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Abstract: Cynomorium songaricum is a root holoparasitic herb that is mainly hosted in the roots of
Nitraria roborowskii and Nitraria sibirica distributed in the arid desert and saline-alkaline regions. The
stem of C. songaricum is widely used as a traditional Chinese medicine and applied in anti-viral, anti-
obesity and anti-diabetes, which largely rely on the bioactive components including: polysaccharides,
flavonoids and triterpenes. Although the differences in growth characteristics of C. songaricum
between N. roborowskii and N. sibirica have been reported, the difference of the two hosts on growth
and polysaccharides biosynthesis in C. songaricum as well as regulation mechanism are not limited.
Here, the physiological characteristics and transcriptome of C. songaricum host in N. roborowskii
(CR) and N. sibirica (CS) were conducted. The results showed that the fresh weight, soluble sugar
content and antioxidant capacity on a per stem basis exhibited a 3.3-, 3.0- and 2.1-fold increase in
CR compared to CS. A total of 16,921 differentially expressed genes (DEGs) were observed in CR
versus CS, with 2573 characterized genes, 1725 up-regulated and 848 down-regulated. Based on
biological functions, 50 DEGs were associated with polysaccharides and starch metabolism as well
as their transport. The expression levels of the selected 37 genes were validated by qRT-PCR and
almost consistent with their Reads Per kb per Million values. These findings would provide useful
references for improving the yield and quality of C. songaricum.

Keywords: Cynomorium songaricum; polysaccharides biosynthesis; transcriptomics analysis; Nitraria
roborowskii; Nitraria sibirica

1. Introduction

Cynomorium songaricum Rupr. is a root holoparasitic herb that is mainly hosted in the
roots of Nitraria L., and widely distributed in the arid desert and saline-alkaline regions
in northwest of China including: Qinghai, Xinjiang, Inner Mongolia and Ningxia [1,2].
As a traditional Chinese medicine, the stem of C. songaricum is generally used to tonify
kidney yang, replenish essence and blood and relax the bowels [3,4]. In recent years, the
stem has also been applied in anti-viral, anti-oxidation, anti-obesity, anti-diabetes, anti-
tumor and ameliorates Alzheimer’s disease [5–10], which largely rely on the bioactive
components including: polysaccharides (mainly polymerized by glucose, mannose and
galactose), flavonoids (e.g., catechin, epicatechin and rutin), triterpenes (e.g., ursolic acid,
acetyl ursolic acid and malonyl ursolic acid hemiester) and liposoluble constituents (e.g.,
hexadecanoic acid, oleic acid and docosenoic acid) [5,11–16].
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The genus Nitraria L. is a perennial shrub and always used as a vital ecological
protection plant for windbreak and sand fixation [17]. It contains 11 species in the world
and 6 of them are in China [18]. C. songaricum is found to mainly host in four species
including: N. roborowskii Kom., N. sibirica Pall., N. tangutorum Bobr. and N. sphaerocarpa
Maxim [19,20]. Except the N. sphaerocarpa, the other three species mainly distribute in
Qinghai, China [21]. Extensive surveys on habitat have found that N. roborowskii prefers
locating in the margin of desert, N. sibirica in the salinized sand and drought hillslope
and N. tangutorum is a transitional ecotype between N. roborowskii and N. sibirica [22,23].
Previous investigations into the differences in growth characteristics between N. roborowskii
and N. sibirica have demonstrated that the growth indexes (e.g., seed weight, fruit weight
and seedling height) of N. roborowskii are greater than N. sibirica [24]; while the salt tolerance,
seed-setting rate, contents of nutritional components and trace elements of N. sibirica are
higher than N. roborowskii [25–30].

C. songaricum is currently an endangered species, in large part because of an indis-
criminate uprooting of wild plants to meet the increasing commercial demand of the
pharmaceutical industry. As a holoparasitic herb, C. songaricum totally depends on the
Nitraria L., for nutrients and water during the whole growth and development cycle [31].
C. songaricum is widely used as a traditional Chinese medicine and several pharmacological
activities are largely relied on polysaccharides [10,15]; moreover, the growth differences in
C. songaricum host in the two N. roborowskii and N. sibirica have been reported [22–24], the
regulation mechanism of polysaccharides biosynthesis has not been revealed. Thus, it is ur-
gent and necessary to identify the optimization host to increase production of C. songaricum.
Up to now, studies on the effect of different hosts on growth and metabolite accumulation
of C. songaricum have not been conducted. This study examines biomass, soluble sugar
accumulation, antioxidant capacity and transcriptional alternations of stem between CR
and CS.

2. Results
2.1. Comparison of Growth Characteristics between CR and CS

As shown in Figure 1, significant differences in growth characteristics of stems between
the CR and CS were observed, with FW of total stems, FW per stem, stem length and
diameter of CR exhibiting a 5.1-, 3.3-, 1.4 and 1.3-fold increase compared to that of CS,
respectively.

Figure 1. Growth characteristics of stems of Cynomorium songaricum host in Nitraria roborowskii (CR)
and Cynomorium songaricum host in Nitraria sibirica (CS) (mean ± SD, n = 20). Images (A–D) represent
FW of total stems, FW per stem, stem length and diameter, respectively. A t-test was applied for
independent samples, the “*” is considered significant at p < 0.05 between CR and CS.

2.2. Comparison of Soluble Sugar Content and Antioxidant Capacity between CR and CS

As shown in Figure 2, significant differences in soluble sugar content and antioxidant
capacity between the CR and CS were observed, with a 1.1-, 1.5- and 1.5-fold respective
decrease of soluble sugar content, DPPH scavenging activity and FRAP value on an FW
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basis in stem of CR compared to that of CS (Figure 2A,C,E), while a 3.0-, 2.1- and 2.1-fold
increase on a per stem basis (Figure 2B,D,F).

Figure 2. Soluble sugar content and antioxidant capacity in stems between the CR and CS (mean
± SD, n = 20). Images (A–D) as well as (E,F) represent soluble sugar content, DPPH scavenging
activity as well as FRAP value on an FW and per stem basis, respectively. A t-test was applied for
independent samples, the “*” is considered significant at p < 0.05 between CR and CS.

2.3. Global Gene Analysis

To reveal the differences of carbohydrate metabolism between the CR and CS, compar-
ison of the transcripts were performed. A robust data was collected, 51.2 and 46.8 million
high-quality reads were obtained after data filtering, and 42.5 and 39.5 million unique reads
as well as 1.6 and 1.4 million multiple reads were mapped from the CR and CS, respectively
(Figure 3; Table S1). Total 95,126 unigenes were annotated on KEGG (10,274), KOG (17,550),
Nr (40,427) and Swissprot (16,181) databases (Figure 4), and the top 10 species distribution
against Nr includes: Cajanus cajan, Vitis vinifera, Cephalotus follicularis, Theobroma cacao, Nico-
tiana attenuata, Juglans regia, Corchorus capsularis, Brassica napus, Brassica rapa and Medicago
truncatula (Figure 5).
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Figure 3. Length distribution of assembled unigenes in C. songaricum.

Figure 4. Basic annotation for all unigenes in C. songaricum on KEGG, KOG, Nr and Swissprot
databases.
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Figure 5. Top 10 species distribution of unigenes against Nr database.

A total of 16,921 DEGs were identified in the CR compared with CS, with 6580 genes
up-regulated (UR) and 10,341 genes down-regulated (DR) (Figure 6). Of these 16,921 DEGs,
2684 genes were identified to match with the databases (Figure 7A). Among the 2684 genes,
2573 genes with known functions were partitioned into 1725 UR and 848 DR (Figure 7B,C).

Figure 6. Volcano plot of unigenes and number of differentially expressed genes (DEGs) in the CR
compared with CS.
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Figure 7. Distribution and classification of DEGs in the CR compared with CS (UR, up-regulation;
DR, down-regulation). Image (A) represents the classification of unidentified and identified genes,
image (B) represents the classification of uncharacterized and characterized genes and image (C)
represents the classification of the functional genes.

2.4. Biological Category of DEGs

Based on biological functions, the 2573 genes were divided into nine categories: pri-
mary metabolism (493), transport (371), transcription factor (426), cell morphogenesis (289),
bio-signaling (287), stress response (224), translation (195), secondary metabolism (179)
and photosynthesis and energy (109) (Figure 7C; Tables S2–S10). Based on carbohydrate
metabolism driving genes characterized, 50 DEGs (32UR and 18DR) were identified as po-
tential regulatory genes for polysaccharides and starch metabolism (37) as well as transport
(13) (Figure 7C; Table 1).

Table 1. DEGs involved in carbohydrate metabolism and transport in the CR compared with CS.

Gene Name Swissprot-ID Protein Name RPKM (CR/CS)

Polysaccharides Metabolism (32)

Glucose (7)
GapA sp|Q8VXQ9|G3PA_COEVA Glyceraldehyde-3-phosphate dehydrogenase A 8.83

GAPA1 sp|P25856|G3PA1_ARATH Glyceraldehyde-3-phosphate dehydrogenase GAPA1 5.47
GAPA2 sp|Q9LPW0|G3PA2_ARATH Glyceraldehyde-3-phosphate dehydrogenase GAPA2 4.37
GAPB sp|P25857|G3PB_ARATH Glyceraldehyde-3-phosphate dehydrogenase GAPB 7.25
GAPC sp|P04796|G3PC_SINAL Glyceraldehyde-3-phosphate dehydrogenase 3.25
PGMP sp|Q9SM59|PGMP_PEA Phosphoglucomutase −1.70
UGP1 sp|P57751|UGPA1_ARATH UTP-glucose-1-phosphate uridylyltransferase 1 2.80

Galactose (7)
BGAL sp|P48981|BGAL_MALDO Beta-galactosidase −1.00

BGAL5 sp|Q9MAJ7|BGAL5_ARATH Beta-galactosidase 5 −1.32
BGAL7 sp|Q9SCV5|BGAL7_ARATH Beta-galactosidase 7 −3.29
GALM sp|Q5EA79|GALM_BOVIN Aldose 1-epimerase 1.34

GALT29A sp|Q9SGD2|GT29A_ARATH Beta-1,6-galactosyltransferase GALT29A −3.71
GLCAT14A sp|Q9FLD7|GT14A_ARATH Beta-glucuronosyltransferase GlcAT14A −1.10

GOLS2 sp|C7G304|GOLS2_SOLLC Galactinol synthase 2 −1.23



Molecules 2022, 27, 44 7 of 18

Table 1. Cont.

Gene Name Swissprot-ID Protein Name RPKM (CR/CS)

Mannose (6)
CYT1 sp|O22287|GMPP1_ARATH Mannose-1-phosphate guanylyltransferase 1 3.29
GMD1 sp|Q9SNY3|GMD1_ARATH GDP-mannose 4,6 dehydratase 1 2.98
MAN5 sp|P93031|GMD2_ARATH Mannan endo-1,4-beta-mannosidase 5 3.21
MSR2 sp|Q6YM50|MAN5_SOLLC Protein MANNAN SYNTHESIS-RELATED 2 1.72
MUR1 sp|Q0WPA5|MSR2_ARATH GDP-mannose 4,6 dehydratase 2 1.24
PMI2 sp|Q9FZH5|MPI2_ARATH Mannose-6-phosphate isomerase 2 1.61

Fucose (5)
OFUT9 sp|Q8H1E6|OFUT9_ARATH O-fucosyltransferase 9 1.16

OFUT20 sp|O64884|OFT20_ARATH O-fucosyltransferase 20 −2.52
OFUT23 sp|Q9MA87|OFT23_ARATH O-fucosyltransferase 23 −1.86
OFUT27 sp|Q8GZ81|OFT27_ARATH O-fucosyltransferase 27 −1.19
OFUT35 sp|Q94BY4|OFT35_ARATH O-fucosyltransferase 35 1.14

Trehalose (5)
TPS7 sp|Q9LMI0|TPS7_ARATH Probable alpha,alpha-trehalose-phosphate synthase −1.40
TPS9 sp|Q9LRA7|TPS9_ARATH Probable alpha,alpha-trehalose-phosphate synthase 8.76

TPS11 sp|Q9ZV48|TPS11_ARATH Probable alpha,alpha-trehalose-phosphate synthase 3.34
TPPF sp|Q9SU39|TPPF_ARATH Probable trehalose-phosphate phosphatase F 2.27
TPPJ sp|Q5HZ05|TPPJ_ARATH Probable trehalose-phosphate phosphatase J 2.48

Fructose (2)
CWINV1 sp|Q43866|INV1_ARATH Beta-fructofuranosidase, insoluble isoenzyme CWINV1 1.40
CYFBP sp|Q9MA79|F16P2_ARATH Fructose-1,6-bisphosphatase 2.29

Starch Metabolism (5)

At2g31390 sp|Q9SID0|SCRK1_ARATH Probable fructokinase-1 2.93
DSP4 sp|G4LTX4|DSP4_CASSA Phosphoglucan phosphatase DSP4, amyloplastic −1.95

NANA sp|Q9LTW4|NANA_ARATH Aspartic proteinase NANA −3.64
SBE2.2 sp|Q9LZS3|GLGB2_ARATH 1,4-alpha-glucan-branching enzyme 2-2 −1.79

SS2 sp|Q43847|SSY2_SOLTU Granule-bound starch synthase 2 4.05

Carbohydrate Transport (13)

At1g67300 sp|Q9FYG3|PLST2_ARATH Probable plastidic glucose transporter 2 1.12
ERD6 sp|O04036|ERD6_ARATH Sugar transporter ERD6 2.47
MST1 sp|Q0JCR9|MST1_ORYSJ Sugar transport protein MST1 −1.09
STP1 sp|P23586|STP1_ARATH Sugar transport protein 1 8.84
STP5 sp|Q93Y91|STP5_ARATH Sugar transport protein 5 −1.29

STP12 sp|O65413|STP12_ARATH Sugar transport protein 12 5.61
STP13 sp|Q94AZ2|STP13_ARATH Sugar transport protein 13 3.28

SWEET5 sp|Q9FM10|SWET5_ARATH Bidirectional sugar transporter SWEET5 2.05
SWEET12 sp|O82587|SWT12_ARATH Bidirectional sugar transporter SWEET12 −2.05
SWEET14 sp|Q2R3P9|SWT14_ORYSJ Bidirectional sugar transporter SWEET14 1.57
SWEET15 sp|P0DKJ5|SWT15_VITVI Bidirectional sugar transporter SWEET15 9.57

UXT2 sp|Q8GUJ1|UXT2_ARATH UDP-xylose transporter 2 1.71
UXT3 sp|Q8RXL8|UXT3_ARATH UDP-xylose transporter 3 −1.81

2.5. DEGs Involved in Carbohydrate Metabolism and Transport
2.5.1. DEGs Involved in Polysaccharides Metabolism

Thirty-two DEGs, presenting 21 UR and 11 DR in the CR compared with CS, directly
participate in polysaccharides metabolism including: glucose (GapA, GAPA1, GAPA2,
GAPB, GAPC, PGMP, and UGP1), galactose (BGAL, BGAL5, BGAL7, GALM, GALT29A,
GLCAT14A, and GOLS2), mannose (CYT1, GMD1, MAN5, MSR2 MUR1, and PMI2), fucose
(OFUT9, OFUT20, OFUT23, OFUT27, and OFUT35), trehalose (TPS7, TPS9, TPS11, TPPF,
and TPPJ) and fructose (CWINV1 and CYFBP) (Table 1). Here, 22 genes were selected to be
validated by qRT-PCR, and their RELs were consistent with the RPKM values, with UR for
metabolism of glucose, mannose, trehalose and fructose (Figure 8A–D), while differential
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expression for fucose metabolism (UR for the OFUT9 and DR for the OFUT20, OFUT23
and OFUT27) (Figure 8E), and DR for galactose metabolism (Figure 8F).

Figure 8. The relative expression level of genes involved in metabolism process of glucose (A),
mannose (B), trehalose (C), fructose (D), fucose (E) and galactose (F) in the CR compared with CS,
as determined by qRT-PCR. Column highlighted in green represents genes UR and red represents
genes DR. The dotted line in the images differentiates UR (>1) and DR (<1) in CR compared with CS,
represented. The same below.

2.5.2. DEGs Involved in Starch Metabolism

Five DEGs, presenting two UR and three DR in the CR compared with CS, directly
participate in starch metabolism including: At2g31390, DSP4, NANA, SBE2.2 and SS2
(Table 1). These genes were validated by qRT-PCR, and their RELs were consistent with the
RPKM values, with UR 3.5- and 6.8-fold for the At2g31390 and SS2, and DR 0.6-, 0.9- and
0.6-fold for the DSP4, NANA and SBE2.2, respectively (Figure 9).
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Figure 9. The relative expression level of genes involved in starch metabolism in the CR compared
with CS, as determined by qRT-PCR.

2.5.3. DEGs Involved in Carbohydrate Transport

Thirteen DEGs, presenting nine UR and four DR in the CR compared with CS, are
involved in carbohydrate transport including: At1g67300, ERD6, MST1, STP1, STP5, STP12,
STP13, SWEET5, SWEET12, SWEET14, SWEET15, UXT2 and UXT3 (Table 1). Here, 10 genes
were validated by qRT-PCR, and their RELs were consistent with the RPKM values, with
the UR 4.5-, 7.3-, 4.6-, 3.5-, 4.5-, 6.2- and 1.5-fold for the STP1, STP12, STP13, SWEET5,
SWEET14, SWEET15 and UXT2, while the DR 0.5-, 0.1- and 0.8-fold for the STP5, SWEET12
and UXT3, respectively (Figure 10).

Figure 10. The relative expression level of genes involved in transport in the CR compared with CS,
as determined by qRT-PCR.

3. Discussion

Although differences in growth characteristics and nutritional components of C. songar-
icum among the host species, especially in N. roborowskii and N. sibirica, have been observed
in previous studies [25–30], the mechanism responsible for host-dependent growth and
bioactive compound biosynthesis has not been dissected. Here, we found that there is a
greater biomass, soluble sugar content and antioxidant capacity on a per stem basis in the
CR than the CS (Figures 1 and 2). By transcriptomics analysis in the CR compared with
CS, a total of 2573 characterized genes differentially expressed with 1725 UR and 848 DR
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(Figure 7). By grouping genes based on biological functions, 50 genes (32 UR and 18 DR)
were associated with carbohydrate metabolism and transport (Figure 7; Table 1).

Carbohydrates, one of the most abundant and widespread biomolecules in nature,
not only plays an important role in plant growth and development, but also represents a
treasure trove of untapped potential for pharmaceutical applications [32,33]. In this study,
37 genes were found to be involved in carbohydrate metabolism including polysaccharides
(glucose, galactose, mannose, fucose, trehalose and fructose) and starch (Table 1). Among
the 37 genes, 23 genes (62%) presenting up-regulated and 14 genes (38%) down-regulated
suggest that the level of carbohydrate metabolism is greater in the CR than CS, which
is in accordance with the higher content of soluble sugar on a per stem basis in the CR
(Figure 2A,B).

For the polysaccharides metabolism, specifically, seven genes associated with glu-
cose metabolic process include: GapA, GAPA1, GAPA2, GAPB and GAPC participating
in the pathway Calvin cycle by catalyzing the reduction of 1,3-diphosphoglycerate by
NADPH [34]; PGMP participating in both the breakdown and synthesis of glucose [35];
and UGP1 converting glucose 1-phosphate to UDP-glucose and being essential for the
synthesis of sucrose, starch, cell wall and callose deposition [36,37]. Seven genes asso-
ciated with galactose metabolic process include:BGAL, BGAL5 and BGAL7 degrading
polysaccharides by hydrolyzing terminal non-reducing beta-D-galactose residues in beta-
D-galactosides [34]; GALM catalyzing the interconversion of beta-D-galactose and alpha-D-
galactose [34]; GALT29A and GLCAT14A involved in the biosynthesis of type II arabino-
galactan by, respectively, transferring galactose and glucuronate to oligosaccharides [38,39];
and GOLS2 involved in the biosynthesis of raffinose family oligosaccharides [38]. Six genes
associated with mannose metabolic process include: CYT1 participating in synthesizing
GDP-alpha-D-mannose from alpha-D-mannose 1-phosphate [40]; GMD1 and MUR1 cat-
alyzing the conversion of GDP-D-mannose to GDP-4-dehydro-6-deoxy-D-mannose [41];
MAN5 hydrolyzing the 1,4-beta-D-mannosidic linkages in mannans, galactomannans and
glucomannans [42]; MSR2 involved in mannan biosynthesis [43]; and PMI2 involved in the
synthesis of the GDP-mannose and dolichol-phosphate-mannose required for a number of
critical mannosyl transfer reactions [44]. Five genes associated with fucose metabolic pro-
cess include: OFUT9, OFUT20, OFUT23, OFUT27 and OFUT35 participating in the biosyn-
thesis of matrix polysaccharides [45]. Five genes associated with trehalose metabolic process
include: TPS7, TPS9, TPS11, TPPF and TPPJ involved in the trehalose biosynthesis [34,46].
Two genes associated with fructose metabolic process include: CWINV1 hydrolyzing the ter-
minal non-reducing beta-D-fructofuranoside residues in beta-D-fructofuranosides [47,48];
and CYFBP catalyzing fructose-1,6-bisphosphate to fructose-6-phosphate and inorganic
phosphate [34,49].

For the starch metabolism, five genes associated with starch metabolic process include:
At2g31390 involved in maintaining the flux of carbon towards starch formation [34]; DSP4
controlling the starch accumulation and acting as a major regulator of the initial steps
of starch degradation at the granule surface [50]; NANA regulating endogenous sugar
levels (e.g., sucrose, glucose and fructose) by modulating starch accumulation and remobi-
lization [51]; SBE2.2 involved in starch biosynthesis and catalyzing the formation of the
alpha-1, 6-glucosidic linkages in starch [52]; and SS2 participating in the pathway starch
biosynthesis [53].

Transport plays critical roles in distribution and storage of carbohydrate from leaves
to roots or other organs that required nutrition [54]. In this study, 13 genes were involved
in carbohydrate transport with nine genes (69%) up-regulated and four genes (31%) down-
regulated, suggesting that the ability of carbohydrate transport is stronger in the CR than the
CS (Table 1). Specially, the 13 genes include: At1g67300 participating in the efflux of glucose
towards the cytosol [55]; ERD6 participating in sugar transport [56]; MST1 mediating
active uptake of hexoses [57]; STP1, STP5, STP12 and STP13 participating in transporting
glucose, 3-O-methylglucose, fructose, xylose, mannose, galactose, fucose, 2-deoxyglucose
and arabinose [58]; SWEETs is a unique new family of sugar transporters that lead to



Molecules 2022, 27, 44 11 of 18

many elusive transport steps including nectar secretion, phloem loading and post-phloem
unloading as well as novel vacuolar transporters [59]. Here, four SWEETs genes SWEET5,
SWEET12, SWEET14 and SWEET15 participate in phloem loading by mediating export
from parenchyma cells feeding H+-coupled import into the sieve element/companion
cell complex [59,60]; and UXT2 and UXT3 participate in transporting UDP-xylose and
UMP [61].

4. Materials and Methods
4.1. Plant Materials

Stems of C. songaricum at vegetative growth stage, were host in the roots of N. roborowskii
and N. sibirica (Figure 11) were collected on 6 May 2019 from Dulan county (2800 m;
36◦2′25′′ N, 97◦40′26′′ E) of Qinghai, China. The stems were cleaned and rapidly frozen
in liquid nitrogen, the middle parts of stem were used for determination of soluble sugar
content and antioxidant capacity, and the shoot apical meristems (SAM) were used for
transcriptomic analysis.

Figure 11. Morphological characteristics of stems of C. songaricum at vegetative growth stage and aerial
parts of N. roborowskii and N. sibirica. Images (A,B) represent stems host in the roots of N. roborowskii and
N. sibirica, and Images (C,D) represent aerial parts of N. roborowskii and N. sibirica, respectively.

4.2. Measurement of Growth Characteristics

Growth characteristics including fresh weight (FW) of total stems, FW per stem, and
its length and diameter were immediately measured after the stems of C. songaricum were
dug out and cleaned with running water and absorbent paper.

4.3. Determination of Soluble Sugar Content and Antioxidant Capacity
4.3.1. Extracts Preparation

Fresh stems (1.0 g) were ground into homogenate by adding ethanol (20 mL), agitated
at 120 r/min and 22 ◦C for 72 h, then centrifuged at 5000 r/min and 4 ◦C for 10 min. The
supernatant was increased 20 mL with ethanol and then kept at 4 ◦C for measurement.

4.3.2. Determination of Soluble Sugar Content

Soluble sugar content was determined by a phenol–sulfuric acid method [62,63].
Briefly, extracts (20 µL) were added in the reaction, absorbance reader was taken at 485 nm
and soluble sugar content was calculated based on mg of sucrose.

4.3.3. Determination of Antioxidant Capacity

Antioxidant capacity was determined by DPPH and FRAP methods [64,65]. DPPH
radical scavenging assay was determined according to the description of Nencini et al. [66]
and Li et al. [63]. Briefly, extracts (5 µL) were added in the reaction, absorbance reader was
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taken at 515 nm and the capacity to scavenge DPPH radicals was calculated as following
Equation (1):

DPPH scavenging activity (%) = [(A0 − A)/A0] × 100 (1)

where “A0” and “A” were the absorbance of DPPH without and with sample, respectively.
FRAP assay was determined according to the description of Benzie and Strain [67].

Briefly, extracts (20 µL) were added in the reaction, absorbance reader was taken at 593 nm
and the FRAP value was calculated on the basic of (FeSO4·7H2O, 500 µmol Fe (II)/g) as
following Equation (2):

FRAP value (µmol Fe(II)/g) = [(A − A0)/(AFeSO4·7H2O − A0)] × 500 (µmol Fe(II)/g) (2)

where “A0” and “A” were the absorbance of FRAP without and with sample, respectively;
AFeSO4·7H2O was the absorbance of FeSO4·7H2O.

4.4. Total RNA Extraction, Illumina Sequencing, Sequence Filtration, Assembly, Unigene
Expression Analysis and Basic Annotation

Total RNA samples of CR and CS with three biological replicates were extracted
using an RNA kit (R6827, Omega Bio-Tek, Inc., Norcross, GA, USA). The processes of
enrichment, fragmentation, reverse transcription, synthesis of the second-strand cDNA and
purification of cDNA fragments was applied following previous protocols [68]. RNA-seq
was performed by an Illumina HiSeqTM 4000 platform (Gene Denovo Biotechnology Co.,
Ltd., Guangzhou, China). Raw reads were filtered according to previous descriptions [68].
Clean reads were assembled using Trinity [69]. The expression level of each transcript was
normalized to RPKM [70], and DEGs were analyzed according to a criterion of |log2(fold-
change)| ≥ 1 and p ≤ 0.05 by DESeq2 software and the edgeR package [71,72]. Unigenes
were annotated against the databases including: NR, Swiss-Prot, KEGG, KOG and GO [73].

4.5. qRT-PCR Validation

The primer sequence (Table 2) was designed via a primer-blast in NCBI and synthe-
sized by reverse transcription (Sangon Biotech Co., Ltd., Shanghai, China). First cDNA was
synthesized using a RT Kit (KR116, Tiangen, China). PCR amplification was performed
using a SuperReal PreMix (FP205, Tiangen, China). Melting curve was analyzed at 72 ◦C
for 34 s. Actin gene was used as a reference control. The RELs of genes were calculated
using a 2−∆∆Ct method [74].

Table 2. Sequences of primer employed in qRT-PCR analysis.

Genes Sequences (5′ to 3′) Amplicon Size (bp)

ACT
Forward: CTAAACCGCTTGTTGCTGGC

104
Reverse: GGGGAGCTCACACGAAAGAT

Polysaccharides Metabolism (22)

GAPA1
Forward: TCGTTTTCATGCTTGTAACTTGT

112
Reverse: CTTACGCCTCATTTCGCCTC

GAPA2
Forward: GAAAGCGTCCTGAGCAAAGT

172
Reverse: GCCCAGGACATACCCAAAAG

GAPB
Forward: GGCAAGATGGAACTTCATGCG

106
Reverse: ATGTGAAGTCGGGCCAAAAC

GAPC
Forward: TTTTGGTCTGAGCCAGAGAGG

106
Reverse: TGTTACCGCCTGAAAATACCT
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Table 2. Cont.

Genes Sequences (5′ to 3′) Amplicon Size (bp)

Polysaccharides Metabolism (22)

BGAL5
Forward: AGGCTCTGCTACGTTTGCTT

169
Reverse: TCTCACGTTTCGGCTTTCGT

BGAL7
Forward: AGTCTCATTGCCATTCCCCG

104
Reverse: TGGGCGATGAATTTGGTGGA

GALT29A
Forward: AGCTCTGAACGGAAAGCTCAT

186
Reverse: GCTTGCTCACGAATACCCCA

GLCAT14A
Forward:TGGTGTGACGAGGTTCAAGAGA

148
Reverse: CAGATTCGCTGGTAACTGCCT

GMD1
Forward: ATTGCTCTTGCACATCACACAC

101
Reverse: GGCTTATAGCGGTCAACAAAAT

MUR1
Forward: AGGCAAACGATTGTTGCGAG

180
Reverse: GGATTTGTCAGCCCTTGCTT

MAN5
Forward: AGCCAAGAAAATGGCGGAAT

198
Reverse: GCGTGGATGGAATGGTGAAG

MSR2
Forward: ACGAGCTTTCTCAAACAGGCA

153
Reverse: TCGCAAGGGCTTCTAAAATGG

OFUT9
Forward: GGGTTGTCCTTTGGTCTTGT

110
Reverse: AGTTTGCGCTTGTTGTCTACC

OFUT20
Forward: TTCAGGACATAGAGGAGCAGC

159
Reverse: GTCCCCCTCCATAAAAGGCG

OFUT23
Forward: GCGACTTCTTACCGGCATCT

191
Reverse: GCCTGTCCCAAACTCTGACA

OFUT27
Forward: GTTCACCGTTGCAAGACCAC

132
Reverse: CCTTGGCTGGTGGAATGGAT

TPS9
Forward:TGAGTAAGGAACAAGCCCCATC

164
Reverse: CCTTTCCAGGCCGAGACATAA

TPS11
Forward: TCCGGTCGGTGAAAGGTATG

131
Reverse: ATCCCATCAACCACAGCCTC

TPPF
Forward: TCGGGAAAACCAATGGGTGA

128
Reverse: AGACGGCTGAACTTGAGGTG

TPPJ
Forward: TACCAACTGTGCTAAGCCCT

104
Reverse:CTGTATATTGGGTTTTGGAAGGC

CWINV1
Forward: GTGACGTGTGTTTCCAGTGTG

109
Reverse: TCAGTGTCAGCCATAAGTTGGT

CYFBP
Forward: TAGTGGGCAGGGTTTAGGCA

109
Reverse: TCGTGCGGTTAGTGTTTTACCT
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Table 2. Cont.

Genes Sequences (5′ to 3′) Amplicon Size (bp)

Starch (5)

At2g31390
Forward:TGTCCGCAAACAGAAAACGTC

120
Reverse: TGGACGCCAAAGAGGGAATG

DSP4
Forward: CCCGTGTTTATCCTCGTTGGT

157
Reverse: AAGGTGGTGGTTGACGGTG

NANA
Forward: ATGCCGATCCCCAAACACA

102
Reverse:CGAAGGTAATGCCAAATTGAGA

SBE2.2
Forward:TGTCCGCAAACAGAAAACGTC

120
Reverse: TGGACGCCAAAGAGGGAATG

SS2
Forward: CGGCACAAAATCAACATGGG

104
Reverse: CCAGGCATTCAGTTGCGAAG

Transport (10)

STP1
Forward: GCACTTAGCTTTGATATGCCCC

112
Reverse: TTTAAGACCCATCGCCGTCC

STP5
Forward: TCTGAGACAAACAGCCTTCC

110
Reverse: TCCCGTGTATAAGTGCTCTACC

STP12
Forward: ACGAGCTCTGCAAAGGGTTC

179
Reverse: CTCCATCTGGTTCAACGCAC

STP13
Forward: AGTGTTCGACGGGGACTCTT

146
Reverse: ACCCCCTCTTGAGTCTTGTC

SWEET5
Forward: GGGTTAGGTTGTCGTGGACT

100
Reverse: GCTTTGTCAAGTGTGGTGCT

SWEET12
Forward: TCTGACAACTACCCGCAAGC

190
Reverse: AGGCACAGATAGTTGCCGAA

SWEET14
Forward: AGCTGCCGAAAGTACCCTAC

130
Reverse: TCGCATGTTTCTCCTTCGCT

SWEET15
Forward: TGTCGCCGTTGCATTTTTGT

137
Reverse: CTCAACTGGGTGGCCTTCAA

UXT2
Forward: AGGCCTGATTGCAAGAGCTTA

148
Reverse: CACGGGTACGTCACTCAGAT

UXT3
Forward: TGCGGTTAACCTGGAAGAGG

189
Reverse: TGTTTAGGACATCCTCCCATGC

4.6. Statistical Analysis

All the measurements were performed using three biological replicates. A t-test was
applied for independent samples, with p < 0.05 considered significant.

5. Conclusions

From the above observations, the stem biomass and polysaccharides accumulation
of C. songaricum host in N. roborowskii are significantly greater than that of N. sibirica. A
total of 1725 UR and 848 DR genes were observed in CR compared to CS, and 50 DEGs
were involved in polysaccharides biosynthesis, which indicates that the polysaccharides
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biosynthesis in C. songaricum is host-dependent. The specific roles of candidate genes in
regulating polysaccharides biosynthesis will require additional studies.

Supplementary Materials: The following are available online. Table supplemental legends: Table
S1: Summary of sequencing data for Cynomorium songaricum transcriptome; Table S2: Primary
metabolism genes differentially expressed in CR and CS; Table S3: Transport genes differentially
expressed in CR and CS; Table S4: Transcription genes factor differentially expressed in CR and CS;
Table S5: Cell morphogenesis genes differentially expressed in CR and CS; Table S6: Bio-signaling
genes differentially expressed in CR and CS; Table S7: Stress response genes differentially expressed
in CR and CS; Table S8: Translation genes differentially expressed in CR and CS; Table S9: Secondary
metabolism genes differentially expressed in CR and CS; Table S10: Photosynthesis and energy genes
differentially expressed in CR and CS.
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