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Effect of spontaneous breathing on ventilator-
induced lung injury in mechanically ventilated
healthy rabbits: a randomized, controlled,
experimental study
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Abstract

Introduction: Ventilator-induced lung injury (VILI), one of the most serious complications of mechanical ventilation
(MV), can impact patients’ clinical prognoses. Compared to control ventilation, preserving spontaneous breathing
can improve many physiological features in ventilated patients, such as gas distribution, cardiac performance, and
ventilation-perfusion matching. However, the effect of spontaneous breathing on VILI is unknown. The goal of this
study was to compare the effects of spontaneous breathing and control ventilation on lung injury in mechanically-
ventilated healthy rabbits.

Methods: Sixteen healthy New Zealand white rabbits were randomly placed into a spontaneous breathing group
(SB Group) and a control ventilation group (CV Group). Both groups were ventilated for eight hours using biphasic
positive airway pressure (BIPAP) with similar ventilator parameters: inspiration pressure (PI) resulting in a tidal
volume (VT) of 10 to 15 ml/kg, inspiratory-to-expiratory ratio of 1:1, positive end-expiration pressure (PEEP) of 2
cmH2O, and FiO2 of 0.5. Inflammatory markers in blood serum, lung homogenates and bronchoalveolar lavage fluid
(BALF), total protein levels in BALF, mRNA expressions of selected cytokines in lung tissue, and lung injury
histopathology scores were determined.

Results: Animals remained hemodynamically stable throughout the entire experiment. After eight hours of MV,
compared to the CV Group, the SB Group had lower PaCO2 values and ratios of dead space to tidal volume, and
higher lung compliance. The levels of cytokines in blood serum and BALF in both groups were similar, but
spontaneous breathing led to significantly lower cytokine mRNA expressions in lung tissues and lower lung injury
histological scores.

Conclusions: Preserving spontaneous breathing can not only improve ventilatory function, but can also attenuate
selected markers of VILI in the mechanically-ventilated healthy lung.

Introduction
Ventilator-induced lung injury (VILI) is one of the most
serious complications of mechanical ventilation (MV).
The main mechanisms involved are over-distension of
alveoli at high lung volume (volutrauma) and cyclic
opening and closing of peripheral airways at low lung
volume (atelectotrauma) [1]. VILI can result in serious

lung parenchymal insults, such as increased permeability
of the alveolar-capillary barrier, pulmonary edema,
atelectasis, and parenchymal damage [2]. It may also
result in the development of inflammatory responses in
the local pulmonary and systemic circulations (bio-
trauma) [3,4], which can then affect the functions of
other organs [5,6]. It is commonly accepted that
increased production of cytokines, particularly interleu-
kin (IL)-6, IL-1b, IL-10, tumor necrosis factor (TNF)-a,
and macrophage inflammatory protein (MIP)-2, plays a
key role in initiating or perpetuating lung injury [3-7].
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Many clinical studies show that a “lung protective venti-
lation strategy”, which decreases the induction of these
cytokines, can remarkably improve patients’ clinical out-
comes [8-10].
Preserving spontaneous breathing is associated with

fewer complications than control ventilation during posi-
tive pressure respiratory support, such as by increasing
the gas distribution of dependent lung regions [11-14],
improving cardiac performance [14-16], promoting venti-
lation-perfusion matching [14,15,17], preventing dia-
phragm disuse atrophy [18,19], and decreasing the use of
sedative and analgesic drugs [16]. However, the effect of
spontaneous breathing on VILI is unknown. Activation
of the inspiratory muscles, particularly the diaphragm,
can induce greater negative pleural pressures and transal-
veolar pressures, which can improve the homogenous
distribution of ventilation [14], diminish atelectasis
[12,20], and thereby reduce lung mechanical stress and
strain. However, spontaneous breathing during MV may
subsequently induce some conditions that can aggravate
lung injury, such as alveolar over-distension caused by
increased transalveolar pressure [21], higher pulmonary
capillary blood flow caused by increased cardiac output
[22], a rapid respiratory rate [23], patient-ventilator asyn-
chrony [24] and others. Recently, several experimental
studies showed that preserving spontaneous breathing
during mechanical ventilation can attenuate VILI in lung
with acute lung injury (ALI) [25-27].
We hypothesized that spontaneous breathing during

MV, as compared to control ventilation, would attenuate
changes in selected markers of VILI in the healthy lung.
To test this hypothesis, we used a rabbit model of the
normal lung. Lung injury was evaluated by the levels of
inflammatory markers in blood serum and bronchoal-
veolar lavage fluid (BALF), mRNA expressions of
selected cytokines in lung tissues, and lung histopathol-
ogy examinations.

Materials and methods
The study was conducted with the approval of the Ani-
mal Care Committee of Capital Medical University
(Beijing, China), and all animal procedures were carried
out in compliance with Institutional Standards for the
Care and Use of Laboratory Animals.

Animals and anesthesia
Our experiments were performed with 24 healthy New
Zealand white rabbits, with weights ranging from 2.0 to
2.6 kg. Animals were anesthetized with 3% pentobarbital
sodium (Sigma Chemical Co., St. Louis, MO, USA) at
25 mg/kg followed by continuous infusion of 3% pento-
barbital sodium at 1 to 2 mg/kg/h. Then, an endotra-
cheal tube (inner diameter of 4 mm) was inserted via
tracheotomy. Rabbits were mechanically ventilated

(Evita 4, Drager Medical AG & Co., KGaA, Lübeck,Ger-
many) using the biphasic positive airway pressure
(BIPAP) mode with baseline ventilator settings: FiO2 of
0.5; positive end-expiration pressure (PEEP) of 2
cmH2O; inspiration pressure (PI) resulting in a tidal
volume (VT) of 10 to 15 ml/kg; respiratory rate (RR) of
30 breaths/minute; and inspiratory-to-expiratory (I:E)
ratio of 1:1. If necessary, RR was adjusted to maintain
PaCO2 within 35 to 60 mmHg. If PaCO2 was not within
this range when RR was 50 breaths/minute, we
increased PI by 1 to 2 cmH2O each time. FiO2 and
inspiratory-to-expiratory ratio were not changed during
the entire experiment. If spontaneous breathing
occurred, which was assessed by capnography [28], Pipe-
curonium Bromide (Gedeon Richter Plc. Budapest, Hun-
gary) at 0.3 mg/kg/h was infused for muscle relaxation.
One 20-gauge catheter was placed in a marginal ear

vein for fluid and drug administration. A second cathe-
ter was inserted into a carotid artery to monitor blood
pressure (BP) and heart rate (HR) and for blood gas
sampling. A third catheter was placed in a jugular vein
to monitor central venous pressure and for sampling
venous blood.

Experimental protocol
After surgical intervention was completed, BP and HR
readings that fluctuated by less than 20% were used as
baseline. Non-ventilated animals (control animals; n =
8) were immediately sampled after sedation and tra-
cheostomized to avoid hypercapnia. The other sixteen
rabbits were randomly sorted (opaque sealed envelopes)
into a control ventilation group (CV Group; n = 8) and
a spontaneous breathing group (SB Group; n = 8) (Fig-
ure 1). Normal saline (0.9%) was administered as a
maintenance fluid at the rate of 8 to 10 ml/kg/h. If
mean arterial blood pressure was lower than 80 mmHg,
fluid boluses of 5 ml/kg of normal saline were admini-
strated. All animals received similar amounts of total IV
fluids over eight hours.
After eight hours of MV, all animals were exsangui-

nated via a carotid artery, and lung tissues and heart
were harvested. Bronchoalveolar lavage (BAL) was per-
formed for the left lower lobes. Tissue samples from the
left upper lobes were stored in liquid nitrogen for
selected cytokine mRNA analyses. Tissue samples of the
right four lobes of all animals were immediately fixed in
10% buffered formalin for histological analysis.

Ventilator setting
For the CV Group, the animals’ SB was inhibited con-
tinuously and all animals were ventilated with the same
baseline ventilator parameters during the entire experi-
ment. For the SB Group, to regain a rabbit’s sponta-
neous breathing, muscle relaxant infusion was stopped
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and the pentobarbital sodium infusion rate was lowered;
then ventilator RR was decreased to 30 breaths/minute
to make sure that rabbits could show unsupported
spontaneous breathings at high pressure (PI) and low

pressure (PEEP) levels of BIPAP mode; and the other
parameters were not different from baseline ventilator
settings, including PI, PEEP, I:E ratio and FiO2 (Figure
2); the dose of pentobarbital sodium was carefully

Spontaneous Breathing Group
n = 8

New Zealand white rabbits
(n = 16)

randomize

Control mechanical ventilation 
with BIPAP at baseline

Ventilator settings: 
PI resulting in a VT 10-15 ml/kg; RR
adjusted to maintain PaCO2 within 
35-60 mmHg; FiO2= 0.5; PEEP = 2 
cmH2O; I:E= 1:1.

Control ventilation with 
 BIPAP for 8 hours

Ventilator settings: 
RR adjusted to 30 breaths/min to 
regain unsupported spontaneous 
breathings in any phase of BIPAP 
mode; PI, FiO2, PEEP and I:E
were the same as baseline.

Sacrifice
n = 8

Spontaneous breathing with 
BIPAP for 8 hours

Sacrifice
n = 8

Control Ventilation Group
n = 8

Ventilator settings: 
Same as baseline 

Figure 1 Flow chart of experiment. BIPAP, biphasic positive airway pressure; FiO2, fraction of inspired oxygen; I:E, inspiratory-to-expiratory ratio;
PEEP, positive end-expiration pressure; PI, inspiratory pressure; RR, respiratory rate; VT, tidal volume.
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Figure 2 Representative recordings of airway pressure (Paw), flow and volume (Vol) in experimental groups. The upper panel (A) shows
that the animal has no spontaneous breathing, the BIPAP is equal to PCV. The mechanical RR was 37 breaths/minute, and the Pmean was 5
cmH2O. The lower panel (B) shows that non-supported spontaneous breathings (black arrows) were possible during each phase of the
ventilatory cycle. The mechanical RR was set at 30 breaths/minute, total RR was 40 breaths/min and the Pmean was also 5 cmH2O. A and B had
equal I:E ratio (1:1), PI (8 cmH2O) and PEEP (2 cmH2O). BIPAP, biphasic positive airway pressure; I:E, inspiratory-to-expiratory ratio; PCV, pressure
control ventilation; PEEP, positive end-expiration pressure; PI, inspiratory pressure; Pmean, mean airway pressure; RR, respiratory rate.
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adjusted to maintain the rate of non-supported sponta-
neous breathing within 3 to 15 breaths/minute.
Mean airway pressure (Pmean) for the BIPAP mode

can be calculated by [29]:

mean airway pressure =
P1 × T1 + PEEP × TE

T1 + TE
.

Here, TI is the length of time for which PI is main-
tained; TE is the length of time during which PEEP is
held. If the ratio of TI to TE is fixed at 1:1, then the
Pmean could be kept constant when we changed the
cycle frequency from PI to PEEP (or RR). Using this to
adjust ventilator parameters (detailed above), we could
keep the level of ventilatory support (Pmean) compar-
able between SB group and CV group of rabbits in our
study. Thereafter, the sole difference between the SB
group and CV group was whether or not the animals
had their spontaneous breathing preserved (Figure 2).

Measurements and calculations
Arterial pressure, heart rate, central vein pressure and
ventilatory parameters were continuously measured each
hour. An in-line pressure differential pneumotachometer
(CO2SMO Puls; Novametrix Medical Systems, Walling-
ford, CT, USA) was used to measure end-tidal CO2

(ETCO2), tidal volume, spontaneous tidal volume, spon-
taneous respiratory rate, total minute volume, sponta-
neous minute volume, mean airway pressure and peak
airway pressure. The ratio of alveolar dead space to tidal
volume (VD/VT) was calculated by [30]: VD/VT =
(PaCO2-ETCO2)/PaCO2.
At baseline and at the end of eight hours of MV, we

measured static lung compliance (Cs). Before measure-
ment, we used Pipecuronium Bromide (0.3 mg/kg) to
depress the animals’ spontaneous breathing. Thus, the
BIPAP mode was equal to PCV mode: Inspiratory pres-
sure (PI) and PEEP were not changed; inspiration time
was set to five seconds; expiration time was prolonged
to allow the expiratory flow to return to zero; and the
expiratory tidal volume (VTexp) was recorded. The cal-
culation for Cs used the following formula: Cs =
VTexp/(PI-PEEP) [31].
Arterial blood gas samples were obtained at baseline,

and at one, two, four, six and eight hours after randomi-
zation. Arterial blood gas variables were determined by
an ABL 725 analyzer (Radiometer, Copenhagen, Den-
mark), including pH, PaCO2, PaO2, HCO3

- , and lactic
acid.

Bronchoalveolar lavage
Sterile normal saline (10 ml) was used to lavage the left
lower lobes. After five seconds, the lavage liquid was
recycled. The return volume was 5 to 6 ml. These

samples were immediately centrifuged at 3,000 to 4,000
rpm for 15 minutes. Supernatant aliquots were kept fro-
zen at -40°C for subsequent analysis.

Blood measurements
Using ethylenediaminetetraacetic acid (EDTA), venous
blood samples (5 ml) from a central vein were obtained
at baseline, and at two, four, six and eight hours after
randomization. These were immediately centrifuged at
3,000 to 4,000 rpm for 15 minutes. Serum was kept fro-
zen at -40°C for subsequent analysis.

Cytokine and protein measurements
BALF, serum and lung homogenate concentrations of
IL-6, IL-1b, IL-10, TNF-a, and MIP-2 were determined
using commercial enzyme-linked immunosorbent assay
(ELISA) kits for rabbits (Rapidbio, Calabasas, CA, USA).
All ELISAs were done by the same technician according
to the manufacturers’ guidelines. Total protein levels in
BALF were determined using a Bradford Protein Assay
Kit (Sun Biomedical Technology, Beijing, China) accord-
ing to the manufacturers’ instructions with BSA as
standard.

Cytokine mRNA analysis by quantitative real-time reverse
transcription polymerase chain reaction (RT-PCR)
Total RNA was extracted from lung tissue with a Trizol
Isolation Kit (Sun Biomedical Technology) according to
the manufacturer’s protocol. Initially, the left upper lung
tissue maintained in liquid nitrogen was placed in lysis
buffer, then immediately disrupted and homogenized
using a rotor-stator homogenizer. About 50 to 100 mg
of material was used for RNA isolation with 1 ml of Tri-
zol reagent. M-MLV reverse transcriptase (Sun Biomedi-
cal Technology) and oligo-(dT) 12 to 18 primers (Sun
Biomedical Technology) were used to generate total
cDNA. PCR was performed with a reaction volume of
50 μl using a BioEasy SYBR Green I Real Time PCR Kit
(Sun Biomedical Technology) according to the manufac-
turer’s instructions. As an internal control, glyceralde-
hyde-3-phosphate dehydrogenase (GADPH) primers
were used for RNA template normalization. The results
obtained from real-time RT-PCR were quantified by the
2-ΔΔCt method, as previously reported [32,33]. Each sam-
ple was tested in triplicate. The sense (S) and antisense
(AS) of the primers (5’-3’) used for each cytokine were:

TNF-a: AGCGCCATGAGCACTGAGA/
GCCACGAGCAGGAAAGAGAA
IL-6: AGCCCGACTATGAACTCCTTCAC/
CCGGATGCTCTCGATGGTT
IL-10: AGAACCACAGTCCAGCCATCA/
GCTTGCTGAAGGCGCTCTT
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IL-1b: GCAGACGGGAAACAGATTGTG/
TTGCCTGAATGGCAGAGGTAA

Lung histopathology
Samples from the central parts of four different right
lobes of the all animals were selected for histopathology
examinations. Each sample was sectioned, stained with
hematoxylin and eosin, and scored by a pathologist
blinded to the experimental design. A lung injury score
for each lung section was evaluated using a VILI histo-
pathology scoring system as previously described [34].
The VILI scoring system included four items: alveolar
congestion; hemorrhage; infiltration and aggregation of
neutrophils in airspace or vessel wall; and thickness of
alveolar wall/hyaline membrane formation. The VILI
scoring system was graded from 0 (normal lung) to 4
(very severe involvement in > 75% of the lung). Thus,
the total score for each section ranged from 0 to 16.
The overall lung injury score for each animal was the
average score of the four sections from each right lobe.

Statistical analysis
Data are given as mean ± SD or median (interquartile
range), as appropriate. The normality of data distribu-
tions was assessed with a Kolmogorov-Smirnov test, and
the homogeneity of variances was tested with Levene’s
test. Differences among groups were analyzed by one-
way analysis of variance (ANOVA). Continuous vari-
ables, including hemodynamics, blood gases, respiratory

parameters and cytokines level, were compared using
repeated measures ANOVA. Logarithmic transforma-
tions of cytokine levels in BALF and serum were made
before using parametric tests. P-values < 0.05 were con-
sidered significant. All analyses used SPSS 11.5 (SPSS
Inc., Chicago, IL, USA).

Results
Hemodynamics and gas exchange
The mean arterial blood pressures (MBP) within both
the control ventilation (CV) and spontaneous breathing
(SB) groups were similar and were maintained at the
expected levels during the entire experiment (Table 1).
Heart rate and central venous pressure remained stable
during the experiment, and there were no differences
for these two variables between SB group and CV group
(Table 1). Both groups received equal administrations of
fluid boluses. No other drugs were needed to maintain
hemodynamic conditions.
The pH values of all animals were greater than 7.2

during the experiment without the administration of
sodium bicarbonate; however, after eight hours of venti-
lation, the SB group had a higher mean pH value (7.33
± 0.08) than the CV group (7.24 ± 0.05) (Table 1).
PaCO2 values of all animals were maintained within the
range noted in Methods, although PaCO2 values were
higher in the CV group compared to the SB group after
randomization, and this difference was significantly dif-
ferent between the groups after six hours of ventilation;
PaCO2 values in the SB group reduced significantly after

Table 1 Physiology response to spontaneous breathing (SB Group) and control ventilation (CV group).

Time = 0 h Time = 8 h

CV group
(n = 8)

SB group
(n = 8)

P1 CV group
(n = 8)

SB group
(n = 8)

P2

HR (breaths/minute) 232.2 ± 23.7 239.3 ± 28.2 0.66 219.3 ± 19.8 235.2 ± 21.7 0.22

MBP (mmHg) 89.0 ± 11.0 91.4 ± 16.5 0.75 92.6 ± 17.8 90.7 ± 9.4 0.81

CVP (mmHg) 3.6 ± 0.7 3.7 ± 0.7 0.74 3.6 ± 0.5 3.9 ± 0.6 0.41

VT (ml/kg) 12.9 ± 0.8 12.3 ± 1.7 0.54 12.2 ± 1.4 13 ± 0.6 0.24

VTspont (ml/kg) 0 0 - 0 10.9 ± 0.8 -

RRTOT (breaths/minute) 38.3 ± 4.1 37.5 ± 2.7 0.69 45.0 ± 4.5 39.5 ± 7.4 0.15

RRspont (breaths/minute) 0 0 - 0 8.8 ± 5.4 -

MVTOT (L/minute) 1.26 ± 0.28 1.04 ± 0.23 0.18 1.50 ± 0.26 1.18 ± 0.33 0.10

PI (cmH2O) 8 ± 1.6 8 ± 1.5 1.00 9 ± 0.6 8.3 ± 1.8 0.43

Pmean (cmH2O) 4.67 ± 0.8 4.67 ± 0.5 1.00 5.33 ± 0.8 5.00 ± 0.6 0.45

Compliance(ml/cmH2O) 5.4 ± 0.7 5.55 ± 2.6 0.87 4.3 ± 0.8 7.6 ± 2.4* 0.01

Arterial pH 7.34 ± 0.08 7.38 ± 0.06 0.27 7.24 ± 0.05* 7.33 ± 0.08 0.04

PaCO2 (mmHg) 48.5 ± 8.7 43.9 ± 6.2 0.32 51.5 ± 7.8 38.2 ± 7.1* 0.01

PaO2/FiO2 (mmHg) 399.0 ± 46.4 430.3 ± 40.0 0.24 437.7 ± 60.3 476.3 ± 11.6 0.40

Lactic acid (mmol/L) 1.0 ± 0.2 1.4 ± 0.4 0.10 2.1 ± 0.4 1.7 ± 0.7 0.70

Results are given as mean ± SD. *P < 0.05 compared with baseline within the same group. P1, compared between SB group and CV group at 0 h; P2, compared
between SB group and CV group at 8 h. CVP, central venous pressure; FiO2, fraction of inspired oxygen; HR, heart rate; MBP, mean arterial pressure; MVTOT, total
minute volume; PaCO2, arterial partial pressure of carbon dioxide; PaO2, arterial partial pressure of oxygen; PI, inspiratory pressure; Pmean, mean airway pressure;
RRspont, non-supported spontaneous respiratory rate; RRTOT, total respiratory rate; VT, tidal volume; VTspont, tidal volume of non-supported spontaneous
breathing.
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randomization (P < 0.05; Figure 3). Both groups had
similar PaO2/FiO2 ratios (Figure 3).
The total respiratory frequency (RRTOT) and total

minutes of ventilation (MVTOT) were stably maintained
for both groups of rabbits, with no significant differ-
ences between the groups (Table 1). However, the ratio
of dead space to tidal volume in the SB group decreased
gradually after randomization, and showed a significant
difference between SB group and CV group after eight
hours (Figure 3).

Respiratory mechanics
Rabbits in the SB group and the CV group had similar
Pmean and PI throughout the experiment (Table 1).
Both groups had similar static lung compliances (Cs) at
baseline. However, the Cs values of the SB group mark-
edly increased and were significantly higher than in the

CV group after eight hours of ventilation (Table 1).
Conversely, the Cs values of the CV group slightly
decreased by the end of the experiment.

Total protein levels in BALF
Total BALF protein levels in CV group were signifi-
cantly higher as compared with control animals (P <
0.05; Figure 4). No significant difference was found
between the SB group and control animals. Total BALF
protein levels were slightly lower in the SB group than
in the CV group (41.8 ± 34.1 vs 69.2 ± 38.3 μg/ml, P =
0.112).

Cytokine levels in serum, bronchoalveolar lavage fluid
(BALF) and lung homogenate
There were no differences in serum TNF-a, IL-6, IL-1b,
IL-10 or MIP-2 concentrations between the SB group
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and CV group during the entire experiment (Figure 5).
There were also no significant differences within each
group at baseline and at the end of the experiment. We
also did not find any differences between the CV group
and SB group for any of the cytokines in BALF (TNF-a,
4.29 ± 1.52 vs 3.78 ± 1.5 pg/ml; IL-6, 31.3 ± 12.1 vs
26.6 ± 11.7 pg/ml; IL-1b, 11.5 ± 5.6 vs 9.16 ± 5.6 pg/ml;
IL-10, 48.34 ± 6.17 vs 54.2 ± 9.5 pg/ml) (Figure 6). The
cytokines (TNF-a, IL-6 and IL-1b) level of lung homo-
genates in the CV group and the SB group were slightly
higher than control animals (P > 0.05), but IL-10 con-
centrations in the CV group were significantly higher
than control animals (P < 0.05). Pulmonary levels of IL-
6, IL-1b, IL-10 and TNF-a between the CV group and
the SB group were comparable (Figure 7).

Cytokines’ mRNA expressions in lung tissue
The expressions of IL-6, IL-1b, IL-10 and TNF-a
mRNA in lung tissues were evidently higher in the CV
group compared to the SB group and control animals (P
< 0.05; Figure 8). The TNF-a mRNA expression was six
times higher in the CV group than in the SB group (P =
0.001). The other cytokines’ mRNA expressions were
about two times higher in the CV group as compared to
the SB group. No significant difference was found
between the SB group and control animals.

Lung histopathological injury
Gross histological evaluations of the right lower lobe
lungs showed that the SB group had nearly normal lung
tissue, whereas the CV group showed greater alveolar
collapse, thickness of the alveolar septum, alveolar capil-
lary congestion, and inflammatory cell migration (Figure
9). Also, the average lung histological injury score of the
whole right lung was higher in the CV group (5.7 ± 1.0)

as compared to the SB group (3.7 ± 1.7, P = 0.005) and
control animals (1.7 ± 1.0, P < 0.001; Figure 9). The
average lung histological injury score were also higher
in the SB group than in control animals (P = 0.005).

Discussion
To our knowledge, this is the first study on the effects
of spontaneous breathing on VILI in the mechanically-
ventilated healthy lung. We found that preserving spon-
taneous breathing during MV could not only improve
ventilatory function, but could also attenuate selected
markers of VILI.
For our experiments, we selected tidal volume of as

large as 10 to 15 ml/kg to ventilate animals with healthy
lungs. Hong et al. [33] found that a moderate tidal
volume (15 ml/kg) and low PEEP (3 cmH2O) resulted in
lower inflammatory response expressions in lung tissue
and lung injury than with a small tidal volume (6 ml/kg)
and high PEEP (10 cmH2O) in a healthy animal model.
Thus, we set PEEP to 2 cmH2O to avoid excessive dis-
tension of alveoli and concomitantly prevent alveolar
collapse at end-expiration. In addition, we applied a
biphasic positive airway pressure (BIPAP) mode during
MV, which allowed animals to breathe freely at any
phase of the mechanical ventilatory cycle. When rabbits
did not exhibit spontaneous breathing, the BIPAP mode
was equal to the pressure control ventilation (PCV)
mode. Pmean, which reflects the average level of alveo-
lar pressure during the entire respiratory cycle, is also
an important factor contributing to the development of
lung injury [35]. In our study, the Pmean between the
SB group and the CV group was comparable by the
method of adjusting ventilator settings (detailed in
Materials and methods).
We demonstrated that control ventilation caused

higher dead space ventilation (VD/VT) than preserving
spontaneous breathing during positive pressure MV.
Putensen et al. [15] also found that spontaneous breath-
ing could improve dead space ventilation in mechani-
cally-ventilated patients with acute respiratory distress
syndrome. This phenomenon may be explained by con-
sidering that preserving respiratory muscle contraction
favors more ventilation to dependent lung regions
[12-14], reduces atelectasis [12,20], and improves venti-
lation-perfusion matching [14,15]. On histopathology
examinations, we also found that more alveolar collapse
appeared in our CV group.
Furthermore, we showed that preserving spontaneous

breathing was followed by a lower PaCO2 than control
ventilation after eight hours of MV, while other studies
[15,17] did not find differences between the SB and CV
groups in PaCO2. These differences may be attributed
to the number of hours of control ventilation. The pre-
vious studies used only two hours of control ventilation,
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while our study used eight hours. We also did not find
any significant differences in the first two hours of MV
after randomization, however, after six hours, there was
a difference and this was notable.

Although spontaneous breathing could obviously
improve ventilatory function after a long time of MV,
there was no difference between the SB and CV groups
on oxygenation, which is in contrast to other reports
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[12,15]. Wrigge et al. [12] found that preserving sponta-
neous breathing resulted in better oxygenation com-
pared to control ventilation in an acute lung injury
model with MV. It is possible that there is less alveolar
collapse and lung injury in a normal lung model than
an acute lung injury model.
Preserving spontaneous breathing can reduce atelecta-

sis and improve gas distribution in the ventilatory-sup-
ported normal lung. However, prior to this study, we
could not clearly identify the effects of spontaneous
breathing on VILI in the normal lung. In our study, we
demonstrated that there were no differences between
the SB group and the CV group in the concentrations of
all the measured cytokines in serum and BALF. How-
ever, animals with spontaneous breathing showed signif-
icantly lower gene expression levels of inflammatory
cytokines (TNF-a, IL-6, IL-1b) and anti-inflammatory
cytokine (IL-10) in lung tissues. Furthermore, the gene
expression levels of cytokines in SB group were similar
to control animals. The level of IL-10 in the SB group
was parallel decreased, since it has anti-inflammatory
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properties. It was suggested that the inflammatory
response was significantly reduced in lung tissues. TNF-
a mRNA expression was six times higher in our CV
group than in our SB group. The mRNA levels of other
cytokines (IL-6, IL-1b, and IL-10) were about two times
higher in the CV group compared to the SB group.
Moreover, we also found total protein levels in BALF
were slightly lower in the SB group than in the CV
group. Maybe cytokines were already expressed in alveo-
lar epithelial cells, but had not yet migrated into the
alveolar lumen or systemic circulation, because we
found that the cytokines level in lung homogenate
increased slightly in the CV group, especially anti-
inflammatory cytokine (IL-10). With an extended time
of control MV, inflammatory responses may be further
aggravated and lead to increased cytokine levels in the
alveolar lumen and systemic circulation.

Consistent with the inflammatory responses, the histo-
pathological damage to lung tissue was more severe in
animals with control ventilation than in those with
spontaneous breathing. To compare lung injury of the
whole right lung of all animals, we selected the central
parts of four different right lobes for histopathology
examination and did not divide the right lung into non-
dependent and dependent parts. The pathological
changes in the animals of our CV group agree with the
changes seen in healthy animals with similar ventilator
settings in other studies [33,36]. Control ventilation can
cause more alveolar collapse and congestion, thickening
of the alveolar septum, and infiltrations of inflammatory
cells into lung tissue. Lung histological scores also
showed that lung injury was more severe in animals
with control ventilation. Our histological findings were
in accord with previous studies [26,27] which
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demonstrated that the assisted ventilation mode could
reduce lung injury compared to the control ventilation
mode in an acute lung injury model.
There are many factors that can attenuate VILI when

spontaneous breathing is preserved during MV with a
healthy lung: increased ventilation to dependent lung
regions caused by an increase of transalveolar pressure,
reduced occurrence of atelectasis, increased recruited
lung volume [17,20], improved compliance and further
avoidance of atelectotrauma caused by the opening and
closing of distal airways during tidal breaths [37,38];
more homogeneous distribution of gas, less dead space
ventilation and hyperinflation [12,17]; redistribution of
blood in alveolar capillaries, improved ventilation and

perfusion matching [14]; variability of breathing patterns
[25]; and physiological feedback and intrinsic defense
mechanisms during spontaneous breathing, such as the
Hering-Breuer reflex, may further prevent VILI.
Our study had several limitations. First, because our

study animal model was healthy rabbits, we cannot
directly extend our results to normal human lung func-
tion. Second, a larger VT of 10 to 15 ml/kg was selected
in our study. It can cause lung injury in a previously
healthy lung, as showed in CV group animals of our
study. Therefore, it is necessary to design another simi-
lar study using smaller VT of 6 to 7 ml/kg to testify the
protective effect of spontaneous breathing on VILI in
healthy animals. Third, PaCO2 values were different
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Figure 9 Representative photomicrographs of the right lower lobe and the lung injury score from nonventilated (control) and
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lower lobe in control animals (A), SB group (B) and CV group (C). SB group (B) with mild alveolar congestion. CV group (C) with increased
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breathing; VILI, ventilator-induced lung injury.

Xia et al. Critical Care 2011, 15:R244
http://ccforum.com/content/15/5/R244

Page 12 of 14



between the SB group and the CV group, which could
affect the experimental results of lung injury. Clinical
and animal studies have shown that hypercapnic condi-
tions had a protective effect against lung injuries, which
were associated with significantly improved pulmonary
edema, increased pulmonary compliance, and reduced
levels of cytokines [39-41]. However, the CV group,
with a higher PaCO2 than the SB group, did not exhibit
a lower inflammatory response. It was further suggested
that spontaneous breathing had a protective effect
against VILI. Fourth, some invasive procedures can also
have an impact on cytokine levels; thus, to guarantee
comparable cytokine levels at baseline, surgical interven-
tions were administrated by fixed researchers, who
strictly controlled the time for our procedures and the
amount of blood loss. Fifth, we did not measure transal-
veolar pressure to evaluate respiratory effort. Finally, SB
group animals used less muscle relaxant (Pipecuronium
Bromide) and anesthesia (Pentobarbital sodium). Unfor-
tunately, it remains unknown if they can directly affect
inflammatory responses.

Conclusions
In the present experimental study, we show that preser-
ving spontaneous breathing during MV can not only
improve ventilatory function, but can also attenuate
selected markers of VILI in the healthy lung. However,
our results cannot be extrapolated to humans, and clini-
cal trials are necessary to confirm our results in humans.

Key messages
• Assuming comparable levels of ventilation support,
preserving spontaneous breathing during MV is
associated with better respiratory function as com-
pared to control ventilation: both a lowered ratio of
dead space ventilation to tidal volume and PaCO2.
• Compared to control ventilation, preserving spon-
taneous breathing can result in better lung compli-
ance after eight hours of MV.
• Spontaneous breathing may have an important
protective effect against VILI in mechanically venti-
lated healthy lung.
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