vz + c1 × p
best
z − xz􏼐 􏼑 + c2 × g

best
z − xz􏼐 􏼑, (1)

xz+1 � xz + vz+1. (2)

In the above equations, the position vector and velocity
vectors are vz and xz, respectively. pbest

z shows the local best
solution of the entire swarm acquired using its own previous
experience, and gbest

z reflects the global best solution ac-
quired using the N-dimension experience of its neighbour.
While c1 − ⟶ c1r1 and c2 − ⟶ c2r2, c1 and c2 are the
acceleration factors that influence the acceleration weights
and r1 and r2 are two random numbers produced by using

the random number generator. xz+1 is an updated position
vector that guides the novel point at the kth iteration for the
current particle, where vz+1 is the newly updated velocity. It
is possible to drive three different factors from equation (1).
)e “momentum factor⟶ vz” represents the old velocity.
)e “cognitive factor⟶ c1 × (pbest

z − xz)” gives local best
fitness that has taken from all the previous finesses. )e
“social factor⟶ c2 × (gbest

z − xz)” provides the best global
solution amplified by the intact neighbour particles. )e
pseudocode of fundamental PSO is present in Algorithm 1.

4. Training of the Neural Networks

)e artificial neural network (ANN) is perceived as the most
effective technique of approximation, which is used to ap-
proximate the nonlinear functions and their relationships.
)e ANN model is capable of generalizing, learning, or-
ganizing, and adapting data. )e ANN architecture is based
on an interlined series of synchronized neurons, whereas the
multiprocessing layer is used to compute the encoding of
information [37]. ANN is a computational mathematical
model that regulates the relationship between the input and
output layers of different nonlinear functions [38]. In this
study, we have used the feedforward neural network present
in Figure 1, which is the most frequently used and popular
architecture of the ANN. )e feedforward neural network is
defined by the three layers, i.e., input layer, sandwich layer,
and output layer, respectively. Input layer served as NN
gateway, where the information frame is inserted. )e in-
termediate task of the sandwich layer is to execute the data
frame using the input layer. )e outcomes are derived from
the output layer [39]. Both layers’ units are connected with
the serial layer nodes, and the link between the nodes is
structured in the feedforward neural network. Bias is a
component of each unit and has a value of −1 as present in
[24].

For weight optimization of NN, the position of each
particle in swarm shows a set of weight for the current epoch
or iteration. )e dimensionality of each particle is the
number of weights associated with the network. )e particle
moves within the weight space attempting to minimize
learning error (mean squared error (MSE) or sum of squared
error (SSE)). In order to change the weights of the neural
network, change in Position occurs that will reduce the error
in current epoch. )ere is no backpropagation concept in
PSONN where the feedforward NN produced the learning
error (particle fitness) based on set of weight and bias (PSO
positions).

)e challenge of premature convergence is addressed in
the problem of weight optimization of ANN [40, 41]. )e
primary objective of the ANN model is to achieve a set of
optimum parameters and weights. )e two major classifi-
cation approaches used to segregate the positive entities
from the negative entities are gradient descent and error
correction, respectively. Gradient descent-based techniques
are low in performance, where the concerns are high di-
mensional and the parameters are exclusively dependent on
the structure. Due to this fact, it stuck in local minima.
Backpropagation is one of the gradient decent techniques,
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which is most commonly used to train the neural network
models and solve complex multimodal problems in the real-
world as mentioned in [24].

5. Random Number Generator

)e built-in library function is used to construct the mesh of
numbers randomly at uniform locations through Rand
(x_(min) x_max) in [42]. A continuous uniform distribution
probability density function describes the effect of unifor-
mity on any sequence. It is possible to characterize the
probability density function as given in the following
equation:

f(t) �

1
p − q

, forp< t< q,

0, for t<p or t> q,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where p and q represent themaximum likelihood parameter.
Due to the zero impact on the f (t) dt integrals over any
length, the value of f (t) is useless at the boundary of p and q.
)e calculation of maximum probability parameter is de-
termined by the estimated probability function, which is
given in

l(p, q|t) � nlog(q − p). (4)

PSO (object of particles):
(1) @input: Particles⟶ pz􏼈 􏼉⟶ with undefined locations
(2) @output: Particles⟶ pz􏼈 􏼉⟶ with best fitness score
(3) For each particle p1, p2, p3, p4, p5, . . . , pz􏼈 􏼉

(4) For each Dimension d1, d2, d3, d4, d5, . . . , dz􏼈 􏼉

(a) Initialize xz, as xz � Rand(xmin , xmax)

(b) if xz reach to best fitness than pbest
z , replace pbest

z by xz

(c) Initialize vz, as xz � Rand(xmin , xmax)

(5) Declared one global solution as gbest
z from all the optimal pbest

z

(6) Repeat the process up to kz:
(d) For each particle p1, p2, p3, p4, p5, . . . , pz􏼈 􏼉 update

Using equation (1) compute vz+1
Using equation (2) compute xz+1
If xz+1 >pbest

z

pbest
z � xz+1

If xz+1 > gbest
z

gbest
z � xz+1

(7) Return particles pz􏼈 􏼉⟶ contains global optimal solution

ALGORITHM 1: Standard PSO pseudocode.

Calculate velocity and update position
based on Gbest and Pbest particles

Initialize particle
position using QRS

Particle 02

Particle 03

Particle 01

–4.235 
3.562 
2.002

–0.587 
0.544

3.226
–1.953
–0.842
1.005
0.285

1

2
3

4

5

6

Repeat process 4, 5, and 3 until meeting
targeted learning error or maximum

number of iteration 

Train NN using new
particle position

Total number of
particles

Train NN using initial
particle position

Learning error (set
overall best error as

Gbest and each particle
best error as Pbest ) 

Neural network (feedforward)

Figure 1: Feedforward neural network.
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6. The Sobol Sequence

)e Sobol distribution was undertaken for the reconstruc-
tion of coordinates in [43]. )e relation of linear recurrences
is included for each dimension dz coordinate, and the binary
expression for linear recurrence can be defined for the
nonnegative instance az as present in

a � a12
0

+ a22
1

+ a32
2

+ · · · + az2
z−1

. (5)

For dimension dz, the instance i can be generated using

x
D
i � i1v

D
1 + i2v

D
2 + · · · + izv

D
z . (6)

vD
1 denotes the k th direction binary function of an in-

stance vD
i at the dimension dz, and vD

i can be computed
using

V
D
k � c1v

D
k−1 + c2v

D
k−2 + · · · + czv

D
z−1 +

v
D
i−z

2z􏼠 􏼡, (7)

where cz describes polynomial coefficient where k> z.

7. The Halton Sequence

In [44], the authors proposed the Halton sequence as an
improved variant of the van der Corput sequence. For
generating random points, Halton sequences use a coprime
base. Algorithm 2 shows the pseudocode for generating the
Halton sequences.

8. The WELL Sequence

Panneton et al. [45] suggested the Well Equi-distributed
Long-period Linear (WELL) sequence. Initially, it was
performed as a modified variant of the Mersenne Twister
algorithm. )e WELL distribution algorithm is given as in
Algorithm 3.

For the WELL distribution, the algorithm mentioned
above describes the general recurrence. )e algorithm
definition is as follows: x and r are two integers with an
interval of r> 0 and 0< x< k and k � r∗w − x, and w is the
weight factor of distribution. )e binary matrix of size r∗w

having the r bit block is expressed by A0 to A7. mx describes
the bitmask that holds the first w—x bits. t0 to t7 are
temporary vector variables.

)e random points in Figures 2–5 are the uniform, and
Sobol, Halton, and WELL distributions are represented by
the bubble plot in which the y-axis is represented by the
random values and the x-axis is shown in the table by the
relevant index of the point concerned.

9. Methodology

)e objective of this paper is to work out the purity of one of
the proposed pseudorandom sequences. Pseudorandom
sequences are much more random than quasirandom se-
quences. PSO is random in nature, so it does not have a
specific pattern to guarantee the global optimum solution.

)erefore, we have suggested the WELL distribution-based
PSO (WE-PSO) by taking advantage of randomness in the
PSO. We have compared the WE-PSO with the uniform
distribution-based PSO and other quasirandom distribu-
tions-based PSO, i.e., Sobol distribution (SO-PSO) and
Halton distribution (H-PSO) to ensure the integrity of the
proposed approach. Moreover, by training the nine real-
world NN problems, we have tested the proposed technique
over NN classifiers. )e experimental outcomes reflect an
unusual improvement over standard PSO with uniform
distribution. WE-PSO approach also outperforms SO-PSO
and H-PSO approaches as evident in results. Numerical
results have shown that the use of WELL distribution to
initialize the swarm enhances the efficiency of population-
based algorithms in evolutionary computing. In Algo-
rithm 4, the pseudocode for the proposed technique is
presented.

10. Results and Discussion

WELL-PSO (WE-PSO) technique was simulated in C++ and
applied to a computer with the 2.3GHz Core (M) 2 Duo
CPU processor specification. A group of fifteen nonlinear
benchmark test functions are used to compare the WE-PSO
with standard PSO, SO-PSO, and H-PSO for measuring the
execution of the WELL-based PSO (WE-PSO) algorithm.
Normally, these functions are applied to investigate the
performance of any technique. )erefore, we used it to
examine the optimization results of WE-PSO in our study. A
list of such functions can be found in Table 1. )e di-
mensionality of the problem is seen in Table 1 as D, S
represents the interval of the variables, and fmin denotes the
global optimumminimum value.)e simulation parameters
are used in the interval [0.9, 0.4] where c1� c2�1.45, inertia
weight w is used, and swarm size is 40. )e function di-
mensions are D� 10, 20, and 30 for simulation, and a cu-
mulative number of epochs is 3000. All techniques have been
applied to similar parameters for comparatively effective
results. To check the performance of each technique, all
algorithms were tested for 30 runs.

10.1. Discussion. )e purpose of this study is to observe the
unique characteristics of the standard benchmark functions
based on the dimensions of the experimental results. )ree
simulation tests were performed in the experiments, where
the following TW-BA characteristics were observed:

(i) Effect of using different initializing PSO approaches
(ii) Effect of using different dimensions for problems
(iii) A comparative analysis

)e objective of this study was to find the most suitable
initialization approach for the PSO and to explore WE-PSO
with other approaches, such as SO-PSO, H-PSO, and
standard PSO during the first experiment. )e purpose of
the second simulation is to define the essence of the di-
mension concerning the standard function optimization.
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Finally, the simulation results of WE-PSO were compared
with the standard PSO, SO-PSO, and H-PSO, respectively.
Simulation effects have been addressed in depth in the re-
mainder of the article.

)e graphical representation of the similarities of WE-
PSO with PSO, H-PSO, and SO-PSO is shown in Figures 6 to
20. For WE-PSO, we can observe that majority of the es-
timates have a better convergence curve. )e dimensions 10,

Halton ():
//input: Size� z and base� b_cm with Dimension� d
//output: population instances� p

Fix the interval over
max−⟶ 1
min−⟶ 0
For each iteration (k_1, k_2, k_3. . .k_z):do
For each particle {p_1, p_2, p_3. . .p_z}
max�max/b_cm
min�min+max∗ z mod b_cm
z� z/b_cm

ALGORITHM 2: Halton sequences.

(i) WELL ():
(ii) t0 � (mx&vk,r−1) + (mx&vk,r−2)

(iii) t1 � (A0vk,0) + (A1vk,m1
)

(iv) t2 � (A2vk,m2
) + (A3vk,m3

)

(v) t3 � t2 + t1
(vi) t4 � t0A4 + t1A5 + t2A6 + t3A7
(vii) vk+1,r−1 � vk,r−2 &mx

(viii) for i − ⟶ r − 2 . . . 2 do vk+1,i�vk,i−1
(ix) vk+1,1� t3
(x) vk+1,0� t4
(xi) Returnyk�vk,0

ALGORITHM 3: WELL sequences.
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Figure 3: Population initialization using Sobol distribution.
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Figure 2: Population initialization using uniform distribution.
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Figure 4: Population initialization using uniform distribution.
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Figure 5: Population initialization using WELL distribution.
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20, and 30 of the problem are described in the x-axis, while
the y-axis represents the mean best against each dimension
of the problem.

10.1.1. Effect of Using Different Initializing PSO Approaches.
In this simulation, PSO is initialized with WELL sequence
(WE-PSO) instead of the uniform distribution. )e variant
WE-PSO is compared with the other initialized approaches
including Sobol sequence (SO-PSO), Halton Sequence (H-

PSO), and standard PSO.)e experimental findings indicate
that the higher dimensions are better.

10.1.2. Effect of Using Different Dimensions for Problems.
)e core objective of this simulation setup is to find the
supremacy of the outcomes based on the dimension of the
optimization functions. )ree dimensions were used for
bench mark functions such as D� 10, D� 20, and D� 30 in
experiments. In Table 2, the simulation results were

Step 1: initialize the swarm
Set epoch count I � 0, population size Nz, dimension of the problem Dz, wmax and wmin
For each particle Pz

Step 1.1: initialize xz, as xz � WELL(xmin , xmax)

Step 1.2: initialize the particle velocity as, vz � Rand(xmin , xmax)

Step 1.3: compute the fitness score fz

Step 1.4: set global best position gbest
z as max(f1, f2, f3, . . . , fz)) where fz ∈ globally optimal fitness

Step 1.5: set local best position pbest
z as max(f1, f2, f3, . . . , fz)) where fz ∈ locally optimal fitness

Step 2:
Compare the current particle’s fitness score xz in the swarm and its old local best location pbest

z . If the current fitness score xz is greater
than pbest

z , then substitute pbest
z , with xz; else retain the xz unchanged

Step 3:
Compare the current particle’s fitness score xz in the swarm and its old global best location gbest

z . If the current fitness score xz is
greater than gbest

z , then substitute gbest
z , with xz; else retain the xz unchanged

Step 4:
Using equation (1), compute vz+1⟶ updated velocity vector
Using equation (2), compute xz+1⟶ updated position vector
Step 5:
Go to step 2, if the stopping criteria does not met, else terminate.

ALGORITHM 4: Proposed PSO pseudocode.

Table 1: Standard objective functions and their optimal.

SR# Function name Objective function Search space Optimal
value

F1 Sphere Minf(x) � 􏽐
n
i�1 x2

i −5.12≤xi ≤ 5.12 0
F2 Rastrigin Minf(x) � 􏽐

n
i�1 [x2

i − 10 cos(2πx) + 10]i −5.12≤xi ≤ 5.12 0

F3 Axis parallel hyper-
ellipsoid Minf(x) � 􏽐

n
i�1 i · x2

i −5.12≤xi ≤ 5.12 0

F4 Rotated hyper-ellipsoid Minf(x) � 􏽐
n
i (􏽐

i
j�1 xj)

2 −65.536≤xi ≤ 65.536 0

F5 Moved axis parallel
hyper-ellipsoid Minf(x) � 􏽐

n
i�1 5i · x2

i −5.12≤xi ≤ 5.12 0

F6 Sum of different power Minf(x) � 􏽐
n
i�1 |xi|

i+1 −1≤xi ≤ 1 0
F7 Chung Reynolds Minf(x) � (􏽐

n
i�1 x2

i )2 −100≤xi ≤ 100 0
F8 Csendes Minf(x) � 􏽐

n
i�1 x6

i (2 + sin(1/xi)) −1≤xi ≤ 1 0

F9 Schaffer Minf(x) � 􏽐
n
i�1 0.5 + (sin2

��������
x2

i + x2
i+1

􏽱
− 0.5/[1 + 0.001(x2

i + x2
i+1)]

2) −100≤xi ≤ 100 0

F10 Schumer Steiglitz Minf(x) � 􏽐
n
i�1 x4

i −5.12≤xi ≤ 5.12 0
F11 Schwefel Minf(x) � 􏽐

n
i�1 xα

i −100≤xi ≤ 100 0

F12 Schwefel 1.2 Min f(x) � 􏽐
D
i (􏽐

i
j�1 xj)

2 −100≤xi ≤ 100 0

F13 Schwefel 2.21 Minf(x) � max|xi|1<i<D −100≤xi ≤ 100 0

F14 Schwefel 2.22 Minf(x) � 􏽐
D
i�1 |xi| + 􏽑

n
i�1 |xi| −100≤xi ≤ 100 0

F15 Schwefel 2.23 Minf(x) � 􏽐
n
i�1 x10

i −10≤xi ≤ 10 0
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presented. From these simulation results, it was observed
that the optimization of higher-dimensional functions is
more complex, which can be seen from Table 2 where the
dimension size is D� 20 and D� 30.

10.1.3. A Comparative Analysis. WE-PSO is compared to
the other approaches, namely, SO-PSO, H-PSO, and the
standard PSO, where the true value of each technique with
the same nature of the problem is provided for comparison
purposes. Table 1 shows the standard benchmark functions

and their parameter settings. Table 2 reveals that WE-PSO is
better than the standard PSO, SO-PSO, and H-PSO with
dimension D-30 and outperforms in convergence. )e
comparative analysis can be seen from Table 2 in which the
standard PSO of the smaller dimension size (D� 10, 20)
performs well, while the proposed WE-PSO considerably
performs well in convergence as the dimension size in-
creases. Hence, WE-PSO is appropriate for higher dimen-
sions. Simulation runs were carried out on HP Compaq with
the Intel Core i7-3200 configuration, with a speed of 3.8GHz
with RAM of 6GB.
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In contrast with the findings of SO-PSO, H-PSO, and
traditional PSO, the experimental results from Table 2 reveal
that WE-PSO surpasses the results of the aforementioned
variants of PSO. It can be observed that the WE-PSO
outperforms in all functions when compared to other
techniques, while the other approaches perform as follows:
H-PSO performs better on functions F4, F1, and F2 for 20D,
but H-PSO gives overall poor results on higher dimensions,
and SO-PSO gives slightly better results on the functions F8,
F9, and F15 on 10-D but gives worst result on larger di-
mensions. Figures from Figures 7 to 15 depict that WE-PSO
outperforms in simulation results than other approaches for

solving the dim size D� 10, D� 20, and D� 30 on the
standard benchmark test functions.

10.1.4. Statistical Test. To objectively verify the consistency
of the findings, the Student T-test is performed statistically.
For the success of the competing algorithms, the T value is
computed using

t �
X1 − X2����������������������������

SD2
1/ n1 − 1( 􏼁􏼐 􏼑 + SD2

2/ n2 − 1( 􏼁􏼐 􏼑􏼐 􏼑

􏽱 . (8)
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T value can be positive or negative in the above equation,
where X1 and X2 reflect the mean value of the first and
second samples. )e sample size is referred to as n1 and n2
for both samples. )e standard deviations for both samples
are SD2

1 and SD2
2. Positive and negative values indicate that

WE-PSO outperforms other approaches. Student’s T-test
results are presented in Table 3.

11. Experiments for Data Classification

A comparative analysis on the real-world benchmark dataset
problem is evaluated for the training of neural networks to
validate the efficiency of the WE-PSO. Using nine

benchmark datasets (Iris, Diabetes, Heart, Wine, Seed,
Vertebral, Blood Tissue, Horse, and Mammography) from
the world-famous UCI machine-learning repository, we
conducted experiments. Training weights are initialized
randomly within the interval [−50, 50]. Feedforward neural
network accuracy is tested in the form of root mean squared
error (RMSE). )e features of the datasets that are used can
be seen in Table 4.

11.1. Discussion. Backpropagation algorithms using stan-
dard PSO, SO-PSO, H-PSO, and WE-PSO are trained in the
multilayer feedforward neural network. Comparison of
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these training approaches is tested on real classification
datasets that are taken from the UCI repository. )e cross-
validation method is used to assess the efficiency of various
classification techniques.)e k-fold cross-validationmethod
is used in this paper for the training of neural networks with
the standard PSO, SO-PSO, H-PSO, and proposed algorithm
WE-PSO. )e k-fold is used with the value k� 10 in the

experiments. )e dataset has been fragmented into 10
chunks; each data chunk comprises the same proportion of
each class of dataset. One chunk is used for the testing phase,
while nine chunks were used for the training phase. Nine
well-known real-world datasets which were taken from UCI
were compared with the experimental results of algorithms:
standard PSO, SO-PSO, H-PSO, and WE-PSO are used for
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evaluating the performance. After the simulation, the results
showed that the training of neural networks with the WE-
PSO algorithm is better in terms of precision and its effi-
ciency is much higher than the traditional approaches.

)e WE-PSO algorithm can also be used successfully in
the future for data classification and statistical problems.
)e findings of classification accuracy are summarized in
Table 5.

Table 2: Comparative results among the four PSO algorithms on 15 benchmark test functions.

F# Iter DIM
PSO SO-PSO H-PSO WE-PSO

Mean Std. dev Mean Std. dev Mean Std. dev Mean Std. dev

1
1000 10 2.33E− 74 7.36E− 74 2.74E− 76 8.66E− 76 3.10E− 77 9.79E− 77 5.91E− 78 1.87E− 77
2000 20 1.02E− 84 3.22E− 84 8.20E− 88 2.59E− 87 1.76E− 90 5.58E− 90 4.95E− 90 1.48E− 89
3000 30 1.77E− 26 5.32E− 26 7.67E− 20 2.30E− 19 4.13E− 32 1.24E− 31 1.30E− 42 3.90E− 42

2
1000 10 4.97E− 01 1.49E+ 00 4.97E− 01 1.49E+ 00 7.96E− 01 2.39E+ 00 2.98E− 01 8.95E− 01
2000 20 8.17E+ 00 2.29E+ 01 6.47E+ 00 1.91E+ 01 3.58E+ 00 9.79E+ 00 3.11E+ 00 1.10E+ 01
3000 30 1.01E+ 01 2.95E+ 01 9.86E+ 00 2.76E+ 01 9.45E+ 00 27.6991 7.76E+ 00 2.20E+ 01

3
1000 10 8.70E− 80 2.61E− 79 1.79E− 79 5.37E− 79 4.87E− 79 1.46E− 78 4.40E− 81 1.32E− 80
2000 20 2.62144 7.86E+ 00 7.86432 2.36E+ 01 2.62144 7.86E+ 00 1.78E− 89 5.33E− 89
3000 30 2.62E+ 01 7.86E+ 01 1.57E+ 01 4.72E+ 01 1.05E+ 01 31.4573 3.87E− 57 1.16E− 56

4
1000 10 4.46E− 147 1.34E− 146 3.86E− 147 1.16E− 146 9.78E− 145 2.93E− 144 1.24E− 150 3.73E− 150
2000 20 3.14E− 155 9.41E− 155 9.27E− 154 2.78E− 153 2.75E− 159 8.24E− 159 4.96E− 159 1.49E− 158
3000 30 1.82E− 133 5.45E− 133 2.36E− 135 7.09E− 135 8.53E− 130 2.56E− 129 2.54E− 136 7.62E− 136

5
1000 10 4.35E− 79 1.30E− 78 8.95E− 79 2.69E− 78 2.43E− 78 7.30E− 78 2.20E− 80 6.61E− 80
2000 20 1.31E+ 01 3.93E+ 01 3.93E+ 01 1.18E+ 02 1.31E+ 01 3.93E+ 01 3.12E− 89 9.36E− 89
3000 30 1.31E+ 02 3.93E+ 02 7.86E+ 01 2.36E+ 02 5.24E+ 01 1.57E+ 02 1.94E− 56 5.81E− 56

6
1000 10 1.70E− 61 5.11E− 61 4.45E− 64 1.33E− 63 7.29E− 66 2.19E− 65 4.62E− 66 1.39E− 65
2000 20 3.25E− 112 9.74E− 112 4.39E− 112 1.32E− 111 5.01E− 109 1.50E− 108 4.45E− 113 1.34E− 112
3000 30 7.21E− 135 2.16E− 134 4.10E− 124 1.23E− 123 1.51E− 134 4.54E− 134 6.96E− 135 2.09E− 134

7
1000 10 2.96E− 157 8.87E− 157 2.39E− 157 7.18E− 157 1.28E− 157 3.84E− 157 2.47E− 163 0.00E+ 00
2000 20 8.79E− 177 0.00E+ 00 1.77E− 184 0.00E+ 00 3.49E− 183 0.00E+00 3.41E−186 0.00E+ 00
3000 30 1.23E− 82 3.68Ev− 82 1.25E− 116 3.74E− 116 5.99E− 130 5.99E− 130 4.60E− 134 1.38E− 133

8
1000 10 4.39E− 200 0.00E+ 00 1.98E− 194 0.00E+ 00 4.51E− 197 0.00E+ 00 8.99E− 201 0.00E+ 00
2000 20 1.57E− 20 4.70E− 20 1.04E− 93 3.13E− 93 1.10E− 148 3.30E− 148 4.09E− 151 1.23E− 150
3000 30 1.89E− 09 5.68E− 09 4.54E− 10 1.36E− 09 1.14E− 08 3.43E− 08 1.34E− 09 4.03E− 09

9
1000 10 5.49E− 01 6.72E− 01 1.30E− 01 2.02E− 01 2.02E−01 5.73E− 01 1.42E− 01 1.42E− 01
2000 20 2.05E+ 00 1.31E+ 00 7.83E− 01 1.43E+ 00 6.83E− 01 1.29E+ 00 4.32E− 01 1.08E+ 00
3000 30 1.12E+ 00 2.39E+ 00 9.99E− 01 2.30E+ 00 9.56E− 01 2.52E+ 00 9.12E− 01 2.23E+ 00

10
1000 10 2.23E− 138 2.23E− 138 2.23E− 138 3.15E− 137 4.35E− 137 1.31E− 136 1.10E− 139 3.31E− 139
2000 20 3.79E− 148 1.14E− 147 7.87E− 149 2.36E− 148 4.19E− 147 1.26E− 146 8.73E− 153 2.62E− 152
3000 30 4.43E− 126 1.33E− 125 7.52E− 133 2.26E− 132 1.57E− 128 4.71E− 128 1.38E− 133 4.14E− 133

11
1000 10 3.75E− 187 0.00E+ 00 1.57E− 192 0.00E+ 00 2.15E− 191 0.00E+ 00 8.99E− 198 0.00E+ 00
2000 20 5.29E− 193 0.00E+ 00 2.53E− 195 0.00E+ 00 8.45E− 195 0.00E+ 00 9.83E− 197 0.00E+ 00
3000 30 4.82E− 154 1.44E− 153 8.84E− 159 2.65E− 158 5.49E− 168 0.00E+ 00 5.75E−173 0.00E+ 00

12
1000 10 1.13E− 01 3.40E− 01 1.67E− 02 5.02E− 02 2.28E− 02 6.85E− 02 2.89E− 03 8.66E− 03
2000 20 1.39E+ 01 4.12E+ 01 5.03E+ 00 1.50E+ 01 2.95E+ 00 8.84E+ 00 1.67E+ 00 5.01E+ 00
3000 30 7.45E+ 00 2.23E+ 01 1.22E+ 01 3.66E+ 01 8.74E+ 00 2.60E+ 01 4.94E+ 00 1.48E+ 01

13
1000 10 8.04E− 26 2.41E− 25 8.01E− 27 2.40E− 26 3.59E− 27 1.08E− 26 1.41E− 27 1.02E− 26
2000 20 1.42E− 08 4.26E− 08 2.64E− 11 7.93E− 11 3.29E− 10 9.86E− 10 2.14E− 12 6.43E− 12
3000 30 6.20E− 03 1.86E− 02 1.41E− 03 4.23E− 03 9.36E− 03 2.81E− 02 1.41E− 03 3.83E− 03

14
1000 10 3.62E− 38 1.09E− 37 3.62E− 38 1.09E− 37 5.92E− 36 1.77E− 35 1.95E− 38 5.86E− 38
2000 20 6.27E− 10 1.88E− 09 1.38E− 09 4.14E− 09 7.91E− 13 2.37E− 12 1.17E−13 3.51E− 13
3000 30 2.56E− 06 7.67E− 06 4.80E+ 01 1.44E+ 02 1.34E− 06 4.03E− 06 4.88E− 09 1.46E− 08

15
1000 10 1.10E− 294 0.00E+ 00 3.19E− 301 0.00E+ 00 2.78E− 307 0.00E+ 00 3.21E− 308 0.00E+ 00
2000 20 6.16E− 271 0.00E+ 00 5.09E− 276 0.00E+ 00 3.74E− 270 0.00E+ 00 4.85E− 268 0.00E+ 00
3000 30 3.08E− 207 0.00E+ 00 1.04E− 200 0.00E+ 00 8.12E− 209 0.00E+ 00 3.06E− 212 0.00E+ 00

Note: “‘Mean”’ shows mean value and “Std. dev” indicates the standard deviation. )e best results among the four PSO algorithms are presented in bold.
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Table 3: Results of Student’s T-test for all techniques.

F# Iter DIM
WE-PSO vs. PSO WE-PSO vs. SO-PSO WE-PSO vs. H-PSO

T-value Sig T-value Sig T-value Sig

1
1000 10 +1.02 WE-PSO +0.99 WE-PSO +0.75 WE-PSO
2000 20 +1.00 WE-PSO +0.48 WE-PSO −0.83 H-PSO
3000 30 +1.00 WE-PSO +1.00 WE-PSO +1.00 WE-PSO

2
1000 10 +30.71 WE-PSO +15.67 WE-PSO +1.21 WE-PSO
2000 20 +8.82 WE-PSO +107.56 WE-PSO +11.13 WE-PSO
3000 30 +0.63 WE-PSO +34.29 WE-PSO +0.65 WE-PSO

3
1000 10 +099 WE-PSO +1.00 WE-PSO +0.83 WE-PSO
2000 20 +1.00 WE-PSO +1.00 WE-PSO +263.14 WE-PSO
3000 30 +1.00 WE-PSO +525.29 WE-PSO +0.93 WE-PSO

4
1000 10 +0.19 WE-PSO +0.99 WE-PSO +1.00 WE-PSO
2000 20 +0.99 WE-PSO +0.84 WE-PSO −0.98 H-PSO
3000 30 +0.86 WE-PSO +0.26 WE-PSO +0.97 WE-PSO

5
1000 10 +0.79 WE-PSO +0.44 WE-PSO +0.98 WE-PSO
2000 20 +0.29 WE-PSO +0.57 WE-PSO +263.14 WE-PSO
3000 30 +0.06 WE-PSO +2622.44 WE-PSO +0.96 WE-PSO

6
1000 10 +0.80 WE-PSO +0.98 WE-PSO +0.17 WE-PSO
2000 20 +0.86 WE-PSO +0.96 WE-PSO +0.96 WE-PSO
3000 30 +0.99 WE-PSO +0.98 WE-PSO +0.89 WE-PSO

7
1000 10 +0.90 WE-PSO +0.95 WE-PSO +1.00 WE-PSO
2000 20 +1.00 WE-PSO +1.00 WE-PSO +1.00 WE-PSO
3000 30 +1.00 WE-PSO +1.00 WE-PSO +1.00 WE-PSO

8
1000 10 +0.75 WE-PSO +0.98 WE-PSO +0.55 WE-PSO
2000 20 +483.97 WE-PSO +1.00 WE-PSO +0.91 WE-PSO
3000 30 +1.41 WE-PSO −6.89 SO-PSO +522.24 WE-PSO

9
1000 10 +53.67 WE-PSO −3.00 SO-PSO +82.30 WE-PSO
2000 20 +84.84 WE-PSO +33.46 WE-PSO +16.08 WE-PSO
3000 30 +470.01 WE-PSO +390.54 WE-PSO +416.26 WE-PSO

10
1000 10 +1.00 WE-PSO +0.84 WE-PSO +0.67 WE-PSO
2000 20 +1.00 WE-PSO +0.81 WE-PSO +0.89 WE-PSO
3000 30 +1.00 WE-PSO +0.98 WE-PSO +0.95 WE-PSO

11
1000 10 +0.97 WE-PSO +1.92 WE-PSO +1.00 WE-PSO
2000 20 +1.00 WE-PSO +1.00 WE-PSO +1.00 WE-PSO
3000 30 +0.87 WE-PSO +0.98 WE-PSO +1.00 WE-PSO

12
1000 10 +0.91 WE-PSO +0.58 WE-PSO +0.27 WE-PSO
2000 20 +2.26 WE-PSO +1.08 WE-PSO +0.27 WE-PSO
3000 30 +1.84 WE-PSO +2.25 WE-PSO +2.41 WE-PSO

13
1000 10 +0.98 WE-PSO +0.48 WE-PSO +0.84 WE-PSO
2000 20 +0.72 WE-PSO +0.78 WE-PSO +0.98 WE-PSO
3000 30 +0.11 WE-PSO +0.39 WE-PSO +0.86 WE-PSO

14
1000 10 +0.57 WE-PSO +0.15 WE-PSO +0.82 WE-PSO
2000 20 +0.151 WE-PSO +1.49 WE-PSO +1.50 WE-PSO
3000 30 +0.90 WE-PSO +1.32 WE-PSO +1.32 WE-PSO

15
1000 10 +1.00 WE-PSO +1.00 WE-PSO +1.00 WE-PSO
2000 20 +1.00 WE-PSO −0.50 SO-PSO +0.99 WE-PSO
3000 30 +0.83 WE-PSO +1.00 WE-PSO +1.00 WE-PSO

Table 4: Dataset description.

S. no. Datasets Number of total units Disc feature Nature No. of inputs No. of classes
1 Iris 150 — Real 4 3
2 Diabetes 768 — Real 8 2
3 Heart 270 — Real 13 2
4 Wine 178 — Real 13 3
5 Seed 210 — Real 7 3
6 Vertebral 310 — Real 6 2
7 Blood tissue 748 — Real 5 2
8 Horse 368 — Real 27 2
9 Mammography 961 — Real 6 2
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12. Conclusion

)e performance of PSO depends on the initialization of
the population. In our work, we have initialized the
particles of PSO by using a novel quasirandom sequence
called the WELL sequence. However, the velocity and
position vector of particles are modified in a random
sequence fashion. )e importance of initializing the
particles by using a quasirandom sequence is highlighted
in this study. )e experimental results explicitly state
that the WELL sequence is optimal for the population
initialization, due to its random nature. Moreover, the
simulation results have shown that WE-PSO outper-
forms the PSO, S-PSO and H-PSO approaches. )e
techniques are also applied to neural network training
and provide significantly better results than conventional
training algorithms, including standard PSO, S-PSO, and
H-PSO approaches, respectively. )e solution provides
higher diversity and increases the potential to search
locally. )e experimental results depict that our ap-
proach has excellent accuracy of convergence and pre-
vents the local optima. Our technique is much better

when it is compared to the traditional PSO and other
initialization approaches for PSO as evident in Figure 21.
)e use of mutation operators with the initialization
technique may be evaluated on large-scale search spaces
in the future. )e core objective of this research is
universal but relevant to the other stochastic-based
metaheuristic algorithm, which will establish our future
direction.
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Table 5: Classification accuracy results.

S.
no. Datasets Type

BPA PSO SO-PSO H-PSO WE-PSO
Tr.

acc (%)
Ts. acc
(%)

Tr. acc
(%)

Ts. acc
(%)

Tr. acc
(%)

Ts. acc
(%)

Tr. acc
(%)

Ts. acc
(%)

Tr. acc
(%)

Ts. acc
(%)

1 Iris 3-Class 98.2 95.7 99 96.6 98.8 97.3 98.9 96 99.2 98
2 Diabetes 2-Class 86.1 65.3 88.7 69.1 89.3 69.1 88.4 71.6 90.4 74.1
3 Heart 2-Class 78.5 68.3 99.5 72.5 99.13 67.5 99.13 72.5 100 77.5
4 Wine 3-Class 67.3 62.17 74.24 61.11 81.81 66.66 75.75 67.44 75.75 69.6
5 Seed 3-Class 84.2 70.56 97.57 77.77 87.27 84.44 98.18 77.77 98.18 91.11
6 Vertebral 2-Class 91.4 84.95 96.03 92.85 96.42 92.85 96.40 92.85 97.61 94.64
7 Blood tissue 2-Class 76.3 73.47 90.8 78.6 86.94 78.66 83.89 70 84.74 84
8 Horse 2-Class 64.4 57.87 69.02 50 74.19 52 72.90 56 79.35 58
9 Mammography 2-Class 77.36 71.26 80.82 76.66 68.94 63 88 85 97.71 96.66
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Figure 21: Classification testing accuracy results.

Computational Intelligence and Neuroscience 15



References

[1] K. Deb, “Multi-objective optimization,” in Search Method-
ologies, pp. 403–449, Springer, Berlin, Germany, 2014.

[2] R. Vandenberghe, N. Nelissen, E. Salmon et al., “Binary
classification of 18F-flutemetamol PET using machine
learning: comparison with visual reads and structural MRI,”
NeuroImage, vol. 64, pp. 517–525, 2013.

[3] V. Ganganwar, “An overview of classification algorithms for
imbalanced datasets,” International Journal of Emerging
Technology and Advanced Engineering, vol. 2, no. 4, pp. 42–47,
2012.

[4] J. Kennedy, “Swarm intelligence,” in Handbook of Nature-
Inspired and Innovative Computing, pp. 187–219, Springer,
Berlin, Germany, 2006.

[5] G. Beni and J. Wang, “Swarm intelligence in cellular robotic
systems,” in Robots and Biological Systems: Towards a New
Bionics?, pp. 703–712, Springer, Berlin, Germany, 1993.

[6] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”
Proceedings of ICNN’95—International Conference on Neural
Networks, pp. 1942–1948, 1995.

[7] J. Salerno, “Using the particle swarm optimization technique
to train a recurrent neural model,” in Proceedings of the Ninth
IEEE International Conference on Tools with Artificial Intel-
ligence, pp. 45–49, Newport Beach, CA, USA, November 1997.

[8] R. Storn and K. Price, “Differential evolution–a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[9] P. P. Palmes, T. Hayasaka, and S. Usui, “Mutation-based
genetic neural network,” IEEE Transactions on Neural Net-
works, vol. 16, no. 3, pp. 587–600, 2005.

[10] W. H. Bangyal, J. Ahmad, and H. T. Rauf, “Optimization of
neural network using improved bat algorithm for data clas-
sification,” Journal of Medical Imaging and Health Infor-
matics, vol. 9, no. 4, pp. 670–681, 2019.

[11] A. Cervantes, I. M. Galván, and P. Isasi, “AMPSO: a new
particle swarm method for nearest neighborhood classifica-
tion,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 39, no. 5, pp. 1082–1091, 2009.

[12] W. H. Bangyal, J. Ahmed, and H. T. Rauf, “A modified bat
algorithm with torus walk for solving global optimisation
problems,” International Journal of Bio-Inspired Computa-
tion, vol. 15, no. 1, pp. 1–13, 2020.

[13] C. Grosan, A. Abraham, and M. Nicoara, “Search optimi-
zation using hybrid particle sub-swarms and evolutionary
algorithms,” International Journal of Simulation Systems
Science & Technology, vol. 6, no. 10, pp. 60–79, 2005.

[14] M. Junaid, W. H. Bangyal, and J. Ahmed, “A novel bat al-
gorithm using sobol sequence for the initialization of pop-
ulation,” in IEEE 23rd International Multitopic Conference
(INMIC), pp. 1–6, Bahawalpur, Pakistan, November 2020.

[15] W. H. Bangyal, J. Ahmed, H. T. Rauf, and S. Pervaiz, “An
overview of mutation strategies in bat algorithm,” Interna-
tional Journal of Advanced Computer Science and Applications
(IJACSA), vol. 9, pp. 523–534, 2018.

[16] D. E. Knuth, Fundamental Algorithms: Be Art of Computer
Programming, Addison-Wesley, Boston, MA, USA, 1973.

[17] J. E. Gentle, Random Number Generation and Monte Carlo
Methods, Springer Science & Business Media., Berlin, Ger-
many, 2006.

[18] N. Q. Uy, N. X. Hoai, R. I. McKay, and P. M. Tuan, “Initi-
alising PSO with randomised low-discrepancy sequences: the
comparative results,” in Proceedings of the IEEE Congress on

Evolutionary Computation CEC 2007, pp. 1985–1992, Sin-
gapore, September 2007.

[19] S. Kimura and K. Matsumura, “Genetic algorithms using low-
discrepancy sequences,” in Proceedings of the 7th Annual
Conference on Genetic and Evolutionary Computation ACM,
pp. 1341–1346, Washington, DC, USA, June 2005.

[20] R. Brits, A. P. Engelbrecht, and F. Van den Bergh, “A niching
particle swarm optimizer,” in Proceedings of the 4th Asia-Pacific
Conference on Simulated Evolution and Learning, pp. 692–696,
Orchid Country Club., Singapore, November 2002.

[21] J. Ander Coput, “Verteilungsfunktionen I & II,”Nederl. Akad.
Wetensch. Proc.vol. 38, pp. 1058–1066, 1935.

[22] R. A. Krohling and L. dos Santos Coelho, “PSO-E: particle
swarm with exponential distribution,” in Proceedings of the
IEEE Congress on Evolutionary Computation CEC 2006,
pp. 1428–1433, Vancouver, Canada, July 2006.

[23] R. )angaraj, M. Pant, and K. Deep, “Initializing pso with
probability distributions and low-discrepancy sequences:
the comparative results,” in Proceedings of the World
Congress on Nature & Biologically Inspired Computing
NaBIC 2009, pp. 1121–1126, IEEE, Coimbatore, India,
December 2009.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,”Nature, vol. 323,
no. 6088, pp. 533–536, 1986.

[25] K. E. Parsopoulos andM. N. Vrahatis, “Initializing the particle
swarm optimizer using the nonlinear simplex method,” Ad-
vances in Intelligent Systems, Fuzzy Systems, Evolutionary
Computation, World Scientific and Engineering Academy and
Society Press, Stevens Point, WI, USA, 2002.

[26] M. Richards and D. Ventura, “Choosing a starting configu-
ration for particle swarm optimization,” in Proceedings of the
IEEE International Joint Conference on Neural Networks,
pp. 2309–2312, Budapest, Hungary, July 2004.

[27] H. Jabeen, Z. Jalil, and A. R. Baig, “Opposition based ini-
tialization in particle swarm optimization (O-PSO),” in
Proceedings of the 11th Annual Conference Companion on
Genetic and Evolutionary Computation Conference: Late
Breaking Papers, pp. 2047–2052, Montreal Québec, Canada,
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