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Abstract

Quantitative real-time polymerase chain reaction (qRT-PCR) has become the most popular

choice for gene expression studies. For accurate expression analysis, it is pertinent to select

a stable reference gene to normalize the data. It is now known that the expression of internal

reference genes varies considerably during developmental stages and under different

experimental conditions. For Salvia hispanica, an economically important oilseed crop,

there are no reports of stable reference genes till date. In this study, we chose 13 candidate

reference genes viz. Actin11 (ACT), Elongation factor 1-alpha (EF1-α), Eukaryotic transla-

tion initiation factor 3E (ETIF3E), alpha tubulin (α-TUB), beta tubulin (β-TUB), Glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH), Cyclophilin (CYP), Clathrin adaptor complex

(CAC), Serine/threonine-protein phosphatase 2A (PP2A), FtsH protease (FtsH), 18S ribo-

somal RNA (18S rRNA), S-adenosyl methionine decarboxylase (SAMDC) and Rubisco acti-

vase (RCA) and the expression levels of these genes were assessed in a diverse set of

tissue samples representing vegetative stages, reproductive stages and various abiotic

stress treatments. Two of the widely used softwares, geNorm and Normfinder were used to

evaluate the expression stabilities of these 13 candidate reference genes under different

conditions. Results showed that GAPDH and CYP expression remain stable throughout in

the different abiotic stress treatments, CAC and PP2A expression were relatively stable

under reproductive stages and α-TUB, PP2A and ETIF3E were found to be stably ex-

pressed in vegetative stages. Further, the expression levels of Diacylglycerol acyltransfer-

ase (DGAT1), a key enzyme in triacylglycerol synthesis was analyzed to confirm the validity

of reference genes identified in the study. This is the first systematic study of selection of ref-

erence genes in S. hispanica, and will benefit future expression studies in this crop.

Introduction

Chia (Salvia hispanica L.) is a flowering plant that belongs to the mint family (Lamiaceae) and

is native to parts of South America and Mexico. It is an important oilseed crop, having about
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60% α-linolenic acid (ALA) in its seed triacylglycerol and is the highest reported terrestrial

plant source of this omega-3 fatty acid [1]. Besides ALA, the seeds of this plant are also a

wealthy source of dietary fiber, protein, essential minerals and vitamins [2]. The transcriptome

analysis has been performed recently on the developing seeds of S. hispanica and different

enzymes have been identified that are proposed to play a pivotal role in the flux of ALA into

triacylglycerol (TAG) [3]. To further our understanding of biosynthetic pathway leading to the

accumulation of ALA in TAG, gene expression analysis is an important tool. Currently, there

are no reports on internal reference genes in S. hispanica. Therefore, the exploration of refer-

ence genes for precise transcript normalization in seed development as well as under different

experimental conditions is important for the future research to be carried out on S. hispanica.

Gene expression analysis has become an important tool in multiple fields of biological

research. Real time quantitative reverse transcription PCR (also referred to as qRT-PCR) is

now the most popular approach to measure the levels of gene expression; its main advantages

being high sensitivity, efficiency, specificity and a broad quantification range [4,5]. For accu-

rate analysis of gene expression, normalization of gene expression data with suitable internal

reference gene(s) is needed [6]. Normalization is extremely important to correct the variations

that might arise due to the quality and amount of template used, both of which can have an

effect on the efficiency of reactions [7]. Some researchers have shown that two or more refer-

ence genes may be needed for data normalization [8,9]. This method requires the use of inter-

nal reference genes expressed constitutively to account for the variability seen at different steps

of experimental procedure.

The most commonly used reference genes (also referred to as housekeeping genes) are

those that are involved in basic and ubiquitous cellular processes such as the glycolytic path-

way, ribosomal subunit synthesis, protein folding and components of cytoskeleton. Most of

the traditionally used reference genes validated in plants include, glyceraldehydes-3-phosphate

dehydrogenase (GAPDH), ubiquitin (UBQ), β-actin (ACT), α-tubulin (TUB), elongation fac-

tors (EF),and 18S ribosomal RNA [10–14]. These genes are assumed to have constant expres-

sion levels between different samples and in response to different environmental stimuli.

However, recent studies have shown that the expression levels vary under different experi-

mental conditions in various tissues and organs [15–18]. Therefore, it is important to choose

multiple stably expressed reference genes other than the traditional ones for the precise nor-

malization of gene expression studies.

In the recent years, several new reference genes with stable expression have been identified

as ideal genes such as, F-box protein in soybean [19], protein phosphatase 2A (PP2A) in buffalo

grass [20] and Sorghum [21], clathrin adaptor complex subunit family protein (CAC) and

TIP41-family protein in Brassica juncea [22]. Hence, it is important to choose the suitable ref-

erence genes across various experimental conditions in different species.

Many studies of stable reference genes have been reported in various plant species such as

Arabidopsis thaliana [6, 23], B. juncea [22], Oryza sativa [16, 24], tea plant [25] tomato [26],

Glycine max [27, 28], potato [11], Sorghum [21], flax [12], Arachis hypogea [29], Triticum aesti-
vum [30], Cajanus cajan [31], Zea mays [32, 33] and so on. To the best of our knowledge, no

studies have been carried out regarding the selection of stable reference genes in S. hispanica.

In the current study, we have analyzed the expression of 13 candidate reference genes in

diverse tissue samples of S. hispanica, broadly categorized into three distinct tissue sets (abiotic

stress treatments, vegetative stages and reproductive stages). Two statistical algorithms, geNorm

[8], Normfinder [7], were performed to evaluate the expression stability of reference genes and

to determine the optimal number of genes required for normalization in different tissue sets.

Furthermore, the expression level of Diacylglycerol acyltransferase 1 (DGAT1) was checked

using the stable reference genes identified in the present study to validate its effectiveness.

Reference genes for Salvia hispanica
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Materials and methods

Plant materials and stress treatments

Chia (S. hispanica) variety CHIAmpion B-1 was used for all the experiments. The samples have

been categorized in three different experimental sets. Pre-germinated seeds on a filter paper satu-

rated with water were grown in plastic pots in green house. Seedlings were assessed at the second

true leaf stage and the healthy ones were used for i) abiotic stress group and ii) vegetative groups.

In the vegetative group, a total of 5 tissues namely, cotyledons, root, shoot, young leaf (before

flowering) and mature leaf (after flowering) were collected from the plants. For stress treatments,

seedlings at the second true leaf stage were transferred to separate beakers each containing 200

mM NaCl, 15% PEG 6000, 200 μM Salicylic acid (SA) and 100 μM abscisic acid (ABA) and were

incubated for 5 h. For cold and heat treatments, seedlings in pots were placed in chambers at

4 ± 1˚C and 42 ± 1˚C respectively, for 5 h. Control plants were kept in room temperature at

25 ± 1˚C. Leaves were collected from three independent biological replicates for each treatment.

In the reproductive group, a total of 6 tissues namely, bud, seed 3 days after flowering

(DAF), seed 7 DAF, seed 14 DAF, seed 21 DAF and seed 28 DAF were collected from the

plants grown in the green house. All tissues were immediately frozen in liquid nitrogen and

stored at -80˚C till further use.

Total RNA isolation and cDNA synthesis

Total RNA was extracted using Spectrum Plant Total RNA Kit (Sigma, USA) following the manu-

facturer’s instructions. The integrity of RNA samples was verified by performing 1.5% (w/v) aga-

rose gel electrophoresis and the quality was determined using Nanodrop 2000 Spectrophotometer

(NanoDrop Technologies, Thermo Scientific, USA). The quantity was measured using Qubit

3.0 Fluorometer (Thermo Scientific, USA). Only the RNA samples with absorption ratios of

A260/280 = 2.0–2.1 and A260/230 higher than 2.0 were used for cDNA synthesis. The integrity of

all RNA samples was further measured using Agilent 2100 Bioanalyzer (Agilent technologies,

Palo Alto, CA) and RIN (RNA integrity number) of> 6.5 were used for analysis (S1 File).

An aliquot of 1 μg of total RNA was used for cDNA synthesis with a final volume of 20 μL

using Thermo Scientific Verso cDNA synthesis kit with RT Enhancer, to remove any contami-

nating DNA, by following the manufacturer’s instructions. The cDNA was diluted 1:10 with

nuclease-free water for use in qRT-PCR.

Selection of candidate reference genes and primer design

Based on previous literature reports of stable expression in different plant species, 13 candidate

reference genes were shortlisted. The amino acid sequences of their corresponding homologs

taken from TAIR (https://www.arabidopsis.org/) database served as a query for a TBLASTN

search against assembled transcripts of S. hispanica [3]. Local blast (TBLASTN) was done

using the software given in the following link (https://www.blaststation.com/intl/en/

blaststation2.php). The best hit for each gene was chosen based on the bit score and E-value.

The 13 candidate reference genes include ACT11, EF1-α, ETIF3E, α-TUB, β-TUB, GAPDH,

CAC, RCA, FtsH, PP2A, CYP, 18S rRNA and SAMDC. The candidate reference genes, their

homologs in Arabidopsis and GenBank accessions are provided in Table 1. Primer pairs were

designed using Primer3Plus (http://primer3plus.com/cgi-bin/dev/primer3plus.cgi) [34] based

on the following criteria: melting temperatures of 58–62˚C, primer lengths of 18–20 bp, GC

content of 40–60%, and amplicon lengths of 100–150 bp. All the primer sequences in the cur-

rent study are listed in Table 2. The specificity of each primer pair for its target was further

confirmed by Primer-BLAST.

Reference genes for Salvia hispanica
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qRT-PCR analysis

qRT-PCR amplification was carried out on the Bio-Rad CFX96 Real-Time PCR system C1000

Thermal Cycler (Bio-Rad, Hercules, CA) using iQ SYBR Green Supermix (Bio-Rad, Hercules,

CA). Each 10 μL reaction mixture included 3 μL of diluted cDNA, 5 μL of iQ SYBR Green

Supermix, 0.5 μL each primer (0.5 μM) and 1 μL of Milli-Q H2O. Reaction conditions include

an initial denaturation step at 95˚C for 5 mins followed by 39 cycles of 95˚C for 15 s, respective

annealing temperatures for 30 s and 72˚C for 30 s, after which a melt curve was generated at

55–95˚C to confirm the specificity of each primer pair. Each qRT-PCR reaction was performed

with three biological and technical replicates and a no-template (NTC) control was used.

To determine the specificity of primer pairs used in the current study, agarose gel electro-

phoresis and a melt curve analysis were performed. Firstly, a gradient was performed using

mixed cDNA to determine the optimal annealing temperature of each primer pair (S1 Table).

PCR amplifications were then carried out under the conditions; 94˚C for 30 s, 39 cycles of

94˚C for 30 s, respective annealing temperatures for 30s, 68˚C for 30 s followed by a final

extension step at 68˚C for 5 min. Each sample with a total reaction volume of 100 μL contained

68.5 μL of Milli-Q H2O, 10 μL of Taq Buffer, 10 μL of dNTP mix, 5 μL of each primer (diluted

to 10 μM), 0.5 μL of Taq Polymerase (New England Biolabs) and 1 μL of template. Amplified

PCR products were run on a 2% agarose gel for confirmation. Products of correct size were gel

extracted using Macharey-Nagel Gel Extraction Kit.

The gel purified DNA product concentration was measured by checking the absorbance at

260nm. The copy number was calculated by using the formula given in the following link

(http://cels.uri.edu/gsc/cndna.html).

The purified DNA product was diluted with double distilled water to obtain a standard

series differing by 10-fold. A series of 10 fold of five dilutions of cDNA (100–10,00,000) was

Table 1. Candidate reference genes and their GenBank accessions in S. hispanica.

Gene name (abbreviation) GenBank accession

number

Arabidopsis homolog

locus

Arabidopsis

TBLASTN

E-value

Identity (%) to A.

thaliana

Actin11 (ACT) MF621045 AT3G12110 0.0 96%

Elongation factor-1alpha (EF1-α) MF621042 AT5G60390 0.0 95%

Eukaryotic translation Initiation factor 3E

(ETIF3E)

MF621041 AT3G57290 0.0 82%

Alpha tubulin

α-(TUB)

MF621046 AT5G19780 0.0 87%

Beta tubulin β-(TUB) MF579140 AT4G20890 0.0 90%

Glyceraldehyde-3-phosphate dehydrogenase

(GAPDH)

MF574098 AT1G13440 1e-160 86%

Clathrin adaptor complex (CAC) MF621044 AT5G46630 0.0 90%

Serine/threonine-protein phosphatase

(PP2A)

MF579139 AT1G10430 1e-177 94%

Rubisco activase

(RCA)

MF621043 AT2G39730 1e-165 85%

FtsH protease

(FtsH)

MF621047 AT2G26140 0.0 74%

Cyclophilin

(CYP)

MF579138 AT5G35100 1e-100 77%

Sadenosylmethionine decarboxylase (SAMDC)

MF579137

AT3G25570 1e-123 65%

18S ribosomal RNA (18SrRNA) MF623893 AT3G41768 0.0 96%

https://doi.org/10.1371/journal.pone.0186978.t001
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used to determine the PCR efficiency of each primer pair by qRT-PCR. A standard curve was

generated using linear regression and the slope based on the Cq values for all dilutions in a

series. The qBaseplus software calculated the PCR efficiency using following equation:

Eff iciency% ¼ 10
ð � 1
slopeÞX 100%

Data analysis

The quantification cycle (Cq) values of reference genes under different experimental condi-

tions were recorded by CFX96 system. Two statistical programs, geNorm and Normfinder

analysis were performed to rank the stability of suitable reference genes in different studied

experimental conditions. The raw Cq values for all genes were corrected according to their

PCR efficiencies and then changed to relative quantities. The relative expression values were

then used in analysis to determine expression stability. geNorm calculates the gene expression

stability value (M) based on pairwise variation (V) of a particular gene in comparison with all

the other reference genes. The default set value is 1.5; gene with the lowest M-value is the most

stably expressed one. Pair-wise variation analysis (Vn/n+1) was performed to decide the num-

ber of optimal reference genes needed for normalization in each sample set using qBaseplus

Table 2. Comprehensive details of genes and primer sets used for qRT-PCR.

S. No Gene Name Primers (F/R) 5’-3’ Amplicon length (bp) Amplicon Tm (˚C) PCR efficiency

(E%)

(R2)

1 Actin11 ACTGGAATGGTCAAGGCTGG
TCTTTCTGGCCCATCCCAAC

113 84.5 97.3 0.999

2 Elongation factor-1alpha CTGTCCAGGAGCCAAAGAGG
TCAACTCTTCCGACTGGCAC

103 82.5 104 0.999

3 Eukaryotic translation Initiation factor 3E TGTGGAAACTACTCCGGTGC
CTGCTGCCAATTTTCCCCAC

103 81 105.6 0.996

4 Alpha tubulin CTCGCGCATTGACCACAAAT
GAGCTTCGCTGAACTCACCT

101 82.5 104.3 0.999

5 Beta tubulin GTACACCGGGGAAGGAATGG
TTCGTCAGCAGTCGCATCTT

106 82.5 97.5 0.997

6 Glyceraldehyde-3-phosphate dehydrogenase TCAAGGAGGAGTCTGAGGGA
CAATTCCAGCCTTGGCATCG

120 81.5 109.7 0.995

7 Clathrin adaptor complex CGGCTTCCGCGATTTACTTC
GCACTCGAAAAGCATCCACC

102 83 99.9 0.999

8 Serine/threonine-protein phosphatase GGCGATATCCACGGACAGTT
CCGAATAGTACCCACGGTCG

115 82.5 94 0.999

9 Rubisco activase CCGAAGATGACGCTGGAGAA
AAGAGCTGCGTCCTTCAAGT

111 84 105.1 0.997

10 FtsH protease GCGCCAAAGCAGTGAGTATG
CTCGTGGTAGGCTGTCATCC

119 82 99.6 0.999

11 Cyclophilin ACCAACCATTTCTTCCGGGT
CTCAGCTTCCAACCTCTGCA

105 82.5 89.3 0.999

12 S-adenosyl methionine decarboxylase GCTTCATATTCCCGGGTGCT
TCCCATCACATAGGCTTCGC

116 83 89.3 0.998

13 18S ribosomal RNA CGGGTGACGGAGAATTAGGG
TACCTCCCCGTGTCAGGATT

111 84.5 109.5 0.993

14 # Diacylglycerol acyltransferase1 (DGAT1) GGAAGGGTTGGGTGGTAAGG
CCCTCTCCACGGCATACAAA

144 78.5 99.2 0.999

The PCR efficiency (E%) and regression coefficient (R2) were calculated by the CFX96 system.
# Used for normalization during reproductive stages.

https://doi.org/10.1371/journal.pone.0186978.t002
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software (v:3.0; Biogazelle, Belgium) [35]. A (Vn/n+1) value<0.15 indicates that no additional

reference genes are needed for normalization. Normfinder measures the gene expression sta-

bility by estimating the intra- and inter-group variations. As with geNorm, the lower the stabil-

ity value of the gene, the more stable it is.

Reference gene validation

To validate the reliability of qRT-PCR data, the expression of a key target gene in triacylgly-

cerol synthesis, DGAT1 was analyzed using the two most stable and a least stable genes identi-

fied in the study. The sequence of DGAT1 was extracted from S. hispanica transcriptome data

and the amplification efficiency was calculated with qBaseplus software. The relative expres-

sion levels were calculated using qBaseplus software and represented as fold change [35].

Results

Verification of primer specificity and amplification efficiency analysis

A total of 13 candidate reference genes representing different classes have been selected for

this study. The gene names, amplicon length and Tm, amplification efficiency (E) and correla-

tion coefficients (R2) are listed in the Table 2. All the primer pairs of 13 reference genes yielded

a single PCR product of expected size upon amplification of pooled cDNA with no formation

of primer dimers or non-specific amplification (Fig 1). Moreover, the melt curve analysis con-

firmed the specificity of amplicons as observed by the presence of a single peak and it also gen-

erated the melting temperatures (S2 File). In addition, the complete ORFs of all the genes were

sequence verified and the amplicon sequences of the respective genes used in the current study

are given in S2 Table. Amplification efficiencies of qPCR reactions ranged from 89.3% for

CYP and SAMDC to 109.1% for 18S rRNA and correlation coefficients (R2) of the standard

curve ranged from 0.993 for 18S rRNA to 0.999 for CAC (S3 File).

Cq value analysis

The RNA isolated from different tissues was reverse transcribed into cDNA and used as tem-

plate in qRT-PCR. The expression levels of 13 candidate reference genes in different tissue sets

were examined using a SYBR Green-based qPCR assay, and the expression was determined

using the quantification cycle (Cq) values. A low Cq value represents high expression level and

vice-versa. The mean Cq values of candidate genes ranged from 19.65 to 28.62, with most fall-

ing in the range of 23 to 26. Across all the samples, 18S rRNA exhibited the lowest mean Cq

value of 19.65 ± 1.13 (mean ± SD) indicating high expression, followed by GAPDH (20.6 ±
1.51) and EF1-α (22.87 ± 2.3), while PP2A (28.18 ± 2.2) and FtsH (28.62 ± 0.9) were the least

expressed genes. The Cq value distribution of all genes in different samples are represented as

a box-plot (Fig 2). The genes having high SD of Cq values exhibited more variable expression

compared to those with lower SD. FtsH showed the smallest variation in gene expression

(28.62 ± 0.9), while RCA showed most variable levels of expression (23.17 ± 4.5).

Expression stability analysis of candidate reference genes

The stability values of reference gene(s) may vary from one experimental condition to the

other. To obtain a reliable dataset of the reference genes under different experimental condi-

tions, two most popular algorithms, geNorm and Normfinder were performed.

geNorm analysis. geNorm analysis was performed to rank the 13 candidate reference

genes by calculating expression stability value (M). The raw Cq values obtained for all genes

were corrected according to their PCR efficiencies and then changed to relative quantities.
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These relative expression values were used in analysis to determine expression stability. M-

value is negatively correlated to stability and the genes with lower M-value are more stable.

geNorm recommends a cutoff M-value of 1.5 and the genes with M-value< 1.5 are considered

as stably expressed. The expression stability ranking of tested genes in different tissue sets

along with their M-values are listed in Fig 3. In abiotic stress, the lowest M-value was obtained

for CYP and GAPDH (0.762 and 0.777 respectively) and they represent the genes with most

stable expression, followed by FtsH (0.827) and α-TUB (0.965). EF1-α (1.614), 18S rRNA

(1.701) and SAMDC (1.853) were the least stable genes based on the M-value. In reproductive

stages, CAC and PP2A (M-value of 0.571 and 0.624) were the most stable genes while 18S

rRNA and RCA with M-values of 1.772 and 1.95 were least stable. In vegetative stages,

GAPDH and α-TUB (0.491 and 0.5) were the most stable genes while RCA (1.699) was least

stable. 12 genes had a M-value of less than 1.5 and thus performed well in vegetative stages.

The Vn/n+1 between normalization factors calculated by geNorm will help to determine

the optimal number of reference genes needed for accurate normalization. A Vn/n+1 value

<0.15 indicates that introducing an additional gene will make no significant contribution to

normalization [8]. In the vegetative group, the V3/4 value was less than 0.15 (0.135), which

suggested that three genes are sufficient for normalization. In the abiotic stress and reproduc-

tive group, the lowest pairwise variation value was above 0.15 (Fig 4).

Fig 1. Agarose gel (2%) electrophoresis showing PCR amplified products of the expected size for 13 candidate reference genes. M: 100 bp

marker (Thermo Scientific).

https://doi.org/10.1371/journal.pone.0186978.g001
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Normfinder analysis. Normfinder is a Microsoft ExcelTM based program that requires

the input data to be given on a linear scale. Therefore, the raw Ct values obtained for each gene

should be transformed into relative expression levels according to the given formula 2- ΔCt

(ΔCt = Ct value of each sample—minimum Ct value).

These values are then imported into Normfinder software (https://moma.dk/normfinder-

software) to analyze gene expression stability. It measures the stability based on intra and

inter-group expression variations, and a low stability value indicates stable gene expression.

The gene stability rankings generated by Normfinder are shown for each group and the stabil-

ity values are also included in Fig 5. In the abiotic stress group, CYP (stability value 0.264) and

GAPDH (0.278) were ranked the most stable genes (also ranked similarly by geNorm), while

SAMDC (0.929) was the least stable gene. In the reproductive group, α-TUB (0.389) and PP2A

(0.451) emerged as the most stable genes, followed by CAC (0.730) while geNorm ranked α-

TUB at seventh place. 18S rRNA (1.464) and RCA (1.829) were the two least stable genes, as

with the geNorm analysis. In the vegetative group, FtsH (0.253) and α-TUB (0.255) occupied

the top positions, while geNorm ranked FtsH at a medium position. Finally, Normfinder also

reported SAMDC and RCA as the least stable genes in accordance with geNorm.

Validation of the best and least ranked reference genes

To validate the genes identified in the current study, we checked the expression levels of a key

enzyme, DGAT1 in different stages of seed development (reproductive stages).

Fig 2. Distribution of quantification cycle (Cq) values across all experimental sets in S. hispanica. The line across the box-plot depicts the median.

Lower and upper boxes represent 25th and 75th percentiles. Whiskers represent the lowest and highest Cq values respectively.

https://doi.org/10.1371/journal.pone.0186978.g002
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Triacylglycerols are the major storage forms of energy and have crucial roles in seed oil accu-

mulation, germination and seedling development. DGAT1 plays a crucial role in the final step

of TAG synthesis by catalyzing final acylation in pathway of diacylglycerol (DAG) to form

TAG [36]. Overexpression of DGAT1 has been performed in different plant species and this

has enhanced the TAG content [37, 38]. It is considered the rate-limiting enzyme in TAG

accumulation, and is being exploited to increase the oil content through genetic engineering in

oil plants and microalga for economic benefit [36, 39]. The expression of DGAT1 was normal-

ized using the two best genes, PP2A and CAC in combination and individually. For both

genes, the transcript abundance increased at second stage (7DAF) compared to first stage

Fig 3. Gene expression stability (M) of 13 candidate reference genes across different experimental groups as assayed by geNorm. M-value is

inversely related to gene stability. The cutoff M-value was set at 1.5; the direction of arrows indicate the most stable and least stable genes in the graph. The

most stable genes are listed on the left and least stable genes are listed on the right.

https://doi.org/10.1371/journal.pone.0186978.g003

Fig 4. Optimal number of references genes required for normalization across different experimental sets as calculated by geNorm. Dotted line

indicates cut-off value of 0.15, below which additional reference genes are not necessary for normalization.

https://doi.org/10.1371/journal.pone.0186978.g004
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Fig 5. Stability values of 13 candidate reference genes across different experimental groups as assayed by Normfinder. Lower stability values

indicate highly stable genes and higher stability values indicate less stable genes. The direction of the arrows indicate the most stable and least stable genes

in the graph. The most stable genes are listed on the left and least stable genes are listed on the right.

https://doi.org/10.1371/journal.pone.0186978.g005
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(3DAF), and finally increased to a maximum at the final stage of seed maturation. When PP2A

and CAC were used in combination, the same pattern was seen. However, normalization with

the least reported stable gene, RCA, the expression pattern was completely changed (Fig 6).

The results highlight the importance of validated reference genes for target normalization.

Discussion

Currently, qRT-PCR is considered as the most appropriate method for gene expression pro-

filing due to its high sensitivity, accuracy and reproducibility [40]. Precise measurement of tar-

get gene expression requires the use of suitable reference genes that are stably expressed.

However, random or inappropriate selection of reference genes for normalization may lead to

misinterpretation of results [41]. Recent reports have shown that the expression of commonly

used reference genes varies with different experimental conditions. Therefore, it is mandatory

to validate reference genes for each experimental condition in different species [15]. Hence,

Fig 6. Validation of the reference genes in reproductive stage group. The relative expression levels of DGAT1 was normalized by using the two most

stable genes, PP2A and CAC in combination and individually, and also with the least stable gene, RCA. D represents DAF–Days after flowering. Values

shown are relative expression levels ± SD (n = 3).

https://doi.org/10.1371/journal.pone.0186978.g006
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the aim of the study was to identify ideal reference genes with stable expression levels under

different experimental conditions in S. hispanica.

We checked the expression levels and stability of 13 candidate reference genes across dif-

ferent tissue samples, i.e. vegetative stages, reproductive stages and six abiotic stress treatments

in S. hispanica. Two softwares namely, geNorm and Normfinder were used to identify the sta-

ble reference genes in the studied experimental conditions. As the two algorithms operate dif-

ferently, the results were slightly different in some conditions. For example, in reproductive

stages, geNorm ranked CAC and PP2A as the two most stable genes while Normfinder ranked

α-TUB and PP2A as the best genes. α-TUB was ranked at a medium position in geNorm,

however CAC was ranked third in Normfinder. In vegetative stages, FtsH was ranked at a

medium position in geNorm but was ranked second in Normfinder. The gene α-TUB was

ranked top in both algorithms. However, both geNorm and Normfinder recommended CYP

and GAPDH as the suitable reference genes in abiotic stress treatments. In addition, the two

least stable genes for each set were the same in geNorm and Normfinder. The apparent diver-

gence in ranking is due to the discrepancies in the two algorithms to measure stability [42].

The geNorm works upon stepwise exclusion of the least stable genes, which is based on the

expression stability value (M) [8]. Normfinder, an excel based tool takes inter- and intra-group

variations into account and combines them into a stability value [7]. The difference in the

ranking by the two algorithms was also observed in many other studies [14, 43–45].

Our results are in accordance with previous studies, wherein CYP was reported to be the

stably expressed gene under abiotic stress conditions in peanut [29], sorghum [21] and salt-

stressed S. tuberosum [11]. The CYP gene also performed well in switchgrass [46]. Similarly,

GAPDH was reported to be a stably expressed gene under stress conditions in chickpea [13],

tall fescue [44], heat and salinity stress in pigeon pea [31], and hormone stimuli in parsley [14].

In contrast, GAPDH was shown to be a least stable gene in B. juncea. SAMDC, the least stable

gene in abiotic stress treatment was reported to be unstable in switchgrass [46] and 18S rRNA

was also reported as unstable in Jute [42] and oxytropis [47]. Further, PP2A was found to be

stably expressed in maturing B. napus embryos [48], developmental stages in A. thaliana [6]

and life stages in Striga [49]. CAC was also reported to be the stable gene during development

in B. juncea [22] and B. arvensis [50]. Similar to the present study, RCA was also reported to be

the least stable gene in reproductive development in papaya [51].

Data normalization with a single reference gene may give rise to erroneous results [52] and

thus usage of two or more reference genes has become the common way. geNorm has sug-

gested to use three reference genes for vegetative stages as the V3/4 value was less than 0.15.

For reproductive stages and abiotic stress, the value was above 0.15. However, the V (pairwise

variation) value of 0.15 should not be considered as an absolute one and high V values have

been reported in few species. [53–55]. Vandesompele et al., 2002 have proposed that minimum

three reference genes are necessary for precise normalization [8]. However, the usage of multi-

ple reference genes may lead to misinterpretation of results.

DGAT1, a key enzyme involved in triacylglycerol synthesis was used to validate the refer-

ence genes identified in the study. DGAT catalyzes the synthesis of TAG from diacylglycerol

and is pivotal to oil accumulation. The two best reference genes, CAC and PP2A were used

alone and in combination for normalization. With both genes, there was an increase in tran-

script expression at 7DAF (second stage) compared to 3DAF (first stage) and then finally

increased in the final stage (28DAF). When normalized using the least stable gene RCA, the

expression pattern was not conclusive.

In conclusion, we evaluated the expression stabilities of 13 candidate reference genes in dif-

ferent abiotic stresses (NaCl, PEG, SA, ABA, heat, and cold), vegetative and reproductive

stages of S. hispanica. Two statistical algorithms, geNorm and Normfinder were used to assess
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the stability of reference genes, and some slight variation was observed because of the way

both algorithms operate to calculate stability. Overall, we propose that in S. hispanica, CYP

and GAPDH can be used for abiotic stresses; PP2A and CAC for reproductive development,

α-TUB, ETIF3E and PP2A for vegetative stages. In addition, the expression pattern of DGAT1

was analyzed using the best reference genes identified in the study. The reference genes identi-

fied will benefit future studies of gene expression in various tissues of S. hispanica.

Supporting information

S1 File. RNA integrity values determined by Bioanalyzer.

(PPTX)

S2 File. Melt curves of 13 genes under different experimental conditions.

(PPTX)

S3 File. Amplification efficiencies of primers used in the study.

(PPTX)

S1 Table. Annealing temperatures of primers used in the study.

(DOCX)

S2 Table. Sequences of the PCR amplicons.

(DOCX)

Acknowledgments

The authors thank Prof. Ram Rajasekharan, Director, Council of Scientific and Industrial

Research (CSIR)–CFTRI, Mysore, for his support and encouragement in the present study. The

authors also acknowledge Dr. L. Prasanna Anjaneya Reddy for the help rendered in greenhouse.

Author Contributions

Conceptualization: Sunny D. Rupwate, Ajay W. Tumaney.

Data curation: Rahul Gopalam, Sunny D. Rupwate, Ajay W. Tumaney.

Formal analysis: Rahul Gopalam, Sunny D. Rupwate, Ajay W. Tumaney.

Funding acquisition: Ajay W. Tumaney.

Investigation: Rahul Gopalam, Sunny D. Rupwate, Ajay W. Tumaney.

Methodology: Ajay W. Tumaney.

Project administration: Sunny D. Rupwate, Ajay W. Tumaney.

Resources: Ajay W. Tumaney.

Supervision: Sunny D. Rupwate, Ajay W. Tumaney.

Validation: Rahul Gopalam.

Visualization: Rahul Gopalam, Ajay W. Tumaney.

Writing – original draft: Rahul Gopalam.

Writing – review & editing: Rahul Gopalam, Sunny D. Rupwate, Ajay W. Tumaney.

Reference genes for Salvia hispanica

PLOS ONE | https://doi.org/10.1371/journal.pone.0186978 November 1, 2017 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186978.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186978.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186978.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186978.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186978.s005
https://doi.org/10.1371/journal.pone.0186978


References
1. Coates W. Protein content, oil content and fatty acid profiles as potential criteria to determine the origin

of commercially grown chia (Salvia hispanica L.). Industrial Crops and Products. 2011 Sep 30; 34

(2):1366–71.

2. Muñoz LA, Cobos A, Diaz O, Aguilera JM. Chia seed (Salvia hispanica): an ancient grain and a new

functional food. Food reviews international. 2013 Oct 2; 29(4):394–408.

3. Sreedhar RV, Kumari P, Rupwate SD, Rajasekharan R, Srinivasan M. Exploring triacylglycerol biosyn-

thetic pathway in developing seeds of Chia (Salvia hispanica L.): a transcriptomic approach. PloS one.

2015 Apr 13; 10(4):e0123580. https://doi.org/10.1371/journal.pone.0123580 PMID: 25875809

4. Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and

problems. Journal of molecular endocrinology. 2002 Aug 1; 29(1):23–39. https://doi.org/10.1677/jme.0.

0290023 PMID: 12200227

5. Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR–a perspective. Journal of

molecular endocrinology. 2005 Jun 1; 34(3):597–601. https://doi.org/10.1677/jme.1.01755 PMID:

15956331

6. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. Genome-wide identification and testing of

superior reference genes for transcript normalization in Arabidopsis. Plant physiology. 2005 Sep 1; 139

(1):5–17. https://doi.org/10.1104/pp.105.063743 PMID: 16166256

7. Andersen CL, Jensen JL,Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR

data: a model-based variance estimation approach to identify genes suited for normalization, applied to

bladder and colon cancer data sets. Cancer research. 2004 Aug 1; 64(15):5245–50. https://doi.org/10.

1158/0008-5472.CAN-04-0496 PMID: 15289330

8. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normaliza-

tion of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.

Genome biology. 2002 Jun 18; 3(7):research0034–1. https://doi.org/10.1186/gb-2002-3-7-

research0034 PMID: 12184808
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