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Abstract: Progesterone receptor (PGR) activity is obligatory for mammalian ovulation; however, there
is no established direct functional pathway explaining how progesterone receptor completely and
specifically regulates oocyte release. This study examined the overarching cell- and isoform-specific
effects of the PGR within each cellular compartment of the ovary, using mice null for the PGR (PRKO),
as well as isoform-specific null mice. The PGR was expressed in ovarian granulosa and stromal
cells and although PRKO ovaries showed no visible histological changes in preovulatory ovarian
morphology, follicle rupture did not occur. Reciprocal ovarian transplant experiments established
the necessity of ovarian PGR expression for ovulation. Cumulus–oocyte complexes of PRKO mice
exhibited normal morphology but showed some altered gene expression. The examination of
mitochondrial activity showed subtle differences in PRKO oocytes but no differences in granulosa cell
respiration, glycolysis or β-oxidation. Concurrently, RNA-seq identified novel functional pathways
through which the PGR may regulate ovulation. PGR-A was the predominant transcriptionally active
isoform in granulosa cells and 154 key PGR-dependent genes were identified, including a secondary
network of transcription factors. In addition, the PGR regulated unique gene networks in the ovarian
stroma. Collectively, we establish the effector pathways activated by the PGR across the ovarian cell
types and conclude that PGR coordinates gene expression in the cumulus, granulosa and stromal
cells at ovulation. Identifying these networks linking the PGR to ovulation provides novel targets for
fertility therapeutics and nonhormonal contraceptive development.

Keywords: progesterone receptor; PGR-A; PGR-B; PRKO; transcriptome; ovulation; ovarian stroma;
granulosa cells; pathways analysis; respiration

1. Introduction

Ovulation is a highly coordinated, multifaceted series of events that culminate in the
release of the mature oocyte. This is a pivotal event in reproduction and identifying the crit-
ical mechanisms that lead to oocyte release is essential to our basic understanding of female
fertility and the development of novel therapeutic interventions for humans. Following
the LH surge, substantial energy-intensive remodeling occurs within the ovary. Within the
preovulatory follicle, the granulosa cells coordinate the release of prostaglandins and other
paracrine signaling factors to initiate the processes that mediate follicular rupture [1–4].
These factors mediate the cumulus–oocyte complex (COC) expansion, resumption of
oocyte maturation and induce a cumulus cell invasive phenotype for the extrusion of the
oocyte [5–9]. The granulosa cells themselves also release proteases to remodel the extra-
cellular matrix and follicular architecture [10–14]. Surrounding the follicle, in the stromal
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compartment of the ovary, ovulation involves an influx of immune cells, vascular remodel-
ing and smooth muscle contraction [15–22]. Much of what is known about the control of
ovulation has been investigated within the ovarian follicle. However, the stromal tissue of
the ovary is emerging as a similarly critical regulator of ovarian function [23]. In particular,
we recently identified that stromal collagen deposition and optimal mitochondrial function
are key contributors to successful ovulation (unpublished data). Therefore, it is important
to consider stromal gene expression to fully understand the mechanisms required for ovu-
lation. Isolating the critical molecular pathways and genes for these functions will provide
novel targets for the development of nonhormonal contraceptives and inform the treatment
of female infertility.

The progesterone receptor (PGR) is well established as a key mediator of ovula-
tion, with PGR activity being an absolute requisite for follicular rupture across multiple
species [24–28]. The two main isoforms of the progesterone receptor PGR-A and PGR-B are
present at tissue-specific, tightly controlled ratios to transcriptionally regulate functions
across the entire female reproductive system [29]. PGR knockout (PRKO) mice which are
null for both isoforms display a number of reproductive defects including impaired uterine
decidualization, severe underdevelopment of mammary glands, the absence of sexual
receptivity behavior and critically, a compete block in oocyte release even after exogenous
superovulation treatment [24,28,30–32]. The PGR is induced 750-fold in mouse granulosa
cells following the LH surge and regulates the expression of important ovulatory genes
including Adamts1, Edn2 and Pparg [14,28,33–37]. Importantly, however, no known PGR-
regulated gene individually explains the requirement of PGR for follicle rupture, as null
mouse models for each of these genes still have some ability to ovulate, in stark contrast
to the complete block in ovulation seen in PRKO mice. Our previous low-density array
of the whole PRKO ovary at 10 h post-hCG and a microarray analysis of PRKO granulosa
cells at 8 h post-hCG identified a number of novel PGR-regulated genes [34,38], with recent
high-throughput sequencing analysis further demonstrating the extent to which PGR-A
and PGR-B isoforms regulate the ovulatory transcriptional landscape [39]. Despite this,
there is no established direct pathway explaining how the progesterone receptor regulates
ovulation in such a profoundly complete and specific manner. Additionally, since mice null
for the PGR-A isoform (PRAKO) have an anovulation phenotype while PGR-B null mice
(PRBKO) ovulate normally [39–41], there are isoform-specific transcriptional roles of the
PGR required for follicle rupture that remain to be identified.

This study holistically examined the overarching, cell- and isoform-specific effects
of the PGR within the ovary to understand PGR-regulated mechanisms that explain its
necessity for ovulation. Using mice null for the PGR (PRKO), as well as isoform-specific
PRAKO and PRBKO mice, we comprehensively examined each cellular component of
the ovary to identify functional pathways through which PGR may regulate ovulation.
Ultimately, RNA-seq was used to determine the isoform-specific effect of the PGR on
transcriptional regulation in both the granulosa cells and the ovarian stroma to identify
novel downstream pathways functionally linking PGR to ovulation.

2. Materials and Methods
2.1. Animals and Superovulation

This research was approved by the University of Adelaide Animal Ethics Committee
(ethics approval numbers m/2018/100 and m/2018/122) and conducted in accordance
with the National Health and Medical Research Council (NHMRC) Australian Code of
Practice for the Care and Use of Animals for Scientific Purposes. Mice were housed in a
12 h light:12 h dark housing conditions with rodent chow and water provided ad libitum.

Female CBA x C57BL/6 F1 (CBAF1) mice were obtained from Laboratory Animal
Services (University of Adelaide). Genetically modified mice null for both PGR isoforms
(PRKO; Pgrtm1Bwo), null specifically for the PGR-A isoform (PRAKO; Pgrtm1Omc) or null for
the PGR-B isoform only (PRBKO; Pgrtm2Omc) were obtained from Jackson Laboratory (Bar
Harbor, ME, USA) [24,40,41]. A second KO model null for all PGR isoforms (Pgrtm1Lyd) was
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used in some experiments where indicated. In this strain, designated PRlacZ, a neomycin
cassette and lacZ insertion disrupt the expression of the PGR gene [42]. Mice were double
genotyped using ear biopsies to assign experiments then confirmed using tail biopsies
collected at time of experiments.

Female mice at 21–25 days old (unless otherwise specified) were hormonally stimu-
lated to synchronously induce folliculogenesis and ovulation. Mice were injected intraperi-
toneally with 5 IU equine chorionic gonadotropin (eCG). Then, after 44 h, 5 IU human
chorionic gonadotropin (hCG) was administered by intraperitoneal injection. Mice were
humanely killed by cervical dislocation at specified timepoints post-hCG injection and the
ovarian material was collected.

2.2. Histology and Immunofluorescence

Ovaries were fixed in cold 4% paraformaldehyde at 4 ◦C for 24–48 h. Ovaries were
embedded in paraffin wax and sectioned at 5 µm thickness.

For histological assessment, sections from PRlacZ strain were stained with hema-
toxylin and eosin (H&E) and imaged using a Nanozoomer digital slide scanner with a
40× objective.

For immunofluorescence, sections were dewaxed in xylene and rehydrated; then,
heat-induced antigen retrieval was performed using citrate buffer (pH 6). Sections were
blocked in solution of 1% BSA/9% normal goat serum (NGS) in tris-buffered saline (TBS)
for 1 h at RT. This was followed by incubation with primary antibody against PGR (1:500,
D8Q2J, cat no. 8757, Cell Signaling, Danvers, MA, USA) diluted in 1% NGS-TBS overnight
at 4 ◦C. Slides were washed with 0.025% Triton X-100-TBS, then incubated with secondary
antibodies (1:2000) and Hoechst 33,342 (1:500) diluted in 1% NGS-TBS for 1 h at RT. Images
were acquired using an Olympus FV3000 confocal microscope (Olympus, Tokyo, Japan).

2.3. Ovarian Transplant

Donor ovaries were obtained from 3.5–6.5-week-old WT and KO females from the
PRlacZ colony that were humanely killed by cervical dislocation and ovaries removed and
kept in PBS at room temperature. WT females from the PRlacZ strain were used as recipient
mice at 3–4 months old. Recipient mice were anesthetized using isoflurane inhalation and
a small mid-dorsal incision used to access the ovary. The ovarian fat pad was clamped
with a serrefine clamp to secure the ovary in place. Ovarian transplants were performed
as described by Nagy et al. [43]. Briefly, a small incision in the bursa on the opposite side
to the oviduct was used to slip the ovary out of the bursa. The ovary was then removed
by pinching off the supporting stalk with fine forceps. The donor ovary was then inserted
into the recipient’s bursal sac. The ovarian tissues were returned to the body cavity before
repeating on the opposite side. After the ovarian transplant was complete the wounds were
closed using wound clips. Recipient females were placed on a heating pad to maintain
body temperature during anesthesia recovery.

For histological assessment, a WT and a KO donor ovary were transplanted onto the
contralateral sides of the same recipient females (n = 3). At 3 to 6 weeks following surgery,
recipient mice were stimulated with eCG followed by hCG and humanely killed at 23 h
post-hCG. Ovaries were fixed and the entire ovaries sectioned and stained with H&E (see
above) for histological examination. A range of 23–43 sections per ovary were assessed
for the number of anovulatory follicles. Both unruptured follicles not yet luteinized with
expanded COCs and luteinized, unruptured follicles with entrapped oocytes were included
in the definition of anovulatory follicles.

For the fertility study, only one (either WT or KO) ovary was transplanted into the
ovariectomized recipient females (n = 3 per donor genotype). At two-week post-surgery,
the recipient females were housed with WT males (PRlacZ strain) for three months and
vaginal plugs assessed for evidence of copulation. Resulting pups were genotyped as
previously described [44] to confirm ovary of origin.
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2.4. Oocyte JC-1 Staining

COCs were collected at 10 h post-hCG and denuded with 50 µL hyaluronidase
(1000 IU/mL, Invitrogen Australia, Mulgrave, Vic, AU) in collection media (αMEM-HEPES).
Denuded oocytes were washed in fresh collection media then incubated in media contain-
ing 6 µM JC-1 dye (GIBCO, Invitrogen Australia). Oocytes were incubated for 15 min at
37 ◦C to allow JC-1 aggregates to form in high-membrane potential mitochondria (red
fluorescence). Oocytes were then immediately imaged through an optical cross-section at
the widest point of the oocyte using the Fluoview FV10i Olympus confocal microscope
for green fluorescence emission (525 nm, low membrane potential) and red fluorescence
(590 nm, high membrane potential) using a 60× objective. A total of 58 oocytes from 4 KO
mice and 61 oocytes from 4 heterozygous littermates were imaged (PRlacZ strain). Using
AnalySIS LS professional software (Olympus Australia, Mt Waverly, Vic, AU), a rectangle
was placed across the oocyte image and the average green or red fluorescence intensity in
each pixel column (0.3 µm intervals) across the box was determined. The mean and SE of
the red or green fluorescence was calculated across all PRKO or PGR heterozygous (PRHet)
oocytes. Statistical significance was determined by a mixed-model two-way ANOVA.

2.5. COC Microarray

COCs were collected by needle puncture from antral follicles needle of KO and
heterozygous (PRlacZ) ovaries at 8 h post-hCG, then snap-frozen in liquid nitrogen until
use. Heterozygous PGR-null mice were used as a control as ovulation rates are comparable
to wildtype mice [39,42]. A total of 4 biological replicates per genotype were obtained, each
consisting of COCs pooled from 3 mice. RNA was extracted using the TRIzol extraction
method and DNAse-treated before use. Microarray analysis was performed by the Adelaide
Microarray Centre (AMC, SA, Australia). Samples RNA integrity thresholds over 8.0 were
verified using an Agilent bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Sample
preparation was performed by AMC using Affymetrix GeneChip kits (Affymetrix, Santa
Clara, CA, USA) according to the manufacturer’s instructions. Samples were hybridized
overnight to Affymetrix GeneChip Mouse Gene 1.0 ST arrays (Affymetrix, Santa Clara,
CA, USA). Assays were washed, stained with fluorescently labelled antibody then scanned
using the Affymetrix GeneChip Scanner 3000 7G plus.

Data were normalized by fitting to the linear model and differential gene expression be-
tween PRKO and PRHet COCs determined using limma-voom. LogFC > 1 and Padj < 0.05
criteria were applied to obtain a list of differentially expressed genes (DEGs). Raw data
from the COC microarray are available on GEO (GSE92436). COC gene expression was
compared to granulosa cell (GC) gene expression, using previously published adjacent
microarray data of PRKO 8 h GCs [34,38]. Data were obtained from GEO (GSE92437) and
analyzed using the method described above.

2.6. Seahorse Extracellular Flux Assay

Ovaries were collected from female mice (PRKO, PRAKO and PRBKO strains) at 10 h
post-hCG and granulosa cells were collected from antral follicles via puncturing. Cells
were separated by the addition of 1 IU of hyaluronidase per 1 mL of handling media
for 5 min and pipetted through a fine glass pipette. Granulosa cells were then purified
through a 70 µm filter to remove oocytes and any undigested tissue. Cells were seeded
at 150,000 live cells per well in Seahorse cell culture plates that had been coated with
fibronectin overnight.

Mitochondrial stress test (Agilent, Santa Clara, CA, USA) was performed as per
the manufacturer’s instructions with cell-optimized drug concentrations. In brief, cells
were seeded into mitochondrial media (1 mM pyruvate, 10 mM glucose, 2 mM glu-
tamine and 15 mg/L phenol red in DMEM-based medium (Sigma Aldrich, pH 7.4 at
37 ◦C), incubated at 37 ◦C for 15 min, then the oxygen consumption rate (OCR) mea-
sured on the Agilent Seahorse XFe96 extracellular flux analyzer. The Seahorse injec-
tion plate was hydrated overnight prior to the assay being performed and then cali-



Cells 2022, 11, 1563 5 of 23

brated, and cells were sequentially treated with oligomycin (1 µM), carbonyl cyanide
4-(trifluoromethoxy)phenylhydrazone (FCCP, 2.5 µM) and a combination of antimycin A
(1 µM) and rotenone (1 µM).

The glycolysis stress test (Agilent) was performed as above but using glycolysis media
(2 mM glutamine and 15 mg/L phenol red in DMEM-based medium (Sigma Aldrich), pH
7.4 at 37 ◦C). Extracellular acidification rate (ECAR) was measured on the Seahorse XFe96
analyzer with cells sequentially treated with glucose (10 mM), oligomycin (1.0 µM) and
2-deoxyglucose (2-DG 50 mM).

The fatty acid palmitate-oxidation stress test was performed as per the manufacturer’s
instructions (Agilent XF Palmitate Oxidation Stress Test—Advanced Assay), except cells
were not serum-starved due to constraints of in vivo stimulated primary cells. For cell
media, XF DMEM medium ph 7.4 (Agilent) supplemented with 0.5 mM L-carnitine and
2.0 mM glucose was used. Cells were incubated at 37 ◦C for 15 min, then just prior
to beginning the assay either Palmitate:BSA substrate (Agilent XF Palmitate-BSA FAO
Substrate, 30 µL per well) or BSA control substrate (Agilent XF BSA Control FAO Substrate,
30 µL per well) were added to cells. OCR was measured on the XFe96 analyzer with cells
sequentially treated with etomoxir (30 µM) or media, oligomycin (1 µM), FCCP (5 µM) and
a combination of antimycin A (1 µM) and rotenone (1 µM).

All assays were performed in 9 min cycles of mix (3 min), wait (3 min) and measure
(3 min) as per manufacturer’s recommendations. Data were averaged from 2–4 technical
replicate wells and cellular metabolism readouts were determined using Agilent Seahorse
Wave software.

2.7. RNA-seq

For granulosa cell RNA-seq, female PRKO, PRAKO and PRBKO mice at 21–27 days old
were hormonally stimulated with 5 IU eCG followed by 5 IU hCG and were humanely killed
at 8 h post-hCG. Granulosa cells were collected from ovaries by follicle puncturing, then
snap-frozen in liquid nitrogen. A total of 4 biological replicates per genotype were obtained,
each consisting of granulosa cells pooled from 3 mice. RNA was extracted with the RNeasy
Mini Kit (Qiagen), including DNase treatment, as per the manufacturer’s instructions. RNA
quality was assessed using the RNA ScreenTape system (Agilent). A total RNA library
was prepared using the Universal RNA-seq kit with NuQuant Mouse AnyDeplete (Nugen,
Redwood City, CA, USA). Paired-end sequencing was performed on the NovaSeq 6000 S1
sequencing system (Illumina) at a depth of 81–99 M, 100 bps paired reads. Overrepresented
adapters were checked using FastQC [45] and AdapterRemoval [46] was used to trim
when required. Reads were aligned to the GENCODE mouse transcriptome (GRCm38.p6
M25 release) and transcripts quantified using Salmon [47]. DEGs were assessed using
the limma-voom method [48]. Differential gene expression was defined as logFC ≥ 1
(fold-change ≥ ±2) and a Benjamini–Hochberg adjusted p–value ≤ 0.01.

Stroma RNA-seq was performed on granulosa cell-depleted ovarian tissue, which
includes primarily stromal cells but also vascular endothelial cells, theca cells and immune
cells (collectively referred to as stromal tissue) [23]. Female PRKO mice at 21–27 days
old were hormonally stimulated as above and ovaries collected at 8 h post-hCG. Ovaries
were repeatedly and thoroughly punctured to remove granulosa cells and the residual
ovary was snap frozen in liquid nitrogen. A total of 3–4 biological replicates per genotype
were obtained, each consisting of tissue pooled from 3 mice. RNA was extracted from the
unprocessed residual ovarian tissue using the RNeasy Mini Kit (Qiagen), including DNase
treatment, as per the manufacturer’s instructions. RNA quality assessment, library prepa-
ration and sequencing were conducted by the Australian Genome Research Facility (AGRF,
Melbourne, Australia). mRNA libraries were prepared using the Illumina Truseq Stranded
mRNA kit. Paired-end, 100 bp sequencing was performed on a NovaSeq 600 SP, 200-cycle
(Illumina) sequencing system with a depth of 54–72 M reads per sample. Sequencing quality
was checked using FastQC. Transcripts were aligned to the mouse transcriptome (GRCm39
M26 release) and quantified with Salmon [47]. DESeq2 [49] was used to assess differen-
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tially expressed genes between KO and WT with differential gene expression defined as
logFC ≥ 0.5 and a Benjamini–Hochberg adjusted p-value ≤ 0.05. To account for granulosa
cell contamination in starting material, stroma DEG whose expression level in granulosa
cells (GC) was at least double the expression level in stroma (count(GC)/count(stroma) ≥ 2 or
logFC(GC)/logFC(stroma) ≥ 2) were excluded. From this, 83.2% of identified stroma DEGs
were retained.

In silico pathway analysis of DEGs was performed through Ingenuity Pathways Anal-
ysis (IPA) software (QIAGEN, Hilden, Germany). Functions and disease and upstream
regulators analyses were used, and the top dysregulated categories identified based on the
highest absolute activation z-scores. The visualization of the DEG analysis data was con-
ducted primarily using ggplot2 [50] and read alignments visualized using first HISAT2 [51]
then the UCSC Genome Browser (Santa Cruz, CA, USA). Raw data from RNA-seq are
available on GEO (GC-GSE168213/Stroma-GSE197759)

2.8. Quantitative Real-Time PCR

Granulosa cells were collected from ovaries by repeated puncturing. RNA was iso-
lated using the TRIzol extraction method, including DNase treatment. cDNA was then
synthesized from 1100 ng of RNA using SuperScriptIII reverse transcriptase kit (Thermo
Fisher Scientific, Waltham, MA, USA). cDNA was used for RT–qPCR using TaqMan as-
say probes and methodology (Thermo Fisher Scientific). The expression was normalized
to the Rpl19 reference gene and expressed as fold change relative to the mean of the
control samples using the ddCT method. Each group had 4 biological replicates (each
pooled from 3 mice). Taqman probes: Zbtb16 Mm01176868_m1; Pparg Mm01184322_m1;
Rpl19 Mm02601633_g1.

2.9. Western Blot

Granulosa cells were collected at 10 h post hCG by ovary puncture. Cells were lysed
in RIPA buffer (Merck, Darmstadt, Germany) containing a 1% protease inhibitor cocktail
(Sigma-Aldrich). Proteins were denatured in LDS buffer containing 1 µL β-Mercaptoethanol
at 65 ◦C for 10 min, for ZBTB16 blot, or 50 ◦C for 10 min for OXPHOS blot. Equal quantities
of protein were loaded into 4–12% Bis-Tris gel, and proteins separated by gel electrophoresis
at 165 V for 45–60 min. Protein was transferred onto nitrocellulose membrane and then
blocked in Odyssey blocking buffer (Li-Cor, Lincoln, NE, USA) for 1 h at RT. Blots were
incubated overnight at 4 ◦C with primary antibodies (OXPHOS (1:1000, ab110413, Abcam,
Cambridge, UK) anti-ZBTB16 (1:1000, AF2944, R&D systems, Minneapolis, MN, USA)
or anti-beta actin (1:5000, A1978, Sigma-Aldrich, Burlington, MA, USA). After washing
3 × 5 min in PBS-0.1% Tween, membranes were incubated with corresponding secondary
antibodies (Li-Cor) for 1 h at RT, then washed again. Membranes were imaged on the
Odyssey imager infrared imaging system (Li-Cor). Western quantification is shown as fold
change relative to reference protein, B-actin. We used 3 biological replicates (pooled from
4 mice) per genotype.

2.10. Statistical Analysis

The statistical analysis of the data was performed using Graphpad Prism 9, Sigmaplot
or R software (https://www.r-project.org, accessed on 11 March 2022). All experiments
involved multiple biological replicates and data points were from ovaries of individual
mice or cells pooled from multiple mice as indicated. The statistical analysis of the RNA-
seq DEGs was performed as stated above. All bar graphs are shown as mean ± SEM.
Comparisons between control and KO were analyzed by unpaired t-test. Comparisons
between WT, het and KO or over a time course were analyzed using a one-way ANOVA
with Tukey’s multiple comparisons. * p < 0.05, ** p < 0.01, *** p < 0.001.

https://www.r-project.org
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3. Results
3.1. PGR Specifically Regulates Rupture of the Follicle at Ovulation

The progesterone receptor (PGR) was highly abundant in granulosa cells of ovulating
follicles, as shown by immunofluorescence staining of wildtype mouse ovaries at 6 h post
hCG-stimulation. Within the follicle, the PGR was localized specifically to the granulosa
cells, with no PGR observed in the cumulus cells or oocyte (Figure 1A). In addition, a
population of cells within the ovarian stroma expressed the PGR at 6 h post-hCG (Figure 1B).
This staining pattern was validated with a second anti-PGR antibody (data not shown).
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Figure 1. PGR is expressed in preovulatory granulosa cells and within the stromal compartment but
not in cumulus cells. PGR localization by immunohistochemistry in wildtype ovaries at 6 h post-hCG
using anti-PGR antibody (red) and Hoechst33342 nuclear stain (blue). (A) Ovary sections stained with
anti-PGR (I) or isotype control (II)), with individual follicles shown at higher magnification (III, IV).
(B) Ovary sections stained with anti-PGR (I) (or isotype control (II)), with the stromal compartment
shown at higher magnification (III, IV). All scale bars are 100 µm.
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To investigate ovulatory mechanisms controlled by the PGR, PRKO females and
heterozygous littermate controls were hormonally stimulated with gonadotropins and
ovaries collected along a time course. In mice, ovulation occurs at approximately 12–13 h
post-hCG [5], therefore ovaries collected every 2 h from 8–16 h post-hCG were histologically
examined for classical periovulatory features (Figure 2). At 8 h, the COCs were still
relatively compact, but by 10 h post-hCG, a similar COC expansion level had occurred in
the ovaries in both genotypes. The vascularization of the thecal layer around antral follicles
and large blood vessels in the stroma was evident for both PRKO and control ovaries. By
12 h post-hCG, there was a significant COC expansion, and no apparent differences in COC
expansion in the PRKO ovaries. In addition, an accumulation of the granulosa cells at the
follicle base and a substantial thinning of the apical wall occurred in PRKO ovaries to a
similar degree as the controls. Therefore, through histological examination, there were
no morphological differences in the PRKO ovaries and classical ovulatory mechanisms of
cumulus cell expansion and follicle remodeling appeared histologically normal.

At 14 h, a striking difference between PRKO and control ovaries became apparent,
with a clear anovulation phenotype in the PRKOs. Control follicles had formed corpora
lutea with confluent cell layers and no remaining antral cavity, indicating rupture and
oocyte release had occurred. Conversely, the PRKO ovaries had persistent antral cavities
with the oocytes and expanded cumulus masses remaining trapped within the follicles. At
16 h post-hCG, there were still multiple unovulated follicles within the PRKO ovaries. Some
follicles had persistent antral cavities with trapped oocytes and other follicles had dark
confluent cells surrounding a trapped oocyte indicating luteinized, unruptured follicles.
From this histological time course, it appeared that the PGR very specifically regulated
the rupturing of the follicle; however, its PGR-regulated downstream pathways were not
clear. Therefore, the mechanisms behind PGR regulation of follicle rupture required a closer
functional investigation.

3.2. Ovarian Progesterone Receptor Is Essential to Ovulation and Fertility

Ovarian transplantation experiments were conducted to confirm that ovarian expres-
sion of the PGR was solely responsible for the anovulation phenotype. PRKO or WT
ovaries were transplanted into the contralateral sides of recipient ovariectomized WT mice
(Figure 3A). After superovulation, the KO ovaries transplanted in WT recipients contained
unovulated follicles (Figure 3B). There was a significantly higher number of anovulatory
follicles in the transplanted KO ovaries, with an average of 23 (±2.33) compared to 4 (±1.86)
in the transplanted WT control ovaries (Figure 3C). This abundance and the appearance of
the unruptured follicles in the transplanted PRKO ovaries is analogous to what is seen in
mice with a global PGR-deletion.

Additionally, the fertility of ovariectomized mice with either a single KO or WT ovary
transplantation was examined (Figure 3D). Females were co-housed with WT males with
evidence of copulation observed between 1 and 7 days after pairing in all females including
those with KO ovaries, demonstrating that mating receptivity behavior did not require
ovarian PGR signaling. Two of the three females with a WT ovary transplant produced
pups totaling 14 offspring over five litters for WT ovary recipients. There were no pups
or fetuses produced from the KO ovaries with no offspring produced during mating with
a PR+/− genotype, indicating that fertility could not be restored to the PRKO ovaries
even when transplanted to a PGR-replete recipient (Figure 3E). This shows that ovarian
expression of the PGR is essential for follicle rupture and oocyte release. Therefore, it is
essential to understand the mechanisms regulated by PGR within the ovary.
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Figure 2. Histological analysis of PRKO ovaries demonstrates specific defect in follicular rupture.
Ovaries were collected from PRKO and heterozygous (Het) littermates at 8, 10, 12 h timepoints
post-hCG and 14 h, and 16 h timepoints, after ovulation has normally occurred. Ovary sections
were stained with H&E to analyze histological phenotypes including ˆ COC expansion, + granulosa
cell accumulation at the follicle base, # thinning of the apical wall, * vascularization, luteinization,
unruptured luteinized follicles. Representative examples from histology performed on ovaries from
3 mice per timepoint.
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Figure 3. Ovarian progesterone receptor is essential for fertility. (A) Schematic of ovarian transplant
design for histological assessment. Donor WT or PRKO ovaries were transplanted into the contralat-
eral sides of recipient ovariectomized WT females. (B) Representative H&E images of transplanted
WT and KO ovaries at 23 h post-hCG. Symbols represent follicle types: # normal luteinized follicles;
* anovulatory unruptured follicles with expanded COCs; + anovulatory luteinized, unruptured
follicles with entrapped oocytes. (C) Quantification of anovulatory follicles in KO vs. WT trans-
planted ovaries. Mean ± SEM; n = 3 donor ovaries per genotype. ** p < 0.01 by unpaired t-test.
(D) Schematic of ovarian transplant design for fertility assessment. Ovariectomized recipient WT
females were transplanted with either one WT ovary or one KO ovary then paired with WT stud
males. (E) Offspring originating from a WT ovary (offspring PRWT) or KO ovary (offspring PR+/−)
were tallied with numbers indicating total from litters of n = 3 transplanted recipients per genotype.

3.3. Ovulatory Cumulus–Oocyte Complexes Are Subtly Altered in PRKO Mice

The PGR was not expressed in the cumulus–oocyte-complex (Figure 1A); however,
it was investigated if the PGR had any downstream effects on important cumulus cell
function, including expansion and oocyte maturation. The COCs isolated at 10 h post-
hCG showed no morphological differences between PRKO and heterozygous littermates
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in COC expansion or integrity (Figure 4A), consistent with tissue histology. An RNA
microarray of the PRKO COCs was used to identify any transcriptional differences caused
by PGR-deletion. At 8 h post-hCG, there were 73 differentially expressed genes (DEGs)
in the PRKO COCs vs. the heterozygous control COCs, with 6 genes upregulated and
67 downregulated (logFC ≥ 1, padj ≤ 0.05) (Figure 4B, Supplementary Table S1). This
suggests that the PGR may regulate transcriptional induction of some cumulus cell genes.
However, when compared to an adjacent microarray dataset of the PRKO granulosa cells
from the same mice, the majority of the COC DEGs were also dysregulated in the granulosa
cell population [34,38]. Additionally, no cumulus matrix genes were dysregulated, which
is consistent with observed normal COC expansion. Therefore, there was minimal PGR
regulation of cumulus cell-specific gene expression.
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Figure 4. PRKO mice have altered mitochondrial distribution and changes in cumulus cell gene
expression. (A) COCs collected from antral follicles of PRKO and heterozygous controls at 10 h
post-hCG and photomicrograph images captured. (B) Microarray analysis was performed on COCs
at 8 h post-hCG and PRKO differentially expressed genes (DEGs) identified (logFC ≥ 1, padj ≤ 0.01).
COC DEGs were compared to previous microarray data of DEGs in the granulosa cells (GCs).
(C) Denuded oocytes from PRKO and heterozygous controls were stained with JC-1 potentiometric
dye to determine high mitochondrial membrane potential (red) and low mitochondrial potential
(green). (D) JC-1 red channel and green channel fluorescence intensity and distribution were analyzed
across the oocyte midsection. n = 4 mice per genotype, with an analysis of 58–61 oocytes. Statistical
significance between genotypes was determined by mixed-model two-way ANOVA, *** p < 0.001.

Another important function of the cumulus cells is to support oocyte development.
The effect of PRKO on oocyte development was assessed by analyzing mitochondrial bioen-
ergetic activity in the oocyte, which has been linked to oocyte viability and developmental
competence [52]. An image analysis of mitochondrial JC-1 staining showed a consistent
pattern in control oocytes with high (red) mitochondrial potential concentrated to the
pericortical region and low (green) mitochondrial potential predominant across the central
cytoplasm (Figure 4C). Interestingly, while the PRKO green fluorescence intensity was sim-
ilar to controls, there was a significant increase in red fluorescent staining across the center
of the PRKO oocytes indicating more mitochondria with high membrane potential in the
center of PKO oocytes (Figure 4D). Therefore, the distribution of mitochondria with high
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membrane potential was slightly skewed in the PRKO oocytes, potentially an indication
of altered COC function or oocyte maturation. Importantly however, we have previously
found that when oocytes of PRKO mice were matured in vitro and subjected to IVF, they
gave rise to embryos that were indistinguishable from wildtypes, and following uterine
transplantation produced healthy live offspring [53].

3.4. Mitochondrial Metabolism Is Not Altered in PRKO Granulosa Cells at Ovulation

Mitochondrial metabolism is a pathway regulated by PGR and other steroid receptors
in certain biological contexts [54–56], and our analysis of LH-induced gene expression
found mitochondrial transport pathways were key functions upregulated in granulosa
cells at ovulation [39]. To determine if PGR also influences mitochondrial metabolic rate in
granulosa cells during ovulation, the protein levels of electron transport chain components
and the metabolic profile of ovulatory granulosa cells were assessed. No difference was
seen in the abundance of mitochondrial oxidative phosphorylation subunit proteins in
PRKOs compared to control littermates at 10 h post-hCG (Supplementary Figure S1). All
respiration function parameters including basal oxygen consumption rate (OCR), maximal
OCR and ATP production were not significantly different between PRKO granulosa cells
and controls (Figure 5A,B). Likewise, the glycolysis stress test found no difference in basal
glycolysis or glycolytic capacity between cells from PRKO mice and controls (Figure 5C,D).
Mitochondrial respiration and glycolysis were similarly not affected in granulosa cells from
PRAKO or PRBKO mice (Supplementary Figure S2).

Fatty acid oxidation stress test results found no difference in fatty-acid oxidation in
the PRKO cells. The addition of etomoxir (acute response) reduced respiration capacity
in all groups, demonstrating that fatty acids were used as an energy source in normal
ovulatory granulosa cells; however, there were no differences detected between KO, WT or
heterozygous cells. There was no change in endogenous maximal response, suggesting no
effect of the PGR on the utilization of intracellular fatty acids nor was there a difference in
the utilization of palmitate at basal or maximal response conditions (Figure 5E,F). Thus, al-
though mitochondrial respiration, glycolysis and fatty acid oxidation are evident metabolic
processes occurring in granulosa cells immediately prior to ovulation, no changes were seen
in these metabolic capacities due to the loss of the PGR. Therefore, the PGR does not appear
to regulate ovulation through overarching changes in granulosa cell energy production.

3.5. Key PGR Downstream Pathways Include a Transcription Factor Network and Actin Fiber
Gene Regulation

To determine the PGR isoform-specific preovulatory transcriptome in granulosa cells,
RNA-seq was performed on granulosa cells from PRKO, PRAKO and PRBKO mice [39].
Granulosa cells were isolated at 8 h post-hCG and differentially expressed genes (DEGs)
determined between KO and WT controls. The principal component analysis is shown
in Figure S3A. The loss of both PGR isoforms (PRKO) resulted in 236 DEGs (logFC ≥ 1,
padj ≤ 0.01). The loss of only the A isoform (PRAKO) resulted in 310 DEGs and of these, 154
were common with the PRKO DEGs (Figure 6A). Conversely, the loss of PGR-B (PRBKO)
showed no significant DEGs (logFC ≥ 1, padj ≤ 0.01). This is demonstrated on the gene level
across Cxcr4 with PRKO and PRAKO showing a decreased transcript level while PRBKO
was equivalent to that of WT (Figure 6B). This indicates that PGR-A is the predominant
isoform regulating transcription in preovulatory granulosa cells.
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Figure 5. Granulosa cell mitochondrial metabolism, glycolysis and fatty acid oxidation are not altered
in PGR null mice at ovulation. Granulosa cells were collected from PRKO mice and WT or HET litter-
mates at 10 h post-hCG and assayed using Seahorse extracellular flux stress tests. (A,B) Mitochondrial
stress test analysis of mitochondrial respiration capacity and ATP production. (C,D) Glycolysis stress
test assessment of glycolytic capacity of granulosa cells. (E,F) Palmitate-oxidation stress test de-
termined granulosa cell utilization of endogenous fatty acids or exogenous palmitate substrate for
respiration. Values represent mean ± SEM of n = 3–4 biological replicates pooled from 1–3 mice each.
No statistical differences were detected by one-way ANOVA (mitochondrial and glycolysis stress
tests) or unpaired t-test (palmitate-oxidation stress test).
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Figure 6. RNA-seq of PRKO, PRAKO and PRBKO granulosa cells identifies PGR-regulated genes
and pathways. RNA-seq was performed on WT and KO granulosa cells of the PRKO, PRAKO and
PRBKO strains. (A) RNA-seq analysis identified 236 DEGs in PRKO GCs and 310 for PRAKO GCs
with 154 common DEGs (logFC ≥ 1, padj ≤ 0.01). (B) Example of mapped RNA-seq reads for PRKO,
PRAKO and PRBKO depicting genome site for Cxcr4. (C) The 154 DEGs common to PRKO and
PRAKO were analyzed in IPA and most highly downregulated function and diseases identified,
depicted with log p-value (size), the number of DEGs associated with the function (color) and
z-score indicating degree of downregulation (X-axis). Functions are grouped based on similarities.
(D) Heatmap depicting the DEGs associated with “formation of actin filaments” function. RNA-seq
reads per samples (log-counts per million, LCPM) are shown for PRKO (left) and PRWT (right) where
blue is low and red is high expression.

As PRKO and PRAKO mice both have deficient ovulation, the genes most likely to
be essential for follicle rupture are those that are dysregulated in both of these models.
Thus, the list of 154 common DEGs was interrogated further in order to specifically in-
vestigate ovulatory function (Supplementary Table S2). A pathways analysis was applied
to classify PGR-regulated gene networks and identify potential downstream functions.
An IPA function and disease analysis (Figure 6C) predicted that the loss of PGR led to a
decrease (negative activation z-score) in three main function groups: actin cytoskeleton
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dynamics, invasion of tumor cells and quantity of cells (groups determined manually). The
most highly deactivated function was “formation of actin filaments” (z = −2.6, p = 0.0007)
followed closely by “formation of actin stress fibers” (z = −2.4, p = 0.0017). Invasion of
tumor cell categories include “growth of tumor” (z = −2.0, p = 0.00003) and “invasion
of cells” (z = −1.711, p = 0.00005). While the third collection of dysregulated functions,
“quantity of cells”, includes “proliferation of epithelial cells” (z = −2.1, p = 0.00001) and
“quantity of leukocytes” (z = −2.0, 0.00003). The DEGs associated with the most highly
dysregulated function, “formation of actin filaments” included Cdk6 (PRKO logFC = −2.34,
padj = 0.00008), Pdlim4 (PRKO logFC = −1.77, padj = 0.00067) and Sorbs3 (PRKO
logFC = −1.74, padj = 0.0041) (Figure 6D).

Interestingly among the 154 common DEGs, 11 genes (9 downregulated, 2 upregulated
in KO) were transcription factors (TFs) (Figure 7A). This indicated that during the periovu-
latory window, the PGR was orchestrating a secondary level of transcriptional regulation
by activating DNA-binding TFs including Zbtb16 (PRKO logFC = −4.05, padj = 0.00016)
and Epas1 (PRKO logFC = −2.6, padj = 0.00011) and transcription cofactors such as Cited1
(PRKO logFC = −2.77, padj = 0.0095). The expression of transcription factors Pparg and
Zbtb16 was LH-induced by 14- and 30-fold, respectively (Figure 7B) and PGR regulation
of Pparg and Zbtb16 was confirmed with qPCR (Figure 7C). Pparg was downregulated in
PRKO and PRAKO but not PRBKO granulosa cells. The transcriptional regulation of Zbtb16
was also established with a striking block in expression in PRKO granulosa cells (33-fold
decrease to WT) and partial inactivation seen in the heterozygous littermates. The PRAKO
cells showed a very similar transcriptional dysregulation of Zbtb16 while the PRBKO cells
also exhibited a decrease in Zbtb16 mRNA (threefold decrease to WT). The reduced abun-
dance of ZBTB16 protein in granulosa cells was also confirmed at 10 h post-hCG. A Western
blot demonstrated a decrease in protein in the PRKO and PRAKO granulosa cells while
there was no significant decrease in ZBTB16 protein in PRBKOs (Figure 7D,E).

3.6. PGR Regulation of the Ovarian Stromal Transcriptome

RNA-seq analysis was performed for PRKO ovarian stromal tissues collected under
the same conditions as granulosa cells. A principal component and differential gene expres-
sion analysis show that the loss of the PGR also had some effect on the stroma, though there
was a lower extent of impact on the magnitude of the differential expression in the stroma
compared to the granulosa cells (Supplementary Figure S3B). Nevertheless, 104 stromal
DEGs were identified, with 86 upregulated and 18 downregulated, using parameters
logFC ≥ 0.5, padj ≤ 0.05 (Figure 8A, Supplementary Table S3). The DEGs identified
included the lipid coating gene Plin4 (logFC = −1.68 padj = 0.0002), phospholipase inflam-
matory enzyme Pla2g5 (logFC = −1.51, padj = 0.000002) and vasoconstriction factor Edn2
(logFC = −1.29 padj = 0.0000001) with a difference in mRNA expression demonstrated
on read count histograms showing clear exon peaks for the WT replicate compared to the
KO (Figure 8B). As determined by the IPA functions and disease analysis (Figure 8C), the
most highly downregulated function caused by the loss of the PGR was “synthesis of lipid”
(z = − 3.1, p = 0.0009), with over half of the dysregulated functions falling into this lipid
metabolism broad category including deactivation of “synthesis of steroid” (z = −2.2,
p = 0.0008). Other highly affected functions include “phagocytosis of cells” (z = −2.2,
p = 0.0007) and “engulfment of cells” (z = −2.4, p = 0.0027).
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Figure 7. PGR regulates a network of transcription factors in granulosa cells including Pparg and
Zbtb16. (A) Heatmap showing expression level of PGR-regulated transcription factors, including
DNA-binding transcription factors (bold) and transcription cofactors (not bold). Shown are PRKO
(left) and PRWT (right) RNA-seq reads (LCPM) with blue representing low expression levels and
red increased expression levels. (B) Expression of Pparg and Zbtb16 in wildtype granulosa cells
over a preovulatory time course from 0–12 h post-hCG using CBA-F1 mice. (C) Expression of Pparg
and Zbtb16 in granulosa cells of PRKO (left) PRAKO (center) and PRBKO (right) mice at 8 h post-
hCG qPCR data normalized to reference gene Rpl19 and expressed as fold change relative to 0 h
or WT control. N = 4 biological replicates of cells pooled from ovaries of 3 females. (D) Western
blot for ZBTB16 protein in granulosa cells of PRKO, PRAKO and PRBKO mice at 10 h post-hCG.
(E) Quantification of Western blot ZBTB16 expression relative to B-actin loading control. N = 3 pools
of cells from 3 females. Mean ± SEM, statistical significance determined by one-way ANOVA.
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 8. RNA-seq identifies PGR-regulation of stromal tissue. RNA-seq was performed on ovarian
stromal tissue at 8 h post-hCG. (A) Volcano plot demonstrating the 104 differentially expressed genes
(logFC ≥ 0.5 and padj ≤ 0.05) between PRKO and WT ovarian stromal tissue. Blue depicts downreg-
ulated and red depicts upregulated genes in PRKO stroma. (B) Example of Plin4, Pla2g5 and Edn2
differential gene expression as visualized by number of reads mapped on the gene. (C) “Function
and diseases” dysregulated in PRKO ovarian stroma based on IPA analysis of stromal DEGs. Similar
functions are grouped and shown as log p-value (size), the number of DEGs associated with the
function (color) and z-score indicating degree of downregulation (X-axis).

To further examine the PGR-regulated networks within the stroma, the upstream
regulators of the stromal DEG genes were identified. The top 20 upstream regulators in
the stroma were then compared to the upstream regulators identified in the granulosa cell
RNA-seq to determine if PGR was regulating unique networks in each cell type (Figure 9A).
Interestingly, the PGR-regulated networks in the stromal cells were rather distinct from
those in the granulosa cells. Of the 20 predicted deactivated upstream regulators identi-
fied in the stromal cells, only 4 of these were also predicted to be deactivated upstream
regulators in the granulosa cells. The common upstream regulators included IL2, Ca2+,
dexamethasone and beta-estradiol. In contrast, the unique stromal upstream regulators
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included cholesterol synthesis transcription factors SREBF2 and SREBF1. Surprisingly, the
INHA, AGT, PPARG and TNF networks were predicted to be deactivated due to the PGR
deletion in stromal tissue, but the same upstream regulators were oppositely active in the
granulosa cells. This suggests that PGR regulates distinct stromal-specific gene networks.
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4. Discussion

This study demonstrated that the PGR in the ovary alone was responsible for initiating
the necessary changes that lead to follicular rupture. Further, we showed that the PGR,
and in particular PGR-A, regulated a broad spectrum of genes with diverse functions in
the granulosa cells at ovulation. Specifically, this study identified a secondary network
of transcription factors that are PGR-regulated and may be orchestrating downstream
ovulatory pathways. Despite no histological changes in the PRKO ovaries, we employed
pathways analysis to identify novel function mechanisms that may be required for ovu-
lation. In doing so, a link between PGR and actin fiber dynamics and cell invasion was
identified. In addition, the function of the stroma at ovulation was considered, finding that
lipid processing genes were the key stromal networks affected by the loss of the PGR. The
PGR-dependent pathways identified in this study were summarized in Figure 9B.

Fundamentally, the ovarian transplant of PRKO ovaries into WT recipients demon-
strated that the PGR expression within the ovary was critical to follicular rupture and
that a normal PGR expression in the brain, pituitary and other reproductive tissues was
not able to rescue the infertility caused as a result of the PGR deletion in the ovary. This
finding is supported by another recent study using gonadotrope-specific PGR conditional
KO mice to show that despite a blunted LH-surge, gonadotrope-KO females otherwise
exhibited a normal estrus cycle and normal fertility [32]. Similarly, a global PGR deletion
leads to altered sexual receptivity behavior [24]. The transplant experiments demonstrated
that this lack of hypothalamic PGR expression did not influence ovulation or luteal main-
tenance since WT ovaries transferred to a KO recipient exhibited ovulated follicles and
supported pregnancies. Together these studies demonstrate that PGR expression in the
ovary specifically is a requisite for ovulatory function.
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Within the ovary, our immunostaining confirmed an LH-induced PGR expression in
the granulosa cells but not cumulus cells and also clearly showed the PGR expression in
a population of stromal cells. We further demonstrated the PGR regulation of both the
stromal and granulosa cell transcriptome. Additionally, potentially through the regulation
of downstream intrafollicular signaling networks, the PGR mediated some changes in the
cumulus–oocyte complex including a disruption of the oocyte mitochondrial distribution.
However, the PGR expression was not detected in oocytes (Figure 1) and it does not appear
to be essential for oocyte developmental competence [53]. The difference in mitochondrial
activity is therefore most likely due to alterations in PR-mediated granulosa cell responses
subtly influencing the oocyte microenvironment. Mitochondrial metabolism was more
extensively examined in granulosa cells, but a lack of PGR did not significantly change
oxygen consumption, glycolysis or fatty acid oxidation. Thus, using this model, we cannot
infer any conclusions about whether a disruption of these metabolic processes would
influence ovulatory capacity. Overall, an extensive histological analysis of the ovary
showed no obvious disruption of the known physiological changes necessary for ovulation,
apart from follicle rupture indicating that the PGR may be regulating ovulation through
unknown mechanisms.

To assess novel pathways by which the PGR may regulate ovulation, we employed
an RNA-seq analysis and discovered that in the granulosa cells, the PGR regulated genes
associated with actin cytoskeleton dynamics, such as both Pdlim1 and Pdlim4 scaffolding
proteins, which are required for actin stress fiber formation [57,58]. The indication of
granulosa cell actin dynamics having a conserved role in ovulation is supported by a recent
microarray analysis of human mural granulosa cells, in which “actin cytoskeleton signaling”
was one of the top enriched canonical pathways with predicted activation at ovulation
(32–36 h poststimulation) [59]. Other key PGR-regulated genes were associated with the
invasion of cells such as Cxcr4 and Cldn1, two membrane-localized proteins involved
in tumor cell invasion and migration [60,61]. The invasion of cells is a known function
for cumulus cells at ovulation, as cumulus cells gain a significant invasive, adhesive and
migratory capacity in response to the LH surge, peaking at the point of ovulation [5]. Future
analysis to identify the individual or combinatorial genes critical for ovulation, and also
a further investigation of additional transcriptional mechanisms such as PGR-regulated
noncoding-RNAs, could provide new, ovulation-specific targets for fertility therapeutics.

The PGR was also found to regulate a secondary network of transcription factors
during ovulation. One of the most dysregulated genes in the PRKO granulosa cells was
in the LH-induced transcription factor Zbtb16. While both PGR isoforms have a degree of
influence on Zbtb16 transcription, its expression was more dependent on the PGR-A isoform,
consistent with our current and previous finding, that PGR-A is the more transcriptionally
active isoform at ovulation [39]. While ZBTB16 action in the ovary remains unknown, it
is known to mediate transcriptional changes downstream of PGR such as in the uterus,
where PGR-induced ZBTB16 is important for mediating genes involved in progesterone-
dependent decidualization [62]. PPARγ is another transcription factor dependent on the
PGR, considered critical in ovulation and known to regulate ovulatory genes Edn2 and
Prkg2 in granulosa cells [37]. We identified that the PGR-A isoform alone was responsible
for the induction of Pparg as it was similarly dysregulated in the PRAKO and the total
PRKO granulosa cells. Interestingly, Pparg was also PGR-regulated in the stroma and
identified as an upstream regulator of stromal DEGs, suggesting an additional role for
PPARγ in the stroma, potentially in the regulation of lipid metabolic pathways [63]. It is
evident that the PGR is orchestrating a multileveled network of transcriptional changes in
granulosa cells and that these may be inducing changes within the ovarian stromal tissue.

We found that the PGR was expressed within the ovarian stromal compartment. There
were many differentially regulated genes identified in the stroma, however, these had a
lower fold-change compared to the granulosa cell DEGs confirming that the PGR exerts
more dramatic changes within the granulosa cell population. This was expected as the
PGR is highly induced in the granulosa cells following the LH-surge. Moreover, the
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stroma contains endothelial, immune and theca cells among others, potentially diluting the
magnitude of changes that can be detected in underrepresented cell populations. There
were no protease or remodeling DEGs detected in the stromal tissue, suggesting that
PGR does not affect stroma-controlled follicle remodeling for ovulation, at least at the
transcriptional level.

A pathways analysis suggested that the PGR affects lipid synthesis pathways in
the broad stromal tissue. This may be due to the PGR regulation of theca cell steroid
synthesis or the regulation of theca to luteal differentiation. Additionally, “phagocytosis of
cells” was a top regulated pathway associated with inflammatory genes such as Pla2g5, a
phospholipase involved in inducing inflammatory response and promoting phagocytosis
in leukocytes. Multiple cytokines and immune regulators such as IL4, TNFSF11, IL6, IL2
and TNF were also predicted as upstream regulators of stromal DEGs suggesting that the
PGR may be stimulating an inflammatory response in the stroma, a potential mechanism
important for ovulation. This finding is supported by our previous low-density array
analysis of whole ovary samples collected at 10 h post-hCG, which identified an altered
expression of inflammatory mediators in PRKO mice [38]. However, another study using
scRNA-seq on granulosa conditional PGR-KO mice had conflicting conclusions, proposing
that the PGR acts as an inflammatory suppressor during ovulation [64]. It is important to
note, however, that the granulosa cells were assessed at an earlier ovulatory timepoint (6 h
post-hCG), compared to the current study, which analyzed tissue collected at 8 h post-hCG.
As the periovulatory window is considerably shorter (12 h) and involves the activation of
extensive cellular and morphological changes within the follicle, the genes that are vital
to ovulation are likely to have highly precise expression patterns. For example, while at
6 h post-hCG Ptgs2 was found to be attenuated by PGR in granulosa cells, at 8 h post-hCG
such effect was no longer observed [38]. Therefore, our conclusions support that closer to
the time of ovulation, the PGR may have a role in stimulating the inflammatory response.

Overall, we conclude that the PGR expression in the ovary alone is necessary for follic-
ular rupture. We showed that PGR-A was the main regulator of the ovulatory granulosa
cell transcriptome and was especially important as an upstream factor of a transcription
regulatory network through the activation of transcription factors such as Zbtb16 and Pparg.
One or multiple of the pathways uncovered may be the PGR-directed downstream mecha-
nism essential for follicle rupture and identifying these critical mechanisms will provide
new targets and insights into the development of fertility therapies and non-hormonal
contraceptives.
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