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Abstract

dynamics of dengue transmission.

be robust across spatial resolutions.

Statistical modeling, Sri Lanka

Background: More than 80,000 dengue cases including 215 deaths were reported nationally in less than 7 months
between 2016 and 2017, a fourfold increase in the number of reported cases compared to the average number
over 2010-2016. The region of Negombo, located in the Western province, experienced the greatest number of
dengue cases in the country and is the focus area of our study, where we aim to capture the spatial-temporal

Methods: We present a statistical modeling framework to evaluate the spatial-temporal dynamics of the 2016-2017
dengue outbreak in the Negombo region of Sri Lanka as a function of human mobility, land-use, and climate
patterns. The analysis was conducted at a 1 km x 1 km spatial resolution and a weekly temporal resolution.

Results: Our results indicate human mobility to be a stronger indicator for local outbreak clusters than land-use or
climate variables. The minimum daily temperature was identified as the most influential climate variable on dengue
cases in the region; while among the set of land-use patterns considered, urban areas were found to be most

prone to dengue outbreak, followed by areas with stagnant water and then coastal areas. The results are shown to

Conclusions: Our study highlights the potential value of using travel data to target vector control within a region.
In addition to illustrating the relative relationship between various potential risk factors for dengue outbreaks, the
results of our study can be used to inform where and when new cases of dengue are likely to occur within a
region, and thus help more effectively and innovatively, plan for disease surveillance and vector control.
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Background

Dengue is a mosquito-borne viral disease that infects ap-
proximately 390 million people globally every year, par-
ticularly in tropical and subtropical countries [1, 2]. In
Southeast Asia, dengue has become the leading cause of
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febrile illness for travelers [3]. The high number of infec-
tions combined with the lack, as yet, of a routinely used
effective vaccine has made dengue a notorious public
health problem [2, 4].

Dengue spreads through the bite of infected Ades mos-
quitoes, especially Aedes aegypti— the primary vector,
with an estimated 15 to 17-day delay between the pri-
mary and secondary human infections [5]. Dengue out-
break control is a challenge for policy makers because
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Aedes aegypti mosquitoes are well adapted to high dens-
ity urban environments and actively feed during the day
[6-8], thus presenting an elevated risk to humans. Urban
settings provide an ideal habitat for Aedes aegypti breed-
ing due to an abundance of discarded trash bags, plastic
bottles, tires, and other containers that enable the for-
mation of stagnant shallow water surfaces after precipi-
tation [9]. Urban regions in developing countries are
particularly vulnerable due to a lack of indoor plumbing
infrastructure that, in conjunction with a lack of air-
conditioning, results in higher human-mosquito expos-
ure rates during the day. Additionally, because of the
daytime feeding behaviors of Aedes aegypti, common
vector control measures that work for night-biting mos-
quitoes, such as bed nets, fail to effectively control den-
gue transmission. Given these challenges, there is a need
to better understand and predict dengue outbreaks and
transmission risk within urban regions in developing
countries so that vector control and surveillance re-
sources can be optimally allocated.

The majority of dengue risk maps that identify dengue
hotspots are static. Although they help reveal overall po-
tential high-risk areas, challenges remain in their limited
ability to provide temporally evolved risk maps and to
support dengue early warning systems [10]. Therefore,
explorations of both spatially and temporally varying fac-
tors in dengue risk dynamics are needed. Previous stud-
ies highlighted human mobility as a critical factor for
dengue transmission [11-17], which contrasts the more
minor role travel plays in the spread of vector-borne dis-
eases transmitted by night-biting mosquitoes [17]. While
Aedes aegypti mosquitoes have a hard time dispersing
geographically across large areas because they rarely
travel more than 400 m from where they emerge as
adults [18-21], humans regularly travel much longer dis-
tances on a daily basis. As new dengue cases and clusters
are regularly reported kilometers apart, it is likely that
human mobility play a critical role in the spread of den-
gue outbreaks, i.e, infected humans introduce dengue
into new mosquito populations at their trip ends. As an
example, Vazquez-Prokopec, Montgomery [14] studied
the pattern of dengue transmission using location-based
contact tracing on infected dengue patients during a
dengue outbreak centered at Cairns, Australia. They col-
lected locations that the patients frequently traveled to
during the daytime and 2—4 weeks prior to the onset of
symptoms through phone interviews. The contact loca-
tions with a proximity of 100 m and a separation of 20
days were spatial-temporally linked into pairs and then
chains to identify the plausible sites of dengue virus
transmission. They showed that the complex pattern of
dengue transmission was primarily driven by human
mobility, and that targeted residual spaying could poten-
tially reduce the probability of dengue transmission up
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to 96%. Their study highlights the importance of under-
standing dengue transmission patterns to optimize the
allocation of dengue prevention and vector-control
measures.

In addition to human mobility, recent studies have
pointed to a strong association between climate condi-
tions and dengue outbreaks at various locations and
across different temporal resolutions [9, 22-26]. Precipi-
tation, mean temperature and temperature fluctuation
were revealed to affect the population dynamics of Aedes
aegypti mosquitoes and the dengue virus extrinsic incu-
bation period [27-31]. Specifically, a suitable average
temperature and moderate temperature fluctuations are
often favorable for dengue transmission [27], while an
increase in precipitation is strongly associated with the
onset of a dengue outbreak [24]. Humidity, a combined
effect of precipitation and temperature, is also a com-
mon climate index to evaluate the environmental cap-
acity for dengue emergence [22, 23, 32, 33]. Wesolowski,
Qureshi [15] accounted for both climate and mobility in
a study of dengue virus transmission over a large dengue
outbreak period in Pakistan. They developed an epi-
demiological model that included temperature and rela-
tive humidity as input parameters for mosquito
dynamics, as well as biting rate to capture the interac-
tions between human and mosquito hosts. Human mo-
bility was captured using mobile phone data of ~40
million subscribers to estimate the spatially explicit
travel volume, albeit not differentiating infected and
non-infected people. They showed that the emergence of
dengue epidemics in a new region could be predicted
using aggregated travel patterns from endemic areas in
combination with the developed epidemiological model.
While climatic factors were found to be significant for
prediction, this was in part due to the large study region,
i.e, country level, which has variable climatic suitability
for the mosquito vector. The study region considered in
our work is much smaller and has minimal climactic
variability, thus alternative methods are required to dis-
tinguish site-specific risk.

Land-use patterns — indicators of human activities
and potential breeding habitats — have also been linked
to dengue outbreaks [34—39]. Previous studies investi-
gated the effect of land-use patterns on the spread of
dengue and found that human settlements, water bodies,
and mixed horticulture are the top three associated
land-use patterns for dengue emergence in Malaysia
[37]. In another study [38], areas surrounded by rice
paddies and marshes/swamps were associated with a sig-
nificantly higher population of dengue vectors during
the rainy season in Thailand. Orchards (which often
contain artificial water containers) and irrigation fields
have also been shown to play an important role in den-
gue infections; however, their role varies given different
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local conditions. Sometimes, land-use type can be a
proxy for other features, such as socio-economic factors,
which may have a contradictory effect on dengue infec-
tions [39].

In this study, we present a statistical modeling frame-
work to evaluate the relative role of human travel pat-
terns, climate conditions, and land-use patterns on
dengue outbreak dynamics in Negombo, Sri Lanka
(Fig. 1), where dengue outbreaks are increasing in scale
and prevalence. Dengue has been endemic in Sri Lanka
since 1960s, and all four serotypes circulate in the region
[41]. Dengue hemorrhagic fever (DHF) cases were rare
until 1989, when the first major dengue outbreak oc-
curred with approximately 200 cases and 20 deaths;
DHF has since become endemic in the country [41-43].
The 2017 outbreak involved many severe DHF cases,
with evidence showing a dengue virus type 2 (DENV-2)
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being the causative serotype [44, 45]. DENV-2 had only
be detected infrequently over the recent decades of den-
gue epidemics and is therefore associated with low im-
munity in the region [41]. As a result, more than 80,000
dengue cases including 215 deaths were reported nation-
ally in less than 7 months between 2016 and 2017, a
fourfold increase in the number of reported cases com-
pared to the average number over 2010-2016 [46]. The
region of Negombo, located in the Western province,
experienced the greatest number of dengue cases in the
country; approximately 45% of the cases nationwide by
July 2017 (Fig. 1), and is the focus area of our study.

We applied a mixed-effects model, where the mobility
data bridges the time-varying, spatially-invariant climate
variables and the rasterized spatially explicit, time-
invariant population and land-use variables, to capture
the spatial-temporal dynamics of dengue transmission.
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Fig. 1 Land-use groups and the climate station in the study region of Negombo, Sri Lanka (left), and the total number of dengue cases at the
district level in Sri Lanka [40] during the months from October 2016 to June 2017 that cover our study period (right)
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Our model framework differs from previous studies that
simulated the transmission process [14, 15, 47], and in-
stead focuses on estimating the timing and location of
new case introductions though a non-process based stat-
istical model. Specifically, we focus on modeling the
home locations of (newly infected) dengue patients, and
assume dengue risk is increased in areas by infected in-
dividuals who travel to the area, providing the opportun-
ity for vector transmission to result in new human cases.
This assumption is consistent with previous studies that
have shown visits to a household by infected people de-
termines the infection risk in that household [13]. In
addition, the study was conducted at a fine-grained
spatial and temporal resolution — 1km x 1 km spatially
and 1 week temporally — providing an improved under-
standing of the role of mobility in the spread of dengue.
While previous work studied the impact of mobility [14,
15], climate [9, 22, 24, 27], and land-use [37-39] separ-
ately on dengue, the authors are unaware of any existing
study that considers these factors within a single inte-
grated framework. Thus, previous studies have been un-
able to quantify the relative contribution of each factor
on the spatial-temporal patterns of dengue transmission
as we do. The results from our study indicate that mo-
bility is a more significant indicator of new dengue case
clusters compared with land-use and climate factors.
Furthermore, the case study in Sri Lanka provides

Table 1 Summary of potential explanatory variables
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critical insights into effective application of dengue pre-
vention and vector control measures in developing
regions.

Methods

A statistical model is applied to investigate the spatial-
temporal dynamics of dengue outbreak with respect to a
range of potential explanatory variables. The complete
set of potential explanatory variables is listed in Table 1.
Detailed descriptions of the data followed by a descrip-
tion of the methodology are provided below.

Case and mobility data

A patient travel survey was conducted among dengue
patients in the Negombo region of Sri Lanka over an ap-
proximately 8-month period during a major outbreak
spanning from end of October 2016 to early July 2017.
Geolocation data were collected from all patients admit-
ted to the special High Dependency Unit (HDU) for crit-
ically ill dengue patients within the Clinical Centre for
Managing Dengue and Dengue Haemorrhagic Fever
(CCMDDHEF) at the Negombo Hospital in Negombo, Sri
Lanka. Specifically, the date of admission, home address,
the complete set of locations visited, and corresponding
trips made between all locations during the 10-days
prior to hospital admission were collected from all HDU
CCMDDHF admitted patients for the entire study

Variables Description Properties
f) occupation fraction of land-use group /in cell i (%) spatially-explicit, time-invariant
BuiltUp urban area
Coconut coconut cultivation land
Homesteads homesteads and garden
Paddy rice cultivation land
Sea ocean
StWir standing water
FlwWtr flowing water
Cid, weekly value of climate variable in week t with a lag of d. time-varying, spatially -invariant
Tavg weekly averaged daily mean temperature
Trnax weekly averaged maximum daily temperature
Tmin weekly averaged minimum daily temperature
DTR weekly averaged diurnal temperature range
Pre weekly total precipitation
RD weekly number of raining days
RH weekly averaged daily relative humidity
P population in cell i spatially -explicit, time-invariant
Vi_, number of trips made to cell i in week t-u spatially -explicit, time-varying
N number of patients admitted to hospital who live in cell i in week t-w spatially -explicit, time-varying

t—w

Note: t, u, and w in weeks, d. in days. For notation, variable superscripts in Table 1 denote spatial indices and subscripts denote time indices
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period. Other personal information such as the age of
the patients is not available to us, but the survey does
not exclude any age groups specifically. The case data
provide spatial-temporal information on the outbreak
patterns, while the mobility data collected captures daily
travel activity of the admitted dengue patients. The data
were collected by trained students and supervised by a
Senior House Officer on site. For weekday admissions
the patients were surveyed upon admittance, for night
admissions data were collected the following day, and
for weekend admissions on the following Monday. The
majority of admissions were 48 to 72 h following the on-
set of fever. Dengue infection was confirmed for the pa-
tient set using either NS1 antigen or IgM antibody
diagnostic test.

Climate data

We used the Global Surface Summary of the Day
(GSOD) daily weather data [48] from a station in Ne-
gombo (Fig. 1) to explore the impact of climate factors
on the dengue outbreak. The location of the weather sta-
tion (7.18°N, 79.87°E) is approximately in the center of
the study region and it is the only station that falls into
our study region with a comprehensive set of climate
data available during the study period. There are several
global reanalysis products that provide spatial-explicit
climate data during the study period; however, upon
evaluation against the station observations, these globally
gridded data sets did not provide accurate representa-
tions of the local climate variables, particularly at a daily
time-step (Figure S1). Hence, the weather data are as-
sumed to be representative for the region which has
relatively homogeneous weather patterns [49]. We se-
lected a range of potential climate variables based on
previous studies [9, 22—24, 27-33], including daily mean
temperature (7avg), daily maximum temperature
(Tmax), daily minimum temperature (7min), diurnal
temperature range (DTR), precipitation (Pre), the num-
ber of raining days (RD), and relative humidity (RH) to
analyze climatic influence for the weeks before and dur-
ing the same period of analysis that the mobility data
was collected.

Population and land-use data

We used a global population data layer based on
Landscan 2016 [50], that is available at an approxi-
mately 1km x 1km resolution to represent the popu-
lation distribution spatially. We aggregated the data
to 5kmx5km grid for additional analysis with a
coarser spatial resolution. Land-use data [51] were
obtained from the Sri Lanka Survey Department
which performed an initial survey in 2000 and has
since continuously updated the maps. The map was
extracted for our region of interest and reclassified
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into several groups (Fig. 1): Sea, Standing Water
(StWtr), Flowing Water (FlwWtr), Coconut, Marsh,
Paddy, Built-up (BuiltUp), Scrubland, Homesteads,
Forest, Rubber, Rock/Sand (RockS), Other Agriculture
(OthAg), and Other. Water bodies were categorized
depending on the potential effect on dengue transmis-
sion dynamics. Additional details on land-use classifi-
cation groupings and processing is available in the
supplementary material.

Data processing and statistical model

We divided the study region (Fig. 1) into a grid at a 1
km x 1 km resolution and aggregated daily data into a 1-
weekly resolution. The number of patients who were ad-
mitted to the hospital during each week of the recorded
time period was used to generate the weekly number of
newly admitted dengue patients in each cell based on
their home locations. This becomes our ‘case’ variable.

To incorporate the role of mobility into the model we
used the travel itineraries provided by the patients to
generate a time-dependent connectivity matrix, which
represented the total number of trips made by dengue
infected patients between each pair of cells for each
week of the study period. The travel data included all or-
igins and destinations visited each day during the 10 days
preceding hospital admittance (the time interval that the
patient is assumed to be able to spread the disease) for
each patient. The number of daily trips between each
pair of cells was summed over all patients, to provide bi-
directional daily trip volumes between cells, and then ag-
gregated to the weekly level. For each cell the total
incoming weekly trips was summed to define our ‘trip’
variable as the trips were made by surveyed dengue pa-
tients who are assumed to be infectious. Similarly, the
outgoing trips of this cell would also be counted at their
respective trip destinations. Critically, we exclude all
trips with a destination of ‘home” when computing our
trip variable, in order to remove the inherent depend-
ence between the ‘case’ variable, i.e, the home location
of infected individuals, and the ‘trip’ variable (explana-
tory variable). Thus, the total number of trips (excluding
trips home) made by infected dengue patients entering a
given cell i in a given week ¢, V, was used as a spatial-
temporal explanatory variable in the model. The same
method was used for the 5km x 5 km analysis.

Climate variables were averaged or aggregated tempor-
ally to a weekly resolution, including weekly average
Tavg, Tmin, Tmax, DTR, RH, weekly total Pre, and RD.
Land-use data were aggregated spatially to match the
targeted spatial grid resolution. The population data
were in an original resolution that matched the 1km x 1
km grid. For land-use, the percentage of occupied land
of each type was determined for each 1km x 1km grid
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cell. Both were subsequently aggregated to a 5km x5
km grid.

A linear mixed-effects model combined with backward
elimination of insignificant fixed effects (p-value > 0.05,
two-tail test) was applied to investigate the spatial-
temporal dynamics of dengue outbreak with the poten-
tial explanatory variables at a weekly time step and 1
km x 1 km spatial resolution. In building the model we
first conducted sensitivity analysis to identify the optimal
set of climatic variables to include in the model, and cor-
responding time lag for each of them.

Along with the chosen climate variable, the remaining
set of potential explanatory variables (Table 1) was nor-
malized and then taken into the mixed-effects model ini-
tially, with population included in the spatial random
effects. Population density was incorporated using ran-
dom effects in the model because population is likely to
have spatially heterogeneous effects on dengue outbreaks
[47, 52]. For example, high population areas may imply
access to tap water and better living conditions which
could restrict dengue transmission [53], while the higher
density of population facilitates disease spread. Further-
more, there could be spatial variance in the distribution
of people living in a particular area. In addition to mo-
bility, climate, and land-use variables; the number of
new cases in a given cell in the weeks prior were added
as explanatory variables to account for autocorrelations
in the case data. Subsequently, the variable with the
most insignificant fixed-effects coefficient was eliminated
each iteration, until only variables with significant coefti-
cients (at 95% significance level) remained in the model.
A range of lead time for V! prior to the admitted week
was also tested. A separate analogous process was con-
ducted using a 5km x 5 km resolution, to test the sensi-
tivity of model results across spatial resolutions, and the
robustness of the modeling framework and findings.

Thus, the mathematical representation of the model is
given by:

Nti :Z“lfli"i_zp)ccbdc +ZYuvifu

leL ceC u

+> 8uNi_, +d +bP té
w

Where.

i is the cell index; i=1, 2, ... .

[ is the land-use variable, which belongs to the land-
use group set L, where L includes Sea, StWtr, FlwWitr,
Coconut, Marsh, Paddy, BuiltUp, Scrubland, Home-
steads, Forest, Rubber, RockS, OthAg, and Other.

f; is the occupation fraction of land-use group / in cell
i, time-invariant.

P is the population in cell i, time-invariant.

t is the time index at weekly resolution; £=1, 2, ... .
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N is the number of patients who are admitted to the
hospital during week ¢, whose home locations are in cell
i.

Nt _ is the number of patients who are admitted to
the hospital during week ¢-w, whose home locations are
in cell ;, where w is measured in weeks; w=1, 2, ...

Vi is the number of total number of trips made into
cell i during the week t-u, where u is measured in weeks;
u=1,2, ..

¢ is the climate variable which belongs to the climate
variable set C. C includes Tavg, Tmax, Tmin, DTR, Pre,
RD, and RH.

¢4, is the climate variable during the week that be-
gins d, days prior to the start of week ¢. d. ranges from 7
to 17 days and can be different for different climate vari-
ables (Figure S2). Multiple climate variables can be in-
cluded in the model.

& is the model residual associated with cell i and week
L.

a; is the estimated fixed-effects coefficient for /.

S is the estimated fixed-effects coefficient for c.

. is the estimated fixed-effects coefficient for Vﬁ B

3, is the estimated fixed-effects coefficient for N lz B

a' is the intercept associated with cell .

b’ is the estimated spatial random-effects coefficient
for P'.

The data processing and modeling were performed
using MATLAB R2017a.

u*

we

Sensitivity analysis

We performed sensitivity analysis to evaluate the robust-
ness of our model results. Firstly, a Jackknife analysis was
conducted, specifically the statistical model was fit to all
but 1 week of data, iteratively excluding 1 week at a time,
over the entire time period modeled. The variability in es-
timated parameters and their corresponding significance
are presented in Supplementary Table S1. Second, we
evaluated the sensitivity of the model to fluctuations of
the ‘trip’ variable. The motivation behind this sensitivity
analysis was the uncertainty resulting from potential hu-
man error in the ‘trip’ variable, which is based on the pa-
tients’ recollection of their travel in the 10-day prior to
hospital admittance. To assess the robustness of the model
to error in the trip variable, we implemented Monte Carlo
sampling, assuming an error of 10% uniformly distributed
around the original observations V. We performed 1000
random simulations, and the results are presented in Sup-
plementary Table S2.

Results

Data analysis

The number of admitted dengue patients aggregated
over the study region peaks during December and June
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(Fig. 2), aligned with the monsoon months [41]. Figure 2a
illustrates the relationship between the total number of
dengue patients, N, admitted during each week ¢ and
the total number of recorded patient trips (excluding the
trips to home) during the same week (V). Fig. 2b illus-
trates N; and the weekly averaged minimum daily
temperature in week ¢ (Tmin,). It shows a lagged rela-
tionship of N, with Tmin,, mostly in the same direction.
For the purposes of these graphics, the variables are ag-
gregated over the entire study region.

The travel destinations recorded in our study include
medical facilities, homes, workplaces, schools, and others
(Figure S2). Additional analysis performed reveals that a
vast majority of trips were longer than the distance a
mosquito can travel. Specifically, 96.6% of the trips were
longer than 0.4 km (Table S3; Figure S3), outside the
range of a mosquito’s maximum travel distance [18-21],
further supporting the role human mobility is likely to
play in the outbreak.

Figure 3 illustrates both the spatial-temporal distribu-
tion of dengue patients’ home locations over the course
of the outbreak, and the corresponding travel patterns of
the patients during 5-week periods, excluding the trips
with a destination of ‘home’. The patient home locations
were well distributed over the area of the study region
for the first few months of the outbreak, with corres-
pondingly scattered travel patterns. However, as the out-
break progressed, the recorded case locations and the
trip ends of newly infected dengue patients became
more concentrated near the town center and just above
the lake. There were also a large number of trips (> 50)
within the cell near the town center.

Selection of climate variables
Among the climate variables, significant correlations
were observed for weekly averaged Tavg, Tmin, and
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DTR with a lead time ranging from 7 days to 17 days
prior to the weekly admitted number of patients (N,),
where the lead time (d,) is the lag in days between the
climate variable and N, (Figure S4). Regression models
based on different combinations of the climate variables
and lead time were developed and compared; the best
performance model was select based on F-test and ad-
justed-R”. As a result, Tmin with an optimal lead time of
10 days was included in the final set of mixed-effects
models to account for the partial influence of climate on
the dengue outbreak (R” = 0.248; adj. R = 0.226). This is
consistent with previous findings [31] that daily mini-
mum temperature were associated with increase in the
larval abundance. We assumed a relatively homogenous
climate over the study region, thus Tmin does not vary
spatially over the study region.

Model results

A mixed-effects model was developed to estimate the
number of new dengue cases in a given cell in a given
week as a function of the mobility patterns of individuals
infected with dengue in the preceding week(s), as well as
land-use and climate data from days prior.

Multiple models with explanatory variables represent-
ing land-use, climate, and mobility were created, and the
three representative models are presented here. The
three models vary based on the type of mobility variable
included, specifically how far back in time travel is
accounted for. The first model includes the mobility pat-
terns one-week prior (# = 1), the second model includes
the mobility patterns two-weeks prior (u=2), and the
third model excludes mobility altogether (“Exclude V).
The final set of climate and land-use variables found to
be significant varies between models. All explanatory
variables were normalized to a mean of zero and a
standard deviation of one in the mixed-effects model.
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Fig. 2 The number of admitted dengue patients in week t (N,) and a the number of recorded trips in week t (V,) summed over the entire study
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(a) Weeks 2-6 (b) Weeks 7-11 (c) Weeks 12-16

(d) Weeks 17-21 (f) Weeks 27-31
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Fig. 3 (See legend on next page.)




Zhang et al. BMIC Infectious Diseases (2020) 20:649

Page 9 of 14

(See figure on previous page.)

Fig. 3 Weekly number of patients and the number of trips summed over 5-week intervals for a 5 km x 5 km resolution (excluding trips with a
destination of ‘home’). Patient home locations are plotted as the case location. The size of the circle indicates the number of patients admitted
during the time period. The color of the circle indicates the number of trips that end in the grid cell during the time period. The thickness of the
line is proportional to the number of trips made between two locations. Week 2 begins on October 27, 2016 and week 31 begins on May 18,
2017. For visual clarity, the 5 km x 5 km resolution was used for the figure, instead of 1km x 1 km

The fixed-effects coefficients (Table 2) therefore reflect
the relative influence of each explanatory variable on the
dengue outbreak dynamics.

The results (Table 2) for each of the three models are
presented for both a 1 km x 1 km and 5 km x 5km reso-
lution, and reveal that the mobility patterns of dengue
patients, specifically the number of trips made into a cell
in a given week, to be the most dominant explanatory
factor of new dengue cases in that cell the following
week. Under the spatial resolution of 1km x 1km, the
fixed-effects coefficient for the trips 1 week prior (z =1)
is 0.070, which is greater than the fixed-effects coeffi-
cients for other explanatory variables, suggesting human
mobility plays a critical role in dengue outbreak dynam-
ics. Results also illustrate a decrease in explanatory

power of mobility patterns further than a week in ad-
vance, and are insignificant for the trips variable with a
lead time of 2 weeks (u =2). When mobility data is ex-
cluded from the model altogether, the adjusted R® de-
creases slightly. In general, the power of the number of
trips in predicting dengue cases deteriorates with longer
lead time, with the number of trips two-weeks prior
showing little or no advantage over other explanatory
variables. The same conclusion is applicable for the re-
sults under the 5km x5km resolution, as shown in
Table 2. These results highlight the importance of col-
lecting and utilizing mobility data within an appropriate
timeframe for the purposes of modeling dengue out-
break risk. These conclusions are further supported by
the sensitivity analysis, which show the rank and

Table 2 Fixed-effects coefficients and standard error of the mixed-effects model outputs based on the 1 kmx 1 km and 5 km x 5 km
resolution, respectively. The presented results are post-completion of the backward elimination of nonsignificant fixed effects.
Variables without coefficients listed in the table were eliminated during the backwards elimination procedure for each model (each

column). Variable descriptions are listed in Table 1

1kmx 1km 5km x5 km

u=1 u=2 Exclude V u=1 u=2 Exclude V
BuiltUp 0.047%%* 0.055%** 0.053*** 0.037** 0.034* 0.050%*

(0.014) (0.014) (0.014) (0.014) (0.014) 0.016)
Sea 0.029*

(0.013)
StWir 0.026* 0.032** 0.032**
(0.011) (0.011) (0.011)

T mineg, .. 0.027%%* 0.026%** 0.026%** 0.024* 0.023* 0.021%

(0.0073) (0.0075) (0.0074) (0.0097) (0.010) (0.0098)
Vi, 0.070%** 0.113%%*

(0.0086) (0.013)
Vi, 0.040**

(0.013)

/\l; 1 0.191%** 0.196*** 0.195%** 0.3371%%* 0.350%** 0.0359%**

(0.0083) (0.0084) (0.0083) (0.017) (0.017) (0.016)
/\I; 5 0.214%%* 0.217%%* 0.217%%* 0.368*** 0.398*** 0.403***

(0.0082) (0.0084) (0.0082) 0.017) (0.017) 0.016)
R 0.265 0.265 0.262 0.733 0.728 0.727
Adj. R? 0.265 0.264 0.262 0.733 0.728 0.727
No. obs 13,532 13,035 13,532 2856 2772 2856

Standard errors are reported in parentheses.
t is in weeks, drmin = 10 days, and all variables are normalized.
*, ** *** indicates significance at the 95, 99, and 99.9% level, respectively
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magnitude of the estimated model parameters (and
significance) are robust to changes in both the out-
break period and also variability in the trips variable
(Figure S5).

Among the seven land-use groups (see variable de-
scriptions in Table 1) under the 1 km x 1 km resolution,
only Builtlp shows significant positive fixed effects on
dengue cases (Table 2). Under the coarser spatial
rasterization of 5km x 5km, StWir and Sea also show
significant positive fixed effects, in addition to BuiltUp.
Whereas Builtlp and StWtr show significant fixed ef-
fects in all three models with the coefficients ranging
from 0.034 to 0.050 for Builtlp and 0.026 to 0.032 for
StWtr, Sea shows the significant coefficient of 0.029 only
in the model with the trip variable excluded. It indicates
that urban areas, areas with standing water, and areas
near the coastline are associated with a higher risk of
dengue infections; the effect of SteW#r and Sea is stronger
under the 5km x 5 km spatial resolution. In contrast, hu-
man mobility and Builtlp are shown to be significant
and robust indicators of dengue dynamics for both
spatial resolutions. The same conclusions hold under the
sensitivity analysis performed (Table S1 and S2).

Results from the sensitivity analysis are presented in
Supplementary Table S1 for jackknife, and Table S2 and
Figure S5 for trip variable error. Both sets of analysis re-
veal minimal fluctuation in the estimated model coeffi-
cients and set of significant variables, which illustrates
the robustness of the model results. Specifically, for both
spatial resolutions, travel volumes into a given cell 1
week prior is always a significant indicator of newly re-
ported cases in the cell, while travel two-weeks prior is a
less reliable factor, and negligent at smaller spatial scales,
ie, 1km x 1 km. Further, travel patterns one-week prior
is consistently identified as a more significant indicator
of new dengue cases than climate and land use.

Discussion

The results from this study illustrate the critical contri-
bution of human mobility on the location and timing of
new dengue cases, relative to land-use and climate vari-
ables. The results are sensitive to the patterns of travel
during the week immediately preceding the appearance
of new case reports. This was the variable with the great-
est predictive power. Although, travel patterns 2 weeks
prior were found to have an insignificant effect on den-
gue outbreak dynamics. Our results are consistent with
Stoddard, Forshey [13], who concluded that visits to
households by dengue infected individuals determines
the infection risk, further validating our use of patient
home locations in the model. Furthermore, the signifi-
cance of mobility in outbreak prediction was found to be
robust under both spatial resolutions of 1 km x 1 km and
5km x 5 km.
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In contrast to the role of mobility, which we found to
be a consistently significant indicator of new dengue
cases, the effect of land-use patterns on the number of
new cases is sensitive to the spatial resolution of the
models. Land-use variables played a larger explanatory
role at the coarser spatial resolution of 5km x5km
(compared to the finer 1 km x 1 km resolution), particu-
larly for smaller spatially-dominant land-use patterns
such as Sea and StWtr. BuiltUp showed the strongest
positive effect overall, indicating urbanization is associ-
ated with an increased risk of dengue outbreak (which is
consistent with multiple previous findings [54, 55]).
StWir also showed significant positive effect, which is to
be expected because standing water provides suitable
mosquito breeding habitat [21]. The positive effect of
Sea only appeared significant when human mobility was
excluded from the model. Given the significant positive
correlation between Sea and the number of trips (Table
S4), it is likely that the large travel volume towards the
area near the coastline makes the study region prone to
dengue outbreaks. Previous studies have also found evi-
dence that dengue mosquitoes can breed in brackish
water [56], further supporting our finding of the distance
to the sea as significant in some of the models. If this
pattern holds in other regions, as seems likely, that
fact can be used for the spatial prioritization of re-
source allocation for disease case and vector surveil-
lance and control.

Among the climate factors, temperature-related vari-
ables including Tavg, Tmin, and DTR, were more
strongly associated with the outbreak emergence than
precipitation-related variables including Pre and RD, or
RH, which is related to both. This finding is in accord-
ance with [24], which concluded that “rainfall strongly
modulates the timing of dengue (e.g., epidemics occurred
earlier during rainy years) while temperature modulates
the annual number of dengue fever cases.” Based on re-
gression analysis, we found Tmin with a 10-day lead
time to be the best climate-based predictor of new
weekly dengue cases. The conclusions on climate influ-
ences may be different for other regions, for example,
with longer lead time for the best climate predictor or
more significant effects of precipitation on dengue risks
[57]. However, given that our model is readily applicable,
the model results on climate factors can be used for the
temporal prioritization of resources in broader regions.

In addition to human mobility, climate, and land-use
variables, which were included as fixed effects, popula-
tion density was incorporated using random effects in
the model because population is likely to have spatially
heterogeneous effects on dengue outbreaks, as noted in
the Methods. Based on the model results, the random-
effects coefficients for population are mostly positive, as
expected, indicating that higher population density is
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associated with a higher number of dengue cases (Figure
S6). This is consistent with previous studies that have
shown the negative impact of urbanization and popula-
tion growth on dengue risk [58]. The most significant
positive effect is seen north of the lagoon along the
coastline, highlighting potentially high-risk areas, where
higher populations are likely to facilitate the emergence
of dengue outbreaks. A few cells resulted in negative
random-effects coefficients, which may be due to con-
founding interactions between different variables in-
cluded in the model, or alternative factors not captured
in the model; these cells were few and only occurred in
the model when the dominant mobility variable was in-
cluded. It is possible the dominant role of mobility could
over compensate for the impact of population, e.g., be-
cause people are likely to travel to crowded downtown
areas, along the lagoon, or near the ocean where the
large number of trips made to those regions could
offset the impact of population. That the random-
effects coefficients for population density are positive
and negative lends support to the modeling decision
to treat it as having enough stochasticity to qualify as
a random-effects variable.

The results of this analysis have implications that are
relevant to the design of measures to control dengue
cases, such as allocation of resources for mosquito vec-
tor control. Previous global modeling of ecological suit-
ability for dengue vector mosquito species (both Aedes
aegypti and Aedes albopictus) have shown that the entire
study area is a prime habitat for these species [59, 60].
This conclusion drawn from the global models finds val-
idation in our analysis, which shows that climate and
land-use variables are not the most strongly associated
with dengue case outbreaks. Consequently, epidemio-
logical risk based on vector ecology may be insufficient
for the purposes of optimizing vector control resource
allocation, as it is unable to distinguish between poten-
tial sites to target within the study area. Because travel
into the sites is the most important predictor of new
case clusters, it may well be time to optimize vector con-
trol resources based on mobility data, with the aim to
prevent exposure to the day-biting mosquitoes, i.e, Ae-
des aegypti, at the highest risk locations. To the best of
our knowledge, such a design for dengue control mea-
sures has not yet been tried in the field.

Finally, various limitations of this study should be
noted. First, only dengue patients admitted to the
CCMDDHF at the Negombo Hospital were included
and surveyed in this study. Thus mild or asymptomatic
cases, which account for the majority of dengue cases
[1], were not accounted for in the study. Second, some
patients infected in the study region may have gone to
hospitals in other districts and would therefore not be
included. Third, the mobility data was based on patients’
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recollections over a 10-day period prior to hospital ad-
mission, and therefore may have inaccuracies due to hu-
man error in recalling the information. However,
detailed analysis of the travel data revealed most trips re-
corded represent daily commuting routines. Thus, while
some trips may be excluded due to human error, we be-
lieve the relative connectivity between cells is accurately
captured by the survey responses. In addition, the sensi-
tivity analysis revealed our results are robust to variation
in the time of outbreak and trips variable. Fourth, the
distance traveled and the time spent in a certain location
were not considered due to the unavailability of relevant
data, which is a limitation in most studies due to the
lack of tools to precisely monitor the time-dependent lo-
cation of individuals [61]. However, these factors have
been shown to have little influence on dengue transmis-
sion [13, 16], and thus their exclusion does not invali-
date the methodology used in this analysis. Fifth, by
utilizing all the mobility data collected, we made an im-
plicit assumption that the patients were infectious dur-
ing the entire 10-day period prior to hospital
admittance. This period does fall within the combined
intrinsic incubation period (410 days) [62] and the early
symptomatic period before admitted to the hospital. A
sixth assumption was that the patients were infected at
or around their home locations. This assumption is con-
sistent with a wide variety of previous studies that re-
vealed homes as the primary point of contact for dengue
transmission [13, 63, 64]. Vazquez-Prokopec, Montgom-
ery [14] tried to identify the most plausible transmission
locations based on reported contact locations from a
dengue outbreak in Cairns, Australia and found that
only 10.2% of the identified transmission sites were at
out-of-home locations, and a notable portion of them
were within 1 km of the home locations. Given that our
objective was not to model the transmission chains of
dengue as in [14], assuming home locations as the site
of infection provides reasonable support for predicting
where infected individuals reside, and therefore the risk
posed around homes of infected individuals. Lastly, the
climate data were obtained from a single station, thus a
homogenous climatic region was assumed for our study
region. Therefore, the role of climate factors on the den-
gue outbreak may be underestimated.

While the modeling framework used here is readily ap-
plicable to other contexts, future work should investigate
how widely transferable the model results are. More spe-
cifically using general mobility data (tracking movements
for all residents); such as using mobile phone data as in
[15], or transport planning data, which may be more
readily available and cost effective; should be compared
to the use of patient mobility surveys as in this study. In-
formation on the attributes of the surveyed subjects such
as ages and occupations may be worth exploration when
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available, as people in different age groups or occupa-
tions may report different movement patterns, such as
the frequency of contacts per trip, which could therefore
affect their associated risk of dengue transmission. Con-
trol measures that target specific sites within a cell or a
land use type should be considered based on a combin-
ation of our study and other site-specific studies such as
[65, 66]. For example, previous studies show that schools
were associated with the highest ratio of positive larvae
breeding sites over potential breeding sites, in contrast
to residential premises at the lower end, based on an en-
tomological survey in a subdistrict of the city of Col-
ombo within our study region [66]. Such sites at higher
risk should be specifically targeted after spatial and tem-
poral prioritization of resources in vector control
programs.

Conclusions

Our study highlights the potential value of using travel
data to target vector control within a region. In addition
to illustrating the relative relationship between various
potential risk factors for dengue outbreaks, the results of
our study can be used to inform where and when new
cases of dengue are likely to occur within a region, and
thus help more effectively and innovatively, plan for dis-
ease surveillance and vector control.
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