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A B S T R A C T   

Objective: This study evaluated the performance of attentional fusion model-based multiscale 
features in classifying intracerebral hemorrhage and the localization of bleeding focus based on 
weakly supervised target localization. 
Methods: A publicly available dataset provided by the American College of Neuroradiology 
(ASNR) was used, consisting of 750,000 computed tomography (CT) scans of the brain, manually 
marked by radiologists for intracranial hemorrhage and five hemorrhage subtypes. A multiscale 
feature classification and weakly supervised localization framework based on an attentional 
fusion mechanism were applied, which could be annotated at the slice level and provided 
intracranial hemorrhage classification and hemorrhage focus localization. 
Results: The designed framework achieved excellent performance for classification and localiza
tion. The area under the curve (AUC) for predicting bleeding was 0.973. High AUC values were 
observed for the five hemorrhage subtypes (epidural AUC = 0.891, subdural AUC = 0.991, 
subarachnoid AUC = 0.983, intraventricular AUC = 0.995, intraparenchymal AUC = 0.990). This 
model outperformed the average entry-level radiology trainee compared to previously reported 
data. 
Conclusion: The designed method quickly and accurately detected intracerebral hemorrhage, 
classifying hemorrhage subtypes and locating bleeding points with image-level annotation alone. 
The results indicate that this framework can significantly reduce diagnostic time while improving 
the detection of intracerebral hemorrhage in emergencies. It can thus be integrated into the 
diagnostic radiology workflow in the future.   

1. Introduction 

Cerebral hemorrhage is a very urgent and severe disease with high mortality and disability rates. Since hematoma enlargement can 
lead to further deterioration of neurological deficits, irreversible damage can occur in the first few hours after the onset of intracerebral 
hemorrhage, making accurate and rapid diagnosis essential to reduce mortality and improve the outcome of patients [1,2]. CT is often 
a noninvasive and effective imaging method to detect intracerebral hemorrhage. Because the density (HounsfieldUnits, HU) of blood in 
brain CT images is different from other brain tissues, which is roughly within the range of 0–100 and shows the characteristics of 
high-density focus, radiologists can identify intracranial hemorrhage through brain CT images, understand the causes of intracranial 
hemorrhage, determine the subtype, location, size and severity of the bleeding focus, and the risk of imminent brain injury to judge 
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whether the patient’s life is endangered, and provide the central basis for clinicians to take intervention measures [3,4]. A fast and 
accurate automated classification and localization system for intracerebral hemorrhage can aid doctors to improve diagnostic out
comes, particularly at primary hospitals and emergency centers. 

In the past decade, deep learning contributed to significant progress in medical artificial intelligence and has garnered high 
research interest, especially in the artificial intelligence-aided diagnosis of medical images. There is much evidence that deep learning 
approaches can perform well in particular medical image diagnostic tasks, such as the detection of pulmonary nodules [5,6], iden
tification and classification of diabetic retinopathy [7], classification of lesions on chest X-ray [8–10] and benign and malignant 
classification of skin diseases [11], with some indicating accuracy comparable to that of specialists. 

Recently, several researchers have used deep learning-based convolutional neural networks (CNNs) [12–16] to classify, detect, and 
segment intracranial hemorrhage in brain CT. Various medical imaging tasks, such as medical image reconstruction, enhancement, 
segmentation, registration, and computer-aided diagnosis and detection, have extensively used deep learning. Bar et al. [17] improved 
classification results by combining the previously independent segmentation and classification tasks with dependencies with relatively 
few datasets. Remedios et al. [18] utilized multi-instance learning to learn features from weak labels to identify massive bleeds. 

Multiscale feature learning is essential when the size of lesions varies greatly, or context information is needed to identify them. 
Multiscale feature learning does not use the last layer of features for classification and localization but selects multiscale features for 
fusion before the lesion classification and localization task, to improve model performance. In image detection, detectors usually use 
feature pyramids to detect targets of different scales, and feature pyramid networks [19]are built by propagating semantically robust 
features from a high to low-level. Recent work has put forth a novel method that narrowed the differences between different scales of 
features through consistency supervision before feature fusion [20]. Furthermore, in CT examination datasets, three levels of labeling 
exist: examination level, slice-level and pixel-level. Pixel-level labels are often required to locate hemorrhagic points, which challenges 
dataset annotation. A weakly supervised method can be implemented when only slice level labels are used. Weakly supervised 
localization has been achieved by using annotations at a given image-level [21–24]. 

Although many schemes have performed excellently in classifying and segmenting intracerebral hemorrhage, several constraints 
remain. Firstly, the classification and detection model of intracerebral hemorrhage based on CNN is a typical data-driven model. The 
effectiveness of CNN depends very much on the quantity and labeling quality of intracerebral hemorrhage datasets. Only a large and 
accurately labeled dataset can enable the model to learn useful information from medical images efficiently. For fully supervised 
learning, the data volume increase means that the manual annotation workload also increases. In practice, obtaining many medical 
image datasets is very difficult due to the patient’s privacy protection concerns. In addition, image annotation requires a high-level of 
professional skill, which further compounds the challenges in developing classification and detection systems for cerebral hemorrhage 
based on CNN. Secondly, because the visual patterns extracted from different types of intracranial hemorrhage disease samples are 
usually different in appearance, size, and position height, most CNN networks only use the features extracted from the highest con
volutional layer, resulting in unsatisfactory classification and location performance for lesion areas. Third, fully supervised localization 
generally requires high-quality and accurate pixel-level labeling for the localization of intracerebral hemorrhage foci. This task usually 
requires experienced radiologists to spend considerable time and energy on labeling, which is often unaffordable. Further, image 
information for Dicom format medical images is lost when the format is changed, and it can be challenging to distinguish intracranial 
hemorrhage from the surrounding tissues. 

To overcome the abovementioned problems, we aimed to develop an end-to-end deep multiscale convolutional feature fusion 
framework designed to enable accurate classification and localization of intracerebral hemorrhage. Specifically, we proposed that a 
window adjustment optimization module can be first introduced to enhance the salience of intracranial hemorrhage in CT images and 
avoid the loss of image information so that the model can maximize the use of image information. Then, during model training, 
channel and spatial attention mechanisms could be employed to aggregate convolution features at the bottom and high levels for 
improved focus on lesion areas, especially small ones. This weakly supervised localization method required only section-level labeling 
for lesion location. Upon model training, the developed medical image intelligent diagnosis system can detect intracranial hemorrhage 

Fig. 1. Classification and weakly supervised location model of intracerebral hemorrhage.  

B. He et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e30270

3

from brain CT images and then classify and locate the subtypes of intracranial hemorrhage into epidural, subdural, subarachnoid, 
intraventricular, and intraparenchymal. 

2. Methods 

2.1. Model design 

Fig. 1 represents the overall design of the model. The three critical modules in the framework were the window tuning optimization 
module, multiscale feature fusion module, and bleeding lesion location module (Fig. 1. Location). 

A profound convolutional network for large-scale image recognition, VGG-16 [25], was selected as the backbone network, a 
window tuning optimization module and an attention-based multiscale feature fusion module were added to the basic intracerebral 
hemorrhage classification model, and the final intracerebral hemorrhage classification and weakly supervised lesion location model 
were obtained (Fig. 1). Specifically, feature maps of different scales were generated through multilayer convolution for the input brain 
image. Second, the convolution operation (stride of 2) was utilized to unify the graph size of [C3, C4, C5]. A feature fusion method 
based on channel attention was adopted to promote the crucial features and suppress the features that contributed little to the current 
task. Then, a spatial attention mechanism was adopted to fuse the spatial attention further. Finally, the prediction results of intra
cranial hemorrhage types were output through the GAP and output layers. 

2.1.1. Window setting optimization module 
The output of medical imaging equipment comprises medical images in Dicom format. Pixels often contain rich grayscale infor

mation, but the input of a deep learning model is usually an 8-bit PNG or JPG grayscale image. The information contained in such an 
image is far less than the 12-bit/16-bit Dicom medical image. The conversion of image format leads to the loss of the information of the 
original medical image. Therefore, to address this issue, a window adjustment optimization module was designed by combining 
convolution and activation function properties in deep learning technology, thus imitating the method used by radiologists to identify 
intracranial hemorrhage by adjusting the window width and window position. 

Fig. 2 depicts the window setting optimization module constructed by a 1 × 1 × 3 convolution layer and a custom activation 
function layer. The module can input different window images by initializing different weight parameters. Additionally, the input layer 
of the CNN was replaced by this module so that the weight parameters of this module can be updated when training the CNN. That is, 
the weights were updated in a task-specific way by backpropagation to find the most appropriate weight parameters for windowing 
input images. At the same time, dynamic parameter updating was used to adjust the window width and position so that the model 
could fully use the information in medical images and learn more features of the bleeding area. The custom activation functions are 
shown below. 

Fsig(x)=
U

1 + e− (Wx+b) (3.1) 

Fig. 2. Tuning window optimization module.  
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Where, W = 2
WW log

( U
ε − 1

)
, b = − 2WL

WW log log
( U

ε − 1
)
, WW is the window width, WL is the window level, U is the upper limit of the gray 

level after activation function mapping, and ε is the margin.(Fig. 2. Location). 
Using the weight parameters of the well-trained window setting optimization module of the deep learning model, the optimal 

window width and level could be obtained by inverse derivation from Equation (3.1) for the optimal window display of intracranial 
hemorrhage images. Compared with the preset window image, the contrast between the bleeding lesions and the surrounding tissues 
was more prominent, so the model could more intuitively distinguish whether the current image contained intracranial hemorrhage. 

2.1.2. Feature fusion 
Combining various scale features in convolutional networks is a crucial strategy for enhancing classification, detection, and seg

mentation. Various features are contained in different levels of features. For instance, low-level features acquired by shallow networks 
contain more position and detail information and noise. High-level features acquired by deep networks have robust semantic infor
mation but poor detail perception ability. Therefore, efficiently integrating features of different scales is crucial to enhance model 
performance. Traditional methods first fuse multi-level features and then use the fused features to train a predictor. Detection can only 
be performed after complete fusion. Fusion features usually use ‘Concat’ or ‘Add’ operations. The Concat operation directly connects 
two features, and its output dimension is the sum of the dimensions of input features. The add operation uses the pixel addition 
operation to combine multiple feature vectors into a composite vector with the same dimension. Although traditional feature fusion 
methods can improve recognition accuracy to some extent, it does not reflect the importance of different layer feature maps and does 
not consider the spatial information of lesions. Therefore, the squeeze-and-congestion (SE) module [26] was introduced into the 
present model to combine the different scaling features (Fig. 3). First, feature graphs C3, C4, and C5 were converted to the same size 
through convolution with a step size 2. Then, feature graphs were compressed to global feature vectors with a growth degree of C 
through average pooling and maximum pooling operations. In the excitation operation, the channel weights were obtained by feeding 
a global feature vector into two fully connected bottleneck structures, and then the weight of the feature vector was adjusted by 
learning the coefficient of channel attention. Operating with the SE module, channel interdependencies could be exploited to provide 
cross-channel recalibration opportunities. Then, the weighted results of the SE module output were fed into a spatial attention module 
(Fig. 4), which could further integrate spatial attention, and finally, the classification results of intracranial hemorrhage were obtained 
through GAP and the output layer (Fig. 3. Location). and (Fig. 4. Location) respectively. 

Before recalibration, global statistics must be performed for each channel. The global compression across the entire spatial domain 
is obtained through global maximum and average pooling. Compared with the original SE module, this model uses an additional 
pooling layer to extract richer high-level features. U ∈ Rh×w×c Represents the feature graph after transformation, where h×w×c is the 
dimension. The compression operation aggregates the features of h×w to obtain a 1 × 1 × c feature map to describe the channels. If z is 
a compressed vector, the cth element of z is computed as Equation (3.2). 

zc =
1

H × W
∑H

i=1

∑W

j=1
uc(i, j) (3.2) 

The model needs to learn the weights for each channel to recalibrate the feature diagram for the channel field. Based on nonlinear 
channel interdependence, the automatic gate mechanism was adopted to output channel attention, and the importance coefficient of 
the channel is as Equation (3.3): 

s= σ(W2 ×ReLU(W1 × z)) (3.3)  

where σ is the sigmoid operation, W1 ∈ RC
r×C, W2 ∈ RC×C

r . W1 and W2 parameterize the two fully connected layers with different 
compression rates to form a bottleneck structure so that the model can adaptively adjust the channel weights according to learning 
objectives. After channel c passes through the channel attention module, the final output x̃c is as Equation (3.4): 

x̃c = sc.uc c ∈ {0, 1, ...,C − 1} (3.4)  

Where s is the importance coefficient of the channel, and u is the feature graph. The attention channel module has relevance for the 
classification and localization of intracerebral hemorrhage as it is difficult to distinguish the diseased area from the normal area of 
different hemorrhage types, and the use of a single feature map or independent processing of multiple feature maps cannot provide 
sufficient feature information for the classification of intracerebral hemorrhage. 

Fig. 3. Channel attention module.  
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As channel attention learns the “what”, with spatial attention, the model learns the “where”. The spatial attention module differs 
from channel attention in emphasizing “where” is the most critical characteristic information. These are first connected along the 
channel axis using average and maximum pooling operations to obtain valid feature descriptors before calculating spatial attention. 
Then, a convolution layer is used to generate spatial attention as Equation (3.5), 

Ms(F)= σ
(

f 7×7
([

Favgs
avg,F

maxs
max

]))
(3.5)  

where σ represents sigmoid operation, and f7×7 is the convolution function of kernel 7 × 7. 

2.1.3. Weakly supervised localization 
For weakly supervised localization, class-activated mapping (CAM) [27] was used to find the most differentiated part in the image 

to achieve lesion location. To improve the accuracy of lesion location, multiscale features were fused with channel attention, and then 
features were further extracted with spatial attention. Finally, a heatmap was obtained based on CAM. Twenty percent of the maximum 
activation value in the heatmap was selected as the binarization threshold, and the heatmap generated by CAM took the threshold. 
After that, the minimum enclosing rectangle with the maximum connected domain was found, and its boundary coordinates were 
extracted as the output of the model to generate BBox. 

2.2. Experimental protocol 

2.2.1. Dataset used 
A public dataset was used for our research, provided by the American College of Neuroradiology (ASNR) through the Kaggle 

platform for phase II training. It includes a total of 750,000 CT scans of the brain corresponding to 6 types of labels prelabeled by 
radiologists, namely, whether there was intracranial hemorrhage (any), epidural, intraparenchymal, intraventricular, subarachnoid, 
and subdural. When the sections were labeled intracerebral hemorrhage, at least one of the five hemorrhage subtypes was labeled. 
Intraparenchymal hemorrhage (IPH) refers to the hemorrhage wholly located inside the brain; Intraventricular (IVH) or subarachnoid 
hemorrhage (SAH) refers to hemorrhage that infiltrates into the intracerebral space containing cerebrospinal fluid (ventricle or 
subarachnoid cistern); Extra-axial hemorrhage, including subdural hemorrhage (SDH) and epidural hemorrhage (EDH), refers to the 
hemorrhage gathered in the tissue covering around the brain. In addition, because of multiple causes, several cerebral hemorrhage 
subtypes may occur in a patient at once, manifesting as various hemorrhage subtypes on the same CT scan slice. The specific bleeding 

Fig. 4. Spatial attention module.  

Table 1 
Imaging characteristics of various subtypes of hemorrhage.   

IPH IVH SAH SDH EDH 

Position Inside the brain Intraventricular Between arachnoid and pia 
mater 

Between dura and 
arachnoid 

Between dura and 
skull 

CT images 

Pathogenesis Hypertensio, trauma, 
arteriovenous malformation, 
tumor 

Related to 
intraparenchymal and 
subarachnoid hemorrhage 

Rupture of aneurysm, 
arteriovenous malformation, 
trauma 

Trauma After surgery, 
trauma 

Shape Usually, round Similar to ventricular 
shape 

Along sulci and fissure Crescent Fusiform  

B. He et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e30270

6

in each subtype is shown in Table 1. (Table 1 location). 

2.2.2. Training process and evaluation indicators 
Our method was implemented based on the PyTorch framework and accelerated by an NVIDIA GTX 1080Ti 12G × 4 graphics card. 

The training rounds included 20 epochs. The optimizer adopts the Adam method, batch_size is 8. The initial learning rate was 0.001, 
which was decreased by 10 times every 5 epochs. The model with the highest score in the validation set was finally chosen for testing. 
The initialization parameters of the window tuning optimization module are presented in Table 2 (Table 2 location). 

The receiver operating curve (ROC) analysis and AUC values were used to evaluate the performance. The ROC curve was drawn 
with FPR as the x-axis, TPR as the y-axis, and AUC as the region under ROC curves. The average precision (AP) was used to assess 
disease localization. AP is a comprehensive index of accuracy and recall rate, and its value is the region under the PR curve drawn with 
recall as x-axis and precision as y-axis (TP is taken as a prediction box with IoU greater than 0.5). 

AP=
∑n

k=1
P(k)ΔR(k) (4.1)  

In Equation (4.1), ΔR(k) is the evenly divided interval between [0,1] in the abscissa. After the average accuracy AP of each classifi
cation was obtained, the mAP was obtained by taking the mean of the average accuracy to evaluate the overall positioning accuracy. 

2.2.3. Ablation study 
Ablation experiments were conducted on the proposed network framework to prove the effectiveness of window setting optimi

zation module and multiscale feature fusion. Each module was removed sequentially to verify the model’s performance differences. 
Only the network structure was altered in the following three trials to ensure a fair comparison. All other experimental settings 
remained the same. 

3. Results 

Intracerebral hemorrhage and subtypes of intracerebral hemorrhage were analyzed in the whole dataset, of which 644,870 sections 
did not contain intracerebral hemorrhage, 75,859 sections contained two types of hemorrhage, 24,826 sections contained three types 
of hemorrhage, and 6217 sections contained four types of hemorrhage. A total of 1 % (~7500 sections) of the data were randomly 
selected as the test set according to the proportion of bleeding subtypes, and the rest were used as training sets. Fig. 5 shows the 
proportion of intracranial hemorrhage subtypes. Intracranial hemorrhage accounted for approximately 14.34 % (14.41 %), but each 
subtype of hemorrhage was uneven. Epidural hemorrhage was the lowest, accounting for 0.42 % (0.45 %). Subdural hemorrhage was 
the highest, accounting for 6.26 % (6.15 %). Parenchymal hemorrhage, ventricular hemorrhage and subarachnoid hemorrhage 
accounted for 4.80 % (4.90 %), 3.48 % (3.44 %), and 4.74 % (5.09 %), respectively. (Fig. 5 location). 

Based on the trained model, the classification and localization performance of the test dataset were evaluated. The ROC curves and 
AUC scores of each category are displayed in Fig. 6, where ‘any’ indicates detecting intracranial hemorrhage, and the rest are the 
classification results (Fig. 6 location). 

To evaluate and compare the localization precision of weakly supervised lesions proposed in this research, mAP = 0.2 was 
calculated. Specifically, the AP values of each hemorrhage subtype are APIVH = 0.07, APIPH = 0.27, APSAH = 0.18, and APSDH = 0.48. 
Among these, the number of EDH samples was too small, so the localization accuracy was not calculated temporarily. SDH and IPH 
achieved better performance. 

Results of the ablation experiment are presented in Table 3; the average AUC of our method was 0.973. Compared with the 
sequential removal of the other two modules, the average AUC was improved. Only the network structure was altered in the following 
three trials. All other experimental parameters remained the same (Table 3 location). 

For the window setting optimization module, different inputs were used for training and evaluation under the same dataset, and the 
same parameter settings and the classification results for intracranial hemorrhage are presented in Table 4. (Table 4 Location). 

In Table 4, initialization refers to initializing the input HU value into different window images. The three windows are the cerebral, 
subdural, and soft tissue windows. The cerebral window’s width (WW) and WL were set to 80, 40, the subdural window’s WW and WL 
were set to 200 and 80, and the soft tissue window’s WWWL was set to 380 and 40, respectively. The absence of weights in training 
means that the window tuning optimization module only completes mapping the HU value to fixed window images, and its weight 
parameters were not updated, equivalent to the original VGG-16 model. The brain window’s WL and width (WW) were set to 40. The 
subdural window’s WL and width (WW) were set to 80. 

From the visualization standpoint, the single-window initialization model and the three-window initialization model were selected, 
and the weight parameters W and B of their window tuning optimization module were extracted. Based on Equation (3.1), the optimal 

Table 2 
Initialization weight parameter values of the window tuning optimization module.  

The weight parameters Brain window Subdural window Soft tissue window 

W 0.13843335 0.05537334 0.02914386 
b − 5.5373344 − 4.4298673 − 1.1657546  
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Fig. 5. Proportion of intracerebral hemorrhage subtypes in the training and test sets.  

Fig. 6. ROC curves and AUC scores for each category.  

Table 3 
Effectiveness of the two modules.   

Our Method w/o module window w/o multiple feature fusion Junior radiologist[Ye,2019] Senior radiologist[Ye,2019] 

Any 0.988 0.943 0.91 0.97 1.0 
Epidural 0.891 0.845 0.82 0.85 0.96 
Subdural 0.991 0.965 0.913 0.79 0.97 
Subarachnoid 0.983 0.9 0.86 0.66 0.96 
Intraventricular 0.995 0.98 0.871 0.84 0.97 
intraparenchymal 0.990 0.91 0.864 0.89 0.92 
Average 0.973 0.923 0.873    

Table 4 
AUCs input from different models.  

Input Window tuning optimization module Prediction of intracranial hemorrhage Note 

Initialization Weight training AUC 

HU − − 0.891 VGG-16 
HU Brain window − 0.937 VGG-16 
HU Three windows − 0.961 VGG-16 
HU − √ 0.924 VGG-16+ window tuning optimization module 
HU Brain window √ 0.959 VGG-16+ window tuning optimization module 
HU Three windows √ 0.973 VGG-16+ window tuning optimization module  
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window width WW and WL could be deduced backward to visualize the brain image (Fig. 7). The intracranial images visualized with 
the optimal window width significantly differed from those visualized with the fixed window width (Fig. 7 location). 

The three-window optimization was also used as input, and a heatmap based on CAM was generated to locate the lesions in the test 
set, depicted in Fig. 8. Here, the first column is a manually labeled BBox, the second column is a heatmap with feature fusion removed 
from the model, and the third column is a heatmap with multiscale feature fusion. Multiple feature fusion resulted in more complete 
localization of the bleeding lesion (lines 1 and 4), more accurate localization (line 2), and more obvious localization of the lesion (lines 
3 and 4). Multiple feature fusion could locate more bleeding lesions for multiple types of intracerebral hemorrhage in a single section 
(line 5). (Fig. 8 location). 

4. Discussion 

As many patients with intracerebral hemorrhage often receive CT examination in the emergency department, a rapid and highly 
accurate diagnostic protocol is warranted. Furthermore, in many clinical centers, junior radiologists or emergency physicians typically 
provide the initial diagnosis for head CT. Unfortunately, their expertise might be lower in comparison to more experienced radiolo
gists, and time limitations may be high in such settings, which may result in missed diagnosis or misdiagnosis, highlighting a pressing 
need for intelligent diagnostic aids in this context. 

Compared with the existing method proposed by Chen et al. [28] for weakly supervised localization of intracranial hemorrhage, our 
network localization performance mAP was improved from 0.133 to 0.2, an increase of 5 %. Although there is still a large gap between 
mAP and strong supervision, based on weak supervision, only section-level annotations are needed, and pixel-level annotations are not 
needed, which provides a feasible solution for the utilization of medical images lacking pixel-level annotations. Based on the exper
imental results, we showed that using three-window input can achieve higher performance than single-window input. Compared with 
the fixed window image model, the present model can achieve better results after using the window adjustment optimization model. 
Furthermore, multiscale feature fusion can not only improve classification AUC but also improve lesion localization performance. 

At the same time, the weakly supervised location method and experimental result data in the present study also provide an 
analytical and comparative path for future research. The present study leveraged process radiologists use in identifying lesion types 
and the window adjustment optimization algorithm enhanced the detection of intracerebral hemorrhage by obtaining an optimal 
window width and window position value and optimizing network input. This method can be widely applied to X-ray, CT, magnetic 
resonance, and other medical image processing. 

The study also indicates that integrating low-level and high-level multiscale features through an attentional mechanism, classifi
cation and localization ability of an image analysis model can be improved. A major strength of the weakly supervised object local
ization method is that only image-level annotation is required to locate lesions, which provides a feasible reference scheme for the 
location of lesions in other medical image diagnostic systems. The limitation of the present report includes the limited samples for 
epidural type of intracranial hemorrhage, therefore the localization performance for epidural lesions was not high. In the future, small- 
sample learning methods will be further studied to improve the localization performance to help develop a more accurate intelligent 
diagnosis system for intracranial hemorrhage. 

5. Conclusion 

Based on deep learning methods, a novel framework of intracranial hemorrhage classification and weakly supervised location is 
proposed, which can quickly realize the preliminary screening of intracranial hemorrhage and realize the classification and locali
zation of intracranial hemorrhage subtypes. In addition, the performance of intracerebral hemorrhage classification and weakly su
pervised location is further improved through window setting optimization and a multiscale feature fusion mechanism. The 
effectiveness of the overall framework and each optimization module was verified through extensive experiments and evaluations on 
open data sets. 
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Fig. 7. Visualization of optimal window width and window position.  

B. He et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e30270

9

Fig. 8. Focal location based on CAM heat map.  
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