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Codon optimality has been demonstrated to be an important determinant of mRNA stability and expres-
sion levels in multiple model organisms and human cell lines. However, tissue-specific codon optimality
has not been developed to investigate how codon optimality is usually perturbed by somatic synonymous
mutations in human cancers. Here, we determined tissue-specific codon optimality in 29 human tissues
based on mRNA expression data from the Genotype-Tissue Expression project. We found that optimal
codons were associated with differentiation, whereas non-optimal codons were correlated with prolifer-
ation. Furthermore, codons biased toward differentiation displayed greater tissue specificity in codon
optimality, and the tissue specificity of codon optimality was primarily present in amino acids with high
degeneracy of the genetic code. By applying tissue-specific codon optimality to somatic synonymous
mutations in 8532 tumor samples across 24 cancer types and to those in 416 normal cells across six
human tissues, we found that synonymous mutations frequently increased optimal codons in tumor cells
and cancer-related genes (e.g., genes involved in cell cycle). Furthermore, an elevated frequency of opti-
mal codon gain was found to promote tumor cell proliferation in three cancer types characterized by DNA
damage repair deficiency and could act as a prognostic biomarker for patients with triple-negative breast
cancer. In summary, this study profiled tissue-specific codon optimality in human tissues, revealed alter-
ations in codon optimality caused by synonymous mutations in human cancers, and highlighted the non-
negligible role of optimal codon gain in tumorigenesis and therapeutics.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction mous codons with no change in the amino acid composition of
Cancer is a leading cause of morbidity and mortality worldwide,
with 19.3 million new cases and almost 10.0 million deaths in 2020
[1]. Among the diverse cancer types, breast cancer is the most com-
monly diagnosed cancer [1], and triple-negative breast cancer
(TNBC) is a highly aggressive subtype with poorer clinical outcome
and greater metastatic potential [2]. To unveil the mystery of can-
cer occurrence, progression, and outcome, genome sequencing
projects covering high-volume cancer samples have been carried
out, and a wide variety of genomic mutations have been identified
[3]. Despite being the second most common type of point mutation
[4], synonymous mutations (i.e., substitutions between synony-
the encoded proteins) are generally considered silent in cancer
due to the dogma that amino acid sequences determine protein
structure and function. Same amino acids as they encode, the syn-
onymous codons are unevenly used in the transcriptome. Indeed,
codon usage bias (or codon bias) widely exists in multiple domains
of life [5–7] and is thought to be shaped to some extent by codon
optimality, which refers to the non-uniform decoding rate of the 61
amino-acid encoding codons by the ribosome due to the variability
of tRNA concentrations and the stochastic nature of ribosome
decoding [8]. In recent years, codon optimality has been revealed
to be an important determinant of mRNA stability in multiple
model organisms and human cell lines [9–13]. In line with this,
codon usage has been shown to be an important determinant of
mRNA expression levels [14,15]. Furthermore, it has been reported
in the past few years that codon usage exhibits cancer-specific pat-
terns [16–20]. However, it remains largely unexplored how codon

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.07.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.07.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sunzs@biols.ac.cn
https://doi.org/10.1016/j.csbj.2022.07.005
http://www.elsevier.com/locate/csbj


X. Ran, J. Xiao, F. Cheng et al. Computational and Structural Biotechnology Journal 20 (2022) 3567–3580
optimality is usually perturbed by synonymous mutations in
human cancers.

Several metrics have been developed to measure codon opti-
mality based on either or both of tRNA levels and codon usage
[9,21–23]. In this context, Supek et al. [24] investigated whether
synonymous mutations increased optimal codons in oncogenes
and enhanced oncogene translation efficiency or accuracy, yet no
evidence was found based on the genomic tRNA gene copy num-
ber. By applying codon stabilization coefficient (CSC) scores from
the human embryonic kidney 293T cell line (HEK293T) to germline
synonymous mutations in healthy individuals, Dhindsa et al. [25]
found that DNA damage-response genes and cell-cycle regulated
genes were particularly intolerant to synonymous mutations.
Notably, both tRNA abundance [26,27] and codon usage [28,29]
have been reported to exhibit differences between human tissues.
However, tissue-specific codon optimality has not been developed
to investigate the impact of synonymous mutations on codon opti-
mality in human cancers. Additionally, although the calculation of
CSC scores requires mRNA half-life data that are not available in
diverse human tissues, three other existing metrics, including the
tRNA adaption index (tAI) [21], Copt (i.e., codon optimality) [22],
and the normalized translation efficiency (nTE) [23], can be
employed to generate tissue-specific codon optimality based on
the extant tRNA abundance [30] and mRNA expression data [31]
in human tissues. Still, it remains unclear which metric measures
codon optimality more accurately in Homo sapiens.

In this study, to investigate the impact of synonymous muta-
tions on codon optimality in human cancers, we first evaluated
the three metrics (tAI, Copt, and nTE) in HEK293T cells. We found
that Copt outperformed tAI and nTE in measuring codon optimality
in human tissues and that our modified version of Copt, called rate
ratio (RR) score, measured codon optimality more accurately than
Copt in human tissues. The RR score was then applied to generate
tissue-specific codon optimality for human tissues based on expres-
sion data across 29 human tissues from the Genotype-Tissue
Expression (GTEx) project [31]. Interestingly, optimal codons were
found to be associated with differentiation, while non-optimal
codons were correlated with proliferation; codons biased toward
differentiation displayed greater tissue specificity in codon opti-
mality. Additionally, the tissue specificity of codon optimality was
primarily observed for amino acids with high degeneracy of the
genetic code. By applying tissue-specific codon optimality to
somatic synonymous mutations in 8532 tumors samples across
24 cancer types from The Cancer Genome Atlas (TCGA) and to those
in 416 normal cells from 234 individuals across six human tissues
from a Database of Somatic Mutations in Normal Cells (DSMNC)
[32], we found that synonymous mutations frequently increased
optimal codons in tumor cells and cancer-related genes (e.g., genes
involved in cell cycle). Further analyses revealed that an elevated
frequency of optimal codon gain promoted tumor cell proliferation
in three cancer types characterized by DNA damage repair (DDR)
deficiency. Additionally, an elevated frequency of optimal codon
gain was found to correlate with better survival in patients with
TNBC. These findings may provide insights into how synonymous
mutations contribute to tumor progression and outcome by alter-
ing codon optimality, and may help to uncover the mystery of can-
cer occurrence, progression and outcome.
2. Materials and methods

2.1. Calculation of tAI, nTE, Copt, RR score, and codon-specific ribosome
density in HEK293T cell line

tAI was calculated based on tRNA levels and Crick’s wobble
rules to reflect how efficiently tRNA was used by the ribosome
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[21]. The copy number of tRNA genes (hg38) was obtained from
the Genomic tRNA Database (GtRNAdb) [33], and tRNA abundance
quantified by demethylase tRNA-seq by Zheng et al. [34] was
downloaded from a public dataset in Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE66550). tAI was calculated based on the copy number of tRNA
genes and square-root-normalized tRNA abundance, respectively,
using the R package tAI [21].

nTE was calculated by normalizing the tAI by codon usage [23].
RNA-seq data (adaptor trimmed) of HEK293T cells were down-
loaded from a public dataset in GEO (https://www.ncbi.nlm.nih.-
gov/geo/query/acc.cgi?acc=GSE113952). Trimmomatic v0.39 [35]
was used for quality trimming and RSEM v1.2.30 [36] was
employed for transcript-level quantification based on reads
mapped against the reference genome (hg38) using STAR v2.7.0c
[37]. The coding sequence (CDS) profile of the human genome
(hg38) was obtained from the Ensemble database (ftp://ftp.ense
mbl.org/pub/release-100/fasta/homo_sapiens/cds/Homo_sapiens.
GRCh38.cds.all.fa.gz), and the number of occurrences for each
codon in an open reading frame (ORF) was generated for 111,267
coding transcripts by a Perl program named ‘codonM’ from the R
package tAI [21]. Codon usage was calculated based on codon
occurrence and square-root-normalized transcript abundance,
and nTE was then calculated by normalizing the tAI by codon
usage, as previously described [23], based on the above two types
of tAI, respectively. Notably, the first codon in every sequence was
ignored when counting the number of occurrences of each codon
in a transcript since it is always a methionine codon (even if it is
not coded by the canonical ATG). Accordingly, tRNA copy number
or abundance of iMetCAT was not included when calculating the
tAI of ATG.

Copt was calculated by comparing codon usage in highly and
lowly expressed genes based on the assumption that highly
expressed genes are codon-optimized [22]. Based on the above
codon occurrence data and mRNA expression data of HEK293T
cells, codon occurrence was counted for each codon and each
amino acid family in highly (transcripts per million [TPM] � 100)
and lowly (5 > TPM � 1) expressed genes, respectively. Copt was
calculated as the odds ratio of codon occurrence in highly versus
lowly expressed genes using Fisher’s exact test, while RR score,
our modified version of Copt, was calculated as the RR of codon
occurrence in highly versus lowly expressed genes using the RR
test from the R package rateratio.test.

Ribosome profiling data of HEK293T cells were obtained from a
previous study by Ingolia et al. [38]. Adapter and quality trimming
were performed using Cutadapt v2.10 [39] and Trimmomatic v0.39
[35], respectively, according to Liu et al. [40]. The trimmed reads
were then aligned to rRNAs using Bowtie v1.1.2 [41] with default
parameters to avoid rRNA contamination. The unmapped reads
were then mapped against coding sequences using STAR v2.7.0c
[37] with the following parameters ‘--outFilterMismatchNmax 2
--outSAMtype BAM SortedByCoordinate --quantMode Transcrip-
tomeSAM GeneCounts --outFilterMultimapNmax 1 --outFilter-
MatchNmin 16 --alignEndsType EndToEnd’. RiboMiner [42] was
used for periodicity checking and calculation of the ribosome
density at each position for each transcript. Codon-specific
ribosome density was then calculated according to Weinberg
et al. [43].

2.2. Evaluation of metrics measuring codon optimality in the HEK293T
cell line

To determine which metric measured codon optimality more
accurately in Homo sapiens, an evaluation was performed by
assessing the Pearson correlation of each of the four metrics (tAI,
Copt, nTE, and RR score) with codon-specific ribosome density
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and CSC score (i.e., the Pearson correlation coefficient between
codon usage and mRNA stability) in HEK293T cells. CSC scores of
HEK293T were obtained from a recent study by Wu et al. [11],
which included CSC scores derived from endogenous (reflecting
mRNA decay regulation from codon composition) or ORFome (re-
flecting mRNA decay regulation from other regulatory information,
such as untranslated regions) mRNA. The relationship between RR
score and the other three metrics was also evaluated using the
Pearson correlation analyses. Theoretically, a negative correlation
exists between codon optimality and ribosome density, while a
positive correlation exists between codon optimality indices.
Therefore, the correlations between CSC score and the four metrics
were examined using one-sided Pearson correlation analysis with
the option of alternative= ‘greater’, which was also employed to
evaluate the correlations between RR score and other three metrics
of codon optimality. The correlations between the four metrics and
ribosome density were evaluated using one-sided Pearson correla-
tion analysis with the option of alternative= ‘less’.

2.3. Generation of tissue-specific codon optimality for human tissues

Transcript-level mRNA expression data of human tissues were
obtained from the GTEx Portal (https://storage.googleapis.com/
gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-05_v8_
RSEMv1.3.0_transcript_tpm.gct.gz) and 29 human tissues with
expression data available in >10 samples were used, including adi-
pose tissue, adrenal gland, bladder, blood, blood vessel, brain,
breast, cervix, colon, esophagus, heart, kidney, liver, lung, muscle,
nerve, ovary, pancreas, pituitary, prostate, salivary gland, skin,
small intestine, spleen, stomach, testis, thyroid, uterus, and vagina
tissues (Table S1). Given the large number of samples in most tis-
sues, quality control was performed according to a previous study
[44] as follows: i) a standard sample was defined for each tissue as
the median value of TPM of all samples from the same tissue; ii)
the Spearman correlation coefficient of TPM was calculated
between each sample and its corresponding standard sample; iii)
samples with a correlation of >0.8 were defined as qualified.

The median expression of a transcript in all qualified samples
from the same tissue was taken as the transcript abundance in
the tissue, and transcripts that were among the 111,267 coding
transcripts were then used to identify the highly (TPM � 100)
and lowly (5 > TPM � 1) expressed genes in each human tissue.
Tissue-specific codon optimality was then calculated for each of
the 29 human tissues as aforementioned. For each human tissue,
codons were defined as optimal if they were significantly overrep-
resented in highly expressed genes compared to lowly expressed
genes (i.e., RR score > 1 and p < 0.05), and non-optimal otherwise.

2.4. Characterization of tissue-specific codon optimality in human
tissues

To characterize tissue-specific codon optimality in human tis-
sues, hierarchical clustering was first performed based on RR
scores in 29 human tissues in R with the options of a ‘Euclidean’
distance and a ‘ward.D’ linkage. The association of codon optimal-
ity with proliferation and differentiation was analyzed by evaluat-
ing the Pearson correlation between the mean value of RR scores in
29 human tissues and the log2 ratio of codon usage in
proliferation- versus differentiation-related genes. Codon usage
in proliferation- and differentiation-related genes was obtained
from Gingold et al. [45]. The standard variations of distribution
of RR scores were then examined to identify the codons whose
codon optimality exhibited larger variations among human tissues.
Hierarchical clustering was also performed, as described above,
based on the optimal and non-optimal codons in 29 human tissues.
The number of optimal codons was counted for each amino acid in
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each of the human tissues, and hierarchical clustering was per-
formed as described above to characterize the distribution of
tissue-specific optimal codons at the amino acid level.

2.5. Identification of somatic synonymous mutations altering codon
optimality in tumor samples from TCGA

Somatic mutation data were obtained from TCGA public access
portal for 24 cancer types whose primary sites were within the 29
human tissues with tissue-specific codon optimality data available,
including Adrenocortical Carcinoma (ACC) and Pheochromocytoma
and Paraganglioma (PCPG) from the adrenal gland, Bladder Urothe-
lial Carcinoma (BLCA) from the bladder, Glioblastoma Multiforme
(GBM) and Brain Lower grade Glioma (LGG) from the brain, Breast
Invasive Carcinoma (BRCA) from the breast, Cervical Squamous
Cell Carcinoma and Endocervical Adenocarcinoma (CESC) from
the cervix, Colon Adenocarcinoma (COAD) from the colon, Esopha-
geal Carcinoma (ESCA) from the esophagus, Kidney Chromophobe
(KICH), Kidney Renal Clear Cell Carcinoma (KIRC), and Kidney
Renal Papillary Cell Carcinoma (KIRP) from the kidney, Liver Hepa-
tocellular Carcinoma (LIHC) from the liver, Lund Adenocarcinoma
(LUAD) and Lung Squamous Cell Carcinoma (LUSC) from the lung,
Ovarian Serous Cystadenocarcinoma (OV) from the Ovary, Pancre-
atic Adenocarcinoma (PAAD) from the pancreas, Prostate Adeno-
carcinoma (PRAD) from the prostate, Skin Cutaneous Melanoma
(SKCM) from the skin, Stomach Adenocarcinoma (STAD) from the
Stomach, Testicular Germ Cell Tumors (TGCT) from the testis, Thy-
roid Carcinoma (THCA) from the thyroid, Uterine Corpus Endome-
trial Carcinoma (UCEC) and Uterine Carcinosarcoma (UCS) from the
uterus (Table S2).

False positive somatic mutations were filtered as previously
described [46]. Based on the tissue-specific optimal and non-
optimal codons determined above, the resulting somatic synony-
mous mutations were classified as optimal codon gain if the muta-
tion substituted a non-optimal codon with an optimal codon,
optimal codon loss if the mutation replaced an optimal codon with
a non-optimal codon, or no change otherwise.

2.6. Characterization of synonymous mutations altering codon
optimality in tumor samples from TCGA

Given the existence of tissue-specifically optimal codons, the
type of alterations in codon optimality caused by synonymous
mutations was counted for each mutation, and the function onco-
print from the R package ComplexHeatmap was used to visualize
the synonymous mutations causing two or three types of codon
optimality changes.

Variant allele frequency (VAF) was calculated for each synony-
mous mutation as the percentage of variant supporting reads in the
total depth of the mutated position, and the number of synony-
mous mutations was calculated for the above three types of syn-
onymous mutations in each VAF subgroup (i.e., 0%-10%, 10%-20%,
20%-30%, 30%-40%, 40%-50%, 50%-60%, 60%-70%, 70%-80%, 80%-
90%, 90%-100%). The relative location was calculated for each syn-
onymous mutation as the percentage of mutated codon position in
the total length of amino acids of the corresponding transcripts,
and the number of synonymous mutations was calculated for the
above three types of synonymous mutations in each location sub-
group (i.e., 0%–10%, 10%–20%, 20%–30%, 30%–40%, 40%–50%, 50%–
60%, 60%–70%, 70%–80%, 80%–90%, 90%–100%). The RR test was
used to compare optimal codon gain and optimal codon loss or
optimal codon gain and no change in the VAF subgroup of 0%–
10%, as well as to compare optimal codon gain and optimal codon
loss in the location subgroups of 0%–20% and 60%–80%.

For optimal codon gain or loss, the occurrence of codon change
was counted for each cancer type and normalized by the maximum
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occurrence in the corresponding cancer type. Hierarchical cluster-
ing was performed as aforementioned based on the top three most
frequent optimal codon gains or losses ranked by mutation occur-
rence in each cancer type.

2.7. Validation of the impact of somatic synonymous mutations on
codon optimality in the HeLa cell line

CSC scores for the HeLa cell line were obtained from a recent
study by Wu et al. [11]. Changes in CSC scores in the HeLa cell line
were examined for somatic synonymous mutations causing opti-
mal codon gains, optimal codon losses, or no change in CESC tumor
samples. The Wilcoxon rank-sum test was used to compare the
changes in CSC scores between optimal codon gains or losses and
no changes. In addition, changes in CSC scores in the HeLa cell line
were examined for the top three most frequent optimal codon
gains or losses in CESC.

2.8. Identification of the genes in which synonymous mutations
frequently increase or decrease optimal codons

The genes in which synonymous mutations frequently
increased or decreased optimal codons in tumor cells were identi-
fied by comparing the frequency of optimal codon gain or loss (i.e.,
the fraction of synonymous mutations causing optimal codon gain
or loss) in each gene with that in a set of nonessential genes
(n = 16,331) obtained from Kumar et al. [47] using the RR test. P-
values were adjusted using the ‘false discovery rate (FDR)’ method.

2.9. Comparing the frequency of optimal codon gain (or loss) between
cancer-related genes and non-essential genes

Cancer-related genes, including those involved in apoptosis
(n = 140), cell cycle (n = 124), DNA repair (n = 178), immune
response (n = 4723), and metabolism (n = 1939), as well as genes
which were nonessential for tumor cell growth (n = 16,331), were
obtained from Kumar et al. [47]. The frequency of optimal codon
gain or loss was computed as the fraction of synonymous muta-
tions causing optimal codon gains or losses in each gene set and
then compared between each cancer-related gene set and
nonessential gene set using the RR test. The frequency of optimal
codon gain or loss was also calculated for each gene, and the Wil-
coxon rank-sum test was used to compare the frequency of opti-
mal codon gain between genes related to cell cycle (or DNA
repair) and nonessential genes, as well as to compare the fre-
quency of optimal codon loss between metabolism-related genes
and nonessential genes.

2.10. Comparing the frequency of optimal codon gain (or loss) between
tumor and normal tissues

Somatic mutations in 416 normal cells from 234 individuals
across six human tissues (Table S3) were obtained from DSMNC
[32], and variant effect predictor (VEP) [48] was used to annotate
the codon changes caused by synonymous mutations. The impact
of synonymous mutations on codon optimality was analyzed as
described above. The frequency of optimal codon gain (or loss)
was computed as the fraction of synonymous mutations causing
optimal codon gains or losses in each tumor sample or normal cell,
and compared between tumor and normal tissues using the Wil-
coxon rank-sum test. We also obtained somatic mutations in
1059 normal samples across 28 human tissues (Table S4) from a
previous study that detected somatic mutations based on RNA-
seq data in GTEx [49], and performed similar analyses. To analyze
the influence of mutation rate differences between cancer types on
the frequency of optimal codon gain or loss, Pearson correlation
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analysis was employed to evaluate the correlation between the
ranked position of cancer types with respect to the load of synony-
mous mutations and the ranked position of cancer types with
respect to the load or frequency of optimal codon gain or loss.

2.11. Gene ontology (GO) enrichment analysis

WebGestalt [50] was used to identify enriched GO biological
processes using default parameters (i.e., the top 10 enriched terms
ranked based on FDR).

2.12. Identification of the genes whose mRNA expression levels
increase with elevated frequency of optimal codon gain

Genes whose mRNA expression levels increased with an ele-
vated frequency of optimal codon gain were identified as those
whose expression levels were positively correlated with the fre-
quency of optimal codon gain in each cancer type. The correlation
between the frequency of optimal codon gain and mRNA expres-
sion level of each gene was evaluated using the Spearman correla-
tion analysis, and p-values were adjusted using the ‘FDR’ method.

2.13. Association between the frequency of optimal codon gain and
tumor cell proliferation

For each tumor sample in TCGA, proliferation scores were
obtained from Thorsson et al. [51]. The association between the
frequency of optimal codon gain and two metrics reflecting tumor
cell proliferation (i.e., ki-67 mRNA expression level, and prolifera-
tion) was evaluated using the Spearman rank correlation analysis
for each cancer type. P-values were adjusted using the ‘FDR’
method.

2.14. Association between the frequency of optimal codon gain and
DDR deficiency

To measure DDR deficiency, 71 DNA repair pathway-specific
genes were obtained from Knijnenburg et al. [52], which included
genes involved in base excision repair (BER, n = 8), direct repair
(DR, n = 3), Fanconi anemia (FA, n = 8), homologous recombination
(HR, n = 21), mismatch repair (MMR, n = 8), nucleotide excision
repair (NER, n = 10), non-homologous end joining (NHEJ, n = 8),
and translesion synthesis (TLS, n = 5). Based on somatic mutations
in BRCA, STAD, and UCEC, each type of DDR deficiency was calcu-
lated as the weighted sum of the mutations in each set of the
DDR genes. The weight was 1 for missense mutations; 5 for non-
sense, splice site, or frameshift mutations; 10 for gene-level loss
of one copy number; and 20 for gene-level loss of two copy num-
bers. For each sample in TCGA, HR defects were obtained from
Thorsson et al. [51]. The Spearman rank correlation analysis was
used to evaluate the association between the frequency of optimal
codon gain and HR defects or each type of DDR deficiency.

2.15. Association between the frequency of optimal codon gain and
patient survival

For patients with BRCA, STAD, and UCEC in TCGA, clinical infor-
mation, including patient survival data, was obtained from a previ-
ous study by TCGA [53]. Based on the immunohistochemistry
status of estrogen receptor (ER), erb-b2 receptor tyrosine kinase
2 (ERBB2 or HER2), and progesterone receptor (PR) obtained from
cBioPortal, patients with BRCA in TCGA were classified as luminal A
(ER- and PR-positive, HER2-negative), HER2+ (ER- and PR-negative,
HER2-positive), TNBC (ER-, PR- and HER-negative), or luminal B
(ER-positive) according to Goldhirsch et al. [54]. In addition,
somatic synonymous mutations and corresponding clinical infor-
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mation were obtained for 147 patients with TNBC receiving adju-
vant chemotherapy from a recent study by Staaf et al. [55]. Codon
changes caused by synonymous mutations were annotated using
VEP [48], and the impact of synonymous mutations on codon opti-
mality was analyzed as described above. The distribution of patient
survival was examined using the Kaplan-Meier method and was
compared using the log-rank test. Hazard ratios and 95% confi-
dence intervals (CIs) were determined using univariate and multi-
variate Cox proportional hazard regression models.
2.16. Statistical analyses

Unless otherwise specified, all p-values were two-sided, and p-
values <0.05 were considered statistically significant. All statistical
analyses were performed using R (version 3.5).
3. Results

3.1. RR score is a better measurement of codon optimality in Homo
sapiens

To investigate how codon optimality is perturbed by synony-
mous mutations in human cancers, we first determined which
index measured codon optimality more accurately in Homo sapi-
ens. This analysis was conducted in the HEK293T cell line by eval-
uating the association of three indices, including tAI, nTE, and Copt,
with codon-specific ribosome density and CSC score. An index
would be considered if it was negatively associated with codon-
specific ribosome density and positively correlated with CSC score.
We first examined the correlation of tAI with codon-specific ribo-
some density and CSC score. tAI was calculated as previously
described [21], based on the copy number of tRNA genes (hg38).
A positive correlation was observed between tAI and CSC scores
derived from endogenous mRNAs (R = 0.25, p = 0.0248; Fig. S1A).
A similar trend was observed between tAI and CSC scores derived
from ORFomemRNAs (R = 0.16, p = 0.1044; Fig. S1B), yet significant
association was not observed between tAI and codon-specific ribo-
some density (p = 0.4179; Fig. S1C). We also calculated tAI based
on tRNA abundance of HEK293T cells. Although a stronger correla-
tion was observed between tAI and CSC scores derived from
endogenous (R = 0.39, p = 0.0009; Fig. S1D) or ORFome mRNAs
(R = 0.26, p = 0.0213; Fig. S1E), significant association was still
not observed between tAI and codon-specific ribosome density
(p = 0.6118; Fig. S1F). We then calculated nTE by normalizing tAI
by codon usage, as previously described [23], and analyzed its
association with codon-specific ribosome density and CSC score.
Consistent with previous observations in yeast [23], a positive rela-
tionship was observed between tAI and codon usage (R = 0.38,
p = 0.0022; Fig. S2A). Although nTE trended to be negatively corre-
lated with codon-specific ribosome density, the correlation was
not statistically significant (R = �0.19, p = 0.0692; Fig. S2B). Addi-
tionally, significant correlation was not observed between nTE and
CSC scores from either endogenous (R = �0.06, p = 0.6866; Fig. S2C)
or ORFome mRNAs (R = �0.03, p = 0.5775; Fig. S2D). We also cal-
culated nTE using the tAI calculated from tRNA abundance.
Although a stronger correlation was observed between tAI and
codon usage (R = 0.46, p = 0.0002; Fig. S2E), nTE showed no signif-
icant correlation with codon-specific ribosome density (R = �0.12,
p = 0.1789; Fig. S2F) or CSC scores (endogenous mRNAs: R = �0.05,
p = 0.6431; ORFome mRNAs: R = �0.01, p = 0.53; Fig. S2G-H). Next,
we evaluated the correlation of Copt with codon-specific ribosome
density and CSC score. Interestingly, Copt showed a significantly
negative correlation with codon-specific ribosome density
(R = �0.22, p = 0.0427; Fig. S3A) and a significantly positive corre-
lation with CSC scores from either endogenous (R = 0.288,
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p = 0.0122; Fig. S3B) or ORFome mRNAs (R = 0.415, p = 0.00004;
Fig. S3C). These data suggest that Copt measures codon optimality
more accurately than tAI and nTE in Homo sapiens.

In view of the above results, we introduced a modified version
of Copt by calculating the RR (i.e., RR score) rather than the odds
ratio (i.e., Copt) of codon usage in highly versus lowly expressed
genes, and examined its correlation with codon-specific ribosome
density and CSC score. As expected, codon-specific ribosome den-
sity showed a significantly negative correlation with RR score
(R = �0.24, p = 0.0294; Fig. 1A), which was slightly stronger than
its correlation with Copt. Furthermore, CSC scores from either
endogenous (R = 0.54, p = 3.65e�06; Fig. 1B) or ORFome
(R = 0.68, p = 6.75e�10; Fig. 1C) mRNAs exhibited a much stronger
correlation with RR score than with Copt. These data suggest that
RR score outperforms Copt in measuring codon optimality in Homo
sapiens. Further examination of the associations between RR score
and the other three metrics revealed that RR score showed a
weakly yet significantly positive relationship with tAI (R = 0.25,
p = 0.0264; Fig. 1D), no significant correlation with nTE (R = 0.16,
p = 0.1112; Fig. 1E), and a significantly positive correlation with
Copt (R = 0.75, p = 1.86e�12; Fig. 1F). Overall, these data suggest
that RR score is a better measurement of codon optimality in Homo
sapiens.

3.2. Tissue-specific codon optimality in 29 human tissues

Next, RR score was used to calculate tissue-specific codon opti-
mality for human tissues based on mRNA expression data from
15,533 qualified (see Methods; Table S1) samples across 29 human
tissues from GTEx [31]. Similar to the definition of optimal codons
in Copt [22], codons were defined as optimal if they were signifi-
cantly overrepresented in highly expressed genes (i.e., RR score > 1
and p < 0.05 by RR test) and non-optimal otherwise.

To characterize tissue-specific codon optimality in human tis-
sues, we first performed hierarchical clustering based on RR scores
in 29 human tissues (Table S5). As a result, 24 of the 61 amino acid
encoding codons had a widespread RR score of >1, while another
26 codons’ RR scores were generally <1 (Fig. 2A). Interestingly,
22 of the 24 codons ended with a C or G, whereas 23 of the 26
codons ended with an A or T. Notably, previous studies revealed
two types of codons related to proliferation and differentiation,
respectively [45,56]. Thus, we examined the association of codon
optimality with proliferation and differentiation. Intriguingly, a
significantly negative correlation was observed between RR score
and log2ratio of codon usage in proliferation- and differentiation-
related genes (R = �0.75, p = 5e�12; Fig. 2B), which pointed to
the association of optimal and non-optimal codons with differenti-
ation and proliferation, respectively. To investigate the tissue
specificity of codon optimality, we examined the standard devia-
tions of RR scores in the 29 human tissues for all the 61 amino acid
encoding codons. Interestingly, nine codons were clearly distin-
guished from the rest by relatively large deviations in RR scores,
and seven out of the nine codons had a mean RR score of >1
(Fig. 2C). This suggests that codons biased toward differentiation
exhibit greater tissue specificity in codon optimality. Additionally,
five of the nine codons ended with CG (i.e., CCG, GCG, TCG and
ACG) or with GC (i.e., CGC; Fig. 2D), which were exactly the top five
codons biased toward differentiation (Fig. 2E). These data suggest
that differentiation may be a potential driver of tissue specificity
in codon optimality.

We also performed hierarchical clustering based on the optimal
and non-optimal codons in 29 human tissues (Table S6). As a
result, 24 codons were optimal in all (n = 19) or most (n = 5) of
the tissues, whereas the remaining 37 codons were optimal in
few (n = 7) or none (n = 30) of the tissues (Fig. S4). That is to
say, there are 12 codons being tissue-specifically optimal in the



Fig. 1. RR score is a better measurement of codon optimality in Homo sapiens (A-F) The association of RR score with codon-specific ribosome density (A), CSC score based on
endogenous mRNAs (B), CSC score based on ORFome (C), tAI (D), nTE (E), and Copt (F) in HEK293T cells.
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29 human tissues, including the 4 codons ending with CG. In line
with aforementioned results, two-thirds (8/12) of the tissue-
specifically optimal codons were biased toward differentiation
(Fig. 2F). We also evaluated tissue-specific optimal codons at the
amino acid level. Interestingly, the number of optimal codons in
nine amino acids (i.e., Leu, Ser, Arg, Ala, Gly, Val, Thr, Pro, and
Gln) varied across 29 human tissues, and eight of the nine amino
acids were encoded by four- (i.e., Ala, Gly, Val, Thr and Pro) or
six-fold (i.e., Leu, Ser and Arg) degenerate codons (Fig. 2G); that
is to say, each of the eight amino acids with high degeneracy of
the genetic code (i.e., four- or six-fold, relative to two- or three-
fold) had at least one codon being tissue-specifically optimal in
the 29 human tissues. These data suggest that the tissue specificity
of codon optimality is primarily present in amino acids with high
degeneracy of the genetic code.

3.3. Identification of somatic synonymous mutations altering codon
optimality in 24 cancer types

Next, we investigated the impact of somatic synonymous muta-
tions on codon optimality in human cancers. A total of 458,611
nonredundant somatic synonymous mutations were obtained
from 8,532 tumor samples across 24 cancer types (originating from
18 human tissues where codon optimality data were available;
Table S4) in TCGA. Based on tissue-specific optimal and non-
optimal codons, a synonymous mutation was classified as an opti-
mal codon gain if a non-optimal codon was substituted with an
optimal codon, an optimal codon loss if an optimal codon was
replaced with a non-optimal codon, or no change (i.e., remained
optimal or non-optimal; Fig. 3A). As a result, 99.34%
(455,577/458,611) of the synonymous mutations consistently
resulted in optimal codon gain (54,150; 12%), optimal codon loss
(281,332; 62%), or no change (120,095; 26%) in corresponding can-
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cer types (Fig. 3B and C). The remaining 3034 synonymous muta-
tions led to two (n = 3031; Fig. 3D) or three (n = 3; Fig. 3E)
different types of alterations in codon optimality, as these synony-
mous mutations were mutated in at least two cancer types and the
involved codons were tissue-specifically optimal in human tissues.
For example, a synonymous mutation in MSH6 (c.957G > A, ACG-
>ACA) which occurred in five cancer types including UCEC, BLCA,
PRAD, GBM, and STAD, caused optimal codon loss in UCEC, BLCA,
and PRAD, yet no change in GBM and STAD, as the codon ACA
was non-optimal in all the human tissues, while the codon ACG
was optimal in only 6 human tissues including Uterus, Bladder,
Prostate, Cervix, Thyroid, and Pituitary. For validation, CSC scores
of the HeLa cell line were obtained from Wu et al. [11] to examine
changes in CSC scores for all the synonymous mutations causing
optimal codon gains, optimal codons losses, or no changes in cervi-
cal cancer (i.e., CESC). Compared with synonymous mutations
causing no changes to codon optimality, those leading to optimal
codon gains were significantly more likely to enhance codon opti-
mality (p < 2e�16, Wilcoxon rank-sum test), while those resulting
in optimal codon losses were significantly more likely to attenuate
codon optimality (p < 2e�16, Wilcoxon rank-sum test; Fig. 3F).
Similar trends were observed when examining changes in CSC
score for the top three most frequent optimal codon gains or losses
in CESC (Fig. 3G).

Based on the top three most frequent optimal codon losses in
each cancer type, the 24 cancer types were divided into two clus-
ters by hierarchical clustering. One cluster (C1) comprised 10 can-
cer types, including four types of gynecological cancers (BRCA,
CESC, UCEC and UCS), GBM, LUSC, SKCM, ESCA, BLCA, and THCA.
The other cluster (C2) comprised 14 cancer types, including five
cancer types dominated by adenocarcinoma (LUAD, PAAD, COAD,
STAD, and PRAD), three cancer types originating from the kidney
(KIRC, KIRP, and KICH), two cancer types originating from the adre-



Fig. 2. Tissue-specific codon optimality in 29 human tissues (A) Hierarchical clustering based on RR scores of 61 amino acid encoding codons in 29 human tissues. (B)
Association between the mean RR scores in 29 human tissues and the log2 ratio of codon usage in proliferation- versus differentiation-related genes. (C) Mean values and
standard deviations of RR scores in 29 human tissues. (D) Nine codons with relatively large deviations in RR scores in 29 human tissues. (E) Top 10 codons biased toward
differentiation. (F) Twelve codons being tissue-specifically optimal in 29 human tissues. (G) Tissue-specific optimal codons at the amino acid level.
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nal gland (ACC and PCPG), LGG, TGCT, LIHC, and OV. The top three
most frequent optimal codon losses in most cancer types were
TTC->TTT, ATC->ATT, and GAC->GAT (Fig. 3H). Interestingly, TTC-
>TTT was the most frequent optimal codon loss in almost all the
cancer types in C1, whereas GAC->GAT was the most frequent opti-
mal codon loss in most cancer types in C2 (Fig. 3H). Hierarchical
clustering based on the top three most frequent optimal codon
gains in each cancer type distinguished three cancer types (LUAD,
LUSC, and ACC) from the other 21 cancer types; GGG->GGT and
CGG->CGT were the most frequent optimal codon gains in the
three cancer types, while AAA->AAG and GAA->GAG were the most
frequent optimal codon gains in many of the other 21 cancer types
(Fig. 3I).
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3.4. Synonymous mutations frequently increase optimal codons in 16
cancer types

To characterize the distribution of optimal codon gains or losses
in human cancers, we first analyzed the VAFs of synonymous
mutations causing optimal codon gains or losses. Interestingly,
optimal codon gains showed higher proportion than optimal codon
loss in synonymous mutations with a VAF of <10% (p < 2e�16, RR
test), and this trend was also observed when comparing with no
change (p < 2e�16, RR test; Fig. 4A). This suggests that the increase
of optimal codons by somatic synonymous mutations preferen-
tially occurs in subclonal tumor cells. We then analyzed the distri-
bution of optimal codon gains or losses within the CDS.



Fig. 3. Identification of somatic synonymous mutations altering codon optimality in 24 cancer types (A) Classification of synonymous mutations based on tissue-specific
optimal and non-optimal codons. (B) Statistics on the type of alterations in codon optimality. (C) Statistics on the impact of synonymous mutations on codon optimality for
synonymous mutations causing one type of codon optimality change. (D) Synonymous mutations (occurrence � 6) causing two different types of alterations in codon
optimality. (E) Synonymous mutations causing three different types of alterations in codon optimality. (F) CSC scores changes in HeLa cells for synonymous mutations causing
optimal codon gains, optimal codon losses, or no changes in CESC. (G) CSC score changes in HeLa cells for the top 3 most frequent optimal codon gains or losses in CESC. (H)
Hierarchical clustering based on the top 3 most frequent optimal codon losses in each cancer type. (I) Hierarchical clustering based on the top 3 optimal codon gains in each
cancer type.
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Intriguingly, optimal codon gains showed higher proportion in the
first 20% of the CDS compared to optimal codon loss (p = 4.7e�05,
RR test; Fig. 4B), and were enriched in the 10%-40% region of the
CDS compared with no change (p = 0.0004, RR test; Fig. S5A). In
addition, optimal codon losses were underrepresented in the first
10% of the CDS compared with no change (p = 6.7e�09, RR test;
Fig. S5B), while optimal codon gains were depleted in the 60%-
80% region of the CDS when compared with either optimal codon
loss (p = 8.1e�06, RR test; Fig. 4B) or no change (p = 0.001, RR test;
Fig. S5A). These data suggest that the increase of optimal codons by
somatic synonymous mutations preferentially occurs in the coding
region near the initiating methionine.

Next, we identified the genes in which optimal codon gains or
losses frequently occurred. As a result, synonymous mutations
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were found to frequently increase optimal codons in 110 genes
(Fig. 4C). GO enrichment analysis revealed that these genes were
mainly enriched in cell cycle-related processes (Fig. 4D). By con-
trast, synonymous mutations did not frequently decrease optimal
codons in the corresponding mutated genes (Fig. S6A). We also
examined the frequency of optimal codon gain or loss in five
cancer-related gene sets (i.e., apoptosis, cell cycle, DNA repair,
immune response, and metabolism) versus genes nonessential
for tumor cell growth. Interestingly, compared with nonessential
genes, synonymous mutations were found to frequently increase
optimal codons in genes related to DNA repair (p < 2.2e�16, RR
test) and cell cycle (p = 3.3e�08, RR test; Fig. 4E). Similar trends
were also observed when comparing the frequency of optimal
codon gain in individual genes of DNA repair (p = 7e�05, Wilcoxon



Fig. 4. Synonymous mutations frequently increase optimal codons in 16 cancer types (A) Left: The distribution of VAFs for optimal codon gains or losses. Right: Boxplot
showing the distribution of optimal codon gains, optimal codon losses, and no changes in synonymous mutations with VAF <10%. (B) Left: The distribution of optimal codon
gains or losses within the CDS. Right: Boxplot showing the distribution of optimal codon gains or losses in the first 20% or 60%–80% of the CDS. (C) Scatter plot showing the
genes in which synonymous mutations frequently increase optimal codons (point in red). (D) Top ten biological processes enriched by the genes where synonymous
mutations frequently increase optimal codons. (E) The frequency of optimal codon gain in cancer-related genes versus nonessential genes. (F) Boxplot showing the frequency
of optimal codon gain in genes related to cell cycle and nonessential genes. (G) Boxplot showing the frequency of optimal codon gain in genes related to DNA repair and
nonessential genes. (H) The frequency of optimal codon gain in each cancer types sorted by the median value in each cancer type, compared to the frequency of optimal codon
gain in normal cells from DSMNC. n.s., not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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rank-sum test; Fig. 4F) or cell cycle (p = 0.0237, Wilcoxon rank-
sum test; Fig. 4G) versus those of nonessential genes. By contrast,
although synonymous mutations frequently decreased optimal
codons in metabolism-related genes (p = 0.0097, RR test;
Fig. S6B), this trend was not observed when comparing the fre-
quency of optimal codon loss in individual metabolism genes ver-
sus those of nonessential genes (p = 0.1015, Wilcoxon rank-sum
test; Fig. S6C). These data suggest that only the increase of optimal
codons by synonymous mutations frequently occurs in cancer-
related genes.

In view of the frequent increase of optimal codons by synony-
mous mutations in cancer-related genes, we next determined
whether synonymous mutations increased optimal codons more
frequently in tumor cells than in normal cells. For this purpose,
we analyzed the impact of synonymous mutations on codon opti-
mality in 416 normal cells from 234 individuals across six human
tissues from DSMNC [32], and compared the frequency of optimal
codon gain or loss in tumor samples from TCGA with that in nor-
mal cells from DSMNC [32]. Interestingly, two-thirds (16/24) of
the analyzed cancer types displayed significantly more frequent
optimal codon gain compared to normal cells (Fig. 4H). By contrast,
only three cancer types (SKCM, CESC, and THCA) exhibited signifi-
cantly more frequent optimal codon loss than normal cells
(Fig. S6D). For validation, somatic mutations in 1,059 normal sam-
ples across 28 human tissues from Yizhak et al. [49] were also used
for comparison, and similar trends were observed (Fig. S7). Overall,
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these data suggest that synonymous mutations frequently increase
optimal codons in tumor cells and cancer-related genes.
3.5. Elevated frequency of optimal codon gain promotes tumor cell
proliferation in three cancer types characterized by DDR deficiency

We next sought to investigate in the above 16 cancer types
which cancer hallmarks were associated with the frequent increase
of optimal codons by synonymous mutations in tumor cells and
cancer-related genes. As the conversion of non-optimal codons to
optimal codons was previously demonstrated to increase mRNA
stability [9] and expression levels [14], we first identified the genes
whose mRNA expression levels increased with an elevated fre-
quency of optimal codon gain. There were 1,390, 1,074, 389, 278,
and 3 genes in BRCA, COAD, STAD, UCEC, and KIRP, respectively,
whose mRNA expression levels increased with the frequency of
optimal codon gain (adjusted p-value <0.05; Fig. S8A). GO enrich-
ment analysis revealed that the identified genes in COAD were
enriched in immune-related processes (Fig. S8B). Interestingly, cor-
responding genes in BRCA, STAD and UCEC were commonly
enriched in cell cycle-related processes (Fig. 5A), which pointed
to a potential relationship between an elevated frequency of opti-
mal codon gain and increased tumor cell proliferation in these can-
cer types. Additionally, those genes in BRCA were also enriched in
DNA repair and cellular response to DNA damage stimulus
(Fig. 5A).
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To determine whether an elevated frequency of optimal codon
gain promoted tumor cell proliferation, two indices reflecting
tumor cell proliferation (i.e., ki-67 mRNA expression level, and pro-
liferation from Thorsson et al. [51]) were employed to assess the
association between the frequency of optimal codon gain and
tumor cell proliferation. As a result, significantly positive correla-
tions were observed between the frequency of optimal codon gain
and both indices in three cancer types including BRCA, STAD, and
UCEC (Fig. 5B-C). Of note, the three cancer types were exactly the
cancer types where cell cycle-related processes were enriched by
the genes whose mRNA expression levels increased with elevated
frequency of optimal codon gain, demonstrating that elevated fre-
quency of optimal codon gain promoted tumor cell proliferation in
these cancer types. In addition, the frequency of optimal codon
gain was positively associated with ki-67 mRNA expression level
in PRAD (rho = 0.12, adjusted p = 0.0448; Fig. 5B).

Notably, HR deficiency frequently occurs in BRCA [57], while
STAD and UCEC are associated with MMR deficiency [58,59]. We
hypothesized that DDR deficiency may be involved in elevated fre-
quency of optimal codon gain in these cancer types. To test this
hypothesis, we quantified eight types of DDR deficiency (i.e., BER,
DR, FA, HR, MMR, NER, NHEJ, and TLS) based on the genomic alter-
ations in 71 DNA repair pathway-specific genes from Knijnenburg
et al. [52] and analyzed their associations with the frequency of
optimal codon gain in BRCA, STAD, and UCEC. In all the three can-
cer types, significantly positive correlations were observed
between the frequency of optimal codon gain and five types of
DDR deficiency: BER, HR, MMR, NER, and NHEJ (Fig. 5D). Addition-
ally, an elevated frequency of optimal codon gain correlated with
increased DR deficiency in BRCA and STAD, and with enhanced
FA deficiency in STAD and UCEC. We further examined the rela-
tionship between the frequency of optimal codon gain and HR
defects obtained from Thorsson et al. [51]. In line with aforemen-
tioned results, significant positive correlations were observed
Fig. 5. Elevated frequency of optimal codon gain promotes tumor cell proliferation in t
enriched by the genes whose mRNA expression levels increase with the frequency of
frequency of optimal codon gain and ki-67 mRNA expression levels (B), proliferation (C)
(E). n.s., not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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between the frequency of optimal codon gain and HR defects in
all the three cancer types (BRCA: rho = 0.22, p = 2.3e�11; STAD:
rho = 0.15, p = 0.0021; UCEC: rho = 0.10, p = 0.0283; Fig. 5E). These
data suggest that DDR deficiency may be related to an elevated fre-
quency of optimal codon gain in these cancer types, which may in
turn promote tumor cell proliferation.
3.6. Elevated frequency of optimal codon gain correlates with better
survival in patients with TNBC

Notably, DDR competency is a determinant of sensitivity to
platinum-based compounds used for cancer chemotherapy, which
exert their cytotoxic effects by inducing DNA damage [60]. There-
fore, we determined whether the frequency of optimal codon gain
was of prognostic significance in the above cancer types (i.e., BRCA,
STAD, and UCEC). We found that decreased frequency of optimal
codon gain was significantly correlated with better overall survival
(OS) in patients with BRCA (hazard ratio, 0.66; 95% CI, 0.45–0.96;
p = 0.029) as well as with improved progression-free survival in
patients with UCEC (hazard ratio, 0.68; 95% CI, 0.47–0.98;
p = 0.037; Fig. S9A). After adjusting for clinicopathological param-
eters, the association between decreased frequency of optimal
codon gain and better OS remained statistically significant in BRCA
(hazard ratio, 0.65; 95% CI, 0.44–0.95; p = 0.028; Fig. S9B). This sug-
gests that the frequency of optimal codon gain is a potential prog-
nostic biomarker for patients with BRCA.

Since BRCA can be classified as luminal A, luminal B, HER2+, or
TNBC [54], we next determined whether the association between
the frequency of optimal codon gain and patient survival differed
between these subtypes. Interestingly, decreased frequency of
optimal codon gain trended to correlate with better survival in
patients with luminal A (hazard ratio, 0.55; 95% CI, 0.26–1.18;
p = 0.12), luminal B (hazard ratio, 0.58; 95% CI, 0.33–1.04;
p = 0.065), or HER2 + BRCA (hazard ratio, 0.21; 95% CI, 0.02–
hree cancer types characterized by DDR deficiency (A) Top 10 biological processes
optimal codon gain in BRCA, STAD, and UCEC. (B-E) The association between the
, eight types of DDR deficiency (D), or HR defects obtained from Thorsson et al. [51]
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1.92; p = 0.13; Fig. S10). Conversely, decreased frequency of opti-
mal codon gain was significantly associated with worse outcome
in patients with TNBC (hazard ratio, 6.05; 95% CI, 1.25–29.18;
p = 0.014; Fig. 6A), and this association remained statistically sig-
nificant after adjusting for clinicopathological parameters (hazard
ratio, 14; 95% CI, 1.61–122.0; p = 0.017; Fig. 6B). To confirm the
prognostic role of the frequency of optimal codon gain in patients
with TNBC, we analyzed the impact of somatic synonymous muta-
tions on codon optimality for 147 patients with TNBC receiving
adjuvant chemotherapy from Staaf et al. [55]. In line with the
above results, tumors with a decreased frequency of optimal codon
gain trended to have a worse distant relapse-free interval (DRFI;
hazard ratio, 2.20; 95% CI, 0.92–5.26; p = 0.069; Fig. 6C) and had
a significantly worse invasive disease-free survival (IDFS; hazard
ratio, 2.28; 95% CI, 1.14–4.54; p = 0.016; Fig. 6C) compared with
tumors with an elevated frequency of optimal codon gain. Addi-
tionally, statistical significance remained after adjusting available
clinicopathological parameters (hazard ratio, 2.13; 95% CI, 1.05–
4.3; p = 0.036; Fig. 6D). Overall, these data suggest that an elevated
frequency of optimal codon gain is an independent prognostic bio-
marker in patients with TNBC.
4. Discussion

Synonymous mutations have long been assumed to be neutral
and provide no fitness advantage to tumor cells. With the availabil-
Fig. 6. Elevated frequency of optimal codon gain correlates with better survival in pati
overall survival in patients with TNBC from TCGA. (B) Multivariable analysis of the frequ
diagnosis and tumor stage) in patients with TNBC from TCGA. (C) Association of the fre
adjuvant chemotherapy from Staaf et al. [55]. (D) Multivariable analysis of the freque
diagnosis, tumor grade, and tumor size) in patients with TNBC from Staaf et al. [55].
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ity of large-scale cancer genomics data, synonymous mutation was
recently shown to be functional in human cancers for the past few
years via altering motif regulating splicing [24], mRNA secondary
structure [4], RNA binding proteins, and miRNA binding sites
[61]. However, the impact of synonymous mutation on codon opti-
mality remains largely unexplored in human cancers. Here, we
generated tissue-specific codon optimality in 29 human tissues
and employed this data to investigate how codon optimality was
perturbed by synonymous mutations in human cancers.

An effort was previously made by Supek et al. [24] to examine
the impact of synonymous mutations on codon optimality in
human cancers, yet codon optimality was determined using the
genomic copy number of tRNA genes and the frequency of optimal
codon gain was only examined in 16 known oncogenes highly
enriched with synonymous mutations. These might be the reasons
why synonymous mutations were not found to frequently increase
optimal codons in human cancers. Therefore, a key step of our
study was to generate tissue-specific codon optimality for human
tissues. Since optimal codons are thought to be translated faster
than non-optimal codons by the ribosome [23], codon-specific
ribosome density, which could reflect translational efficiency to
some extent, was taken as one of the golden standards in the eval-
uation of which metric measured codon optimality more accu-
rately in Homo sapiens. Additionally, mRNA stability-based CSC
score, served as the other golden standard in the evaluation. That
Copt correlated positively with CSC score and negatively with
ents with TNBC (A) Association between the frequency of optimal codon gain and
ency of optimal codon gains and available clinicopathologic parameters (i.e., age at
quency of optimal codon gain with DRFI and IDFS in patients with TNBC receiving
ncy of optimal codon gain and available clinicopathologic parameters (i.e., age at
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codon-specific ribosome density simultaneously demonstrated
that Copt could be employed to generate tissue-specific codon opti-
mality for human tissues. Furthermore, RR score, our modified ver-
sion of Copt, showed stronger correlations with both CSC score and
codon-specific ribosome density than Copt, suggesting that RR score
is a better measurement of codon optimality in Homo sapiens.
Employing RR score to generate tissue-specific codon optimality
in 29 human tissues, we found that optimal and non-optimal
codons generally ended with C/G and A/T, respectively. This was
in agreement with recent findings that codons ended with C/G sta-
bilized mRNA while those ended with A/T destabilized mRNA
[9,12]. Furthermore, we found that the tissue specificity of codon
optimality was primarily present in amino acids with high genetic
code degeneracy. This is in line with the biological significance of
degeneracy in genetic code – reducing the probability of an error
caused by the mutational substitution of a base in the triplet,
which makes it possible for organisms to survive and prosper [62].

Applying tissue-specific codon optimality to somatic synony-
mous mutations in tumor samples across 24 cancer types from
TCGA, we found that 62% of synonymous mutations caused opti-
mal codon losses, and only 12 percent led to optimal codon gains.
The high frequency of optimal codon loss implies that, tumor pro-
gression is unlikely to be promoted by the loss of optimal codons,
since harmful mutations will be eliminated by purifying selection
before they reach high frequency in the population [63]. By the
same token, the low frequency of optimal codon gain, alongside
with the preferential increase of optimal codons by synonymous
mutations with VAF �10%, indicates that synonymous mutations
may contribute to tumor progression via increasing optimal
codons. In support of this, synonymous mutations were found to
frequently increase optimal codons in 16 cancer types, yet in only
three cancer types did synonymous mutations frequently decrease
optimal codons. Furthermore, only the increase of optimal codons
was found to frequently occur in cancer-related genes (i.e., cell
cycle and DNA repair), which was in line with recent findings that
genes involved in DNA damage response and cell cycle were partic-
ularly intolerant to synonymous mutations [25]. Although the fre-
quency of optimal codon gain was found to be increased in genes
related to both cell cycle and DNA repair when analyzed as a gene
set, genes in which synonymous mutations frequently increased
optimal codons were mainly enriched in cell cycle-related pro-
cesses. This suggests that cell cycle-related genes are more heavily
influenced by the increase of optimal codons by synonymous
mutations. This may be due to the association of non-optimal
codons with proliferation, which indicates that the frequent substi-
tution of non-optimal with optimal codons in tumor cells may lar-
gely occur in genes related to proliferation (e.g., cell cycle). In
support of this, cell cycle-related processes were enriched by genes
whose mRNA expression levels increased with elevated frequency
of optimal codon gain in all the three cancer types (i.e., BRCA,
STAD, and UCEC) where elevated frequency of optimal codon gain
promoted tumor cell proliferation, while DNA repair-related pro-
cesses were only enriched by corresponding genes in BRCA. Over-
all, these data suggest that synonymous mutations frequently
increase optimal codons in tumor cells and cell cycle-related genes.

We uncovered a positive relationship between the frequency of
optimal codon gain and tumor cell proliferation in three cancer
types including BRCA, STAD and UCEC. Notably, BRCA is one of
the cancer types where HR deficiency most frequently occurs
[57], while STAD and UCEC are among the cancer types in which
MMR deficiency frequently occurs [58,59]. This indicates that
DDR deficiency may be involved in elevated frequency of optimal
codon gain in tumor cells and cancer-related genes. In support of
this, a positive relationship was uncovered between the frequency
of optimal codon gain and DDR deficiency in the above cancer
types. Furthermore, in line with previous observations that HR
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deficiency correlated with increased response to DNA-damaging
platinum-containing therapy in patients with TNBC [64], elevated
frequency of optimal codon gain was found to be associated with
improved outcome in patients with TNBC from TCGA and those
receiving adjuvant chemotherapy from an independent cohort.
These data suggest that the elevated frequency of optimal codon
gain may be a footprint of DDR deficiency that has long been
neglected. It should be noted, however, that there may be other
genomic or epigenomic events in addition to DDR deficiency
resulting in an elevated frequency of optimal codon gain in tumor
cells, as the promotion of tumor cell proliferation by the elevated
frequency of optimal codon gain was not observed in OV where
HR deficiency also frequently occurs [57].

While our analyses suggest that differences in mutation rate
won’t have much influence on the frequency of optimal codon gain
or loss (Fig. S11), we cannot completely rule out the influence of
mutation rate differences on the frequency of optimal codon gain
or loss. In addition, although a direct comparison was not con-
ducted between expression data from GTEx and TCGA, we cannot
entirely exclude the possibility that some observations may be
slightly influenced by differences between these two databases.
Nevertheless, such differences may not affect the main results of
this study, as consistent results were observed from different anal-
yses. For example, genes whose expression levels increased with
an elevated frequency of optimal codon gain were mainly enriched
in processes related to cell cycle in BRCA, STAD and UCEC, which
was consistent with the observation that genes in which synony-
mous mutations frequently increase optimal codons were mainly
enriched in processes related to cell cycle. In support of these
observations, the frequency of optimal codon gain showed positive
association with proliferation from Thorsson et al. [51] and ki-67
mRNA expression levels in BRCA, STAD and UCEC.

In summary, we have profiled tissue-specific codon optimality
in human tissues and uncovered alterations in codon optimality
in human cancers. The tissue-specific codon optimality determined
in this study may be used to improve the translation efficiency of
recombinant genes in developing personalized mRNA vaccines
for infectious diseases or cancers. A better understanding of the
alterations in codon optimality in human cancers will undoubtedly
provide insights into the development of novel cancer therapies.
Future studies may be conducted to answer whether missense
mutations contribute to tumor progression and outcome via alter-
ing codon optimality in addition to altering the amino acid compo-
sition of the encoded proteins.
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