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Current generation DNA sequencing instruments are moving closer to seamlessly sequencing genomes of entire pop-
ulations as a routine part of scientific investigation. However, while significant inroads have been made identifying small
nucleotide variation and structural variations in DNA that impact phenotypes of interest, progress has not been as
dramatic regarding epigenetic changes and base-level damage to DNA, largely due to technological limitations in assaying
all known and unknown types of modifications at genome scale. Recently, single-molecule real time (SMRT) sequencing
has been reported to identify kinetic variation (KV) events that have been demonstrated to reflect epigenetic changes of
every known type, providing a path forward for detecting base modifications as a routine part of sequencing. However, to
date no statistical framework has been proposed to enhance the power to detect these events while also controlling for
false-positive events. By modeling enzyme kinetics in the neighborhood of an arbitrary location in a genomic region of
interest as a conditional random field, we provide a statistical framework for incorporating kinetic information at
a test position of interest as well as at neighboring sites that help enhance the power to detect KV events. The
performance of this and related models is explored, with the best-performing model applied to plasmid DNA isolated
from Escherichia coli and mitochondrial DNA isolated from human brain tissue. We highlight widespread kinetic vari-
ation events, some of which strongly associate with known modification events, while others represent putative
chemically modified sites of unknown types.

[Supplemental material is available for this article.]

DNA sequencing carried out using current first and second (or

next) generation sequencing (NGS) instruments has achieved sig-

nificant success in providing DNA sequences in which the A’s, G’s,

C’s, and T’s comprising any given DNA template of interest are very

consistently called at accuracies that exceed 99%, enabling an

explosion of whole-genome sequencing applications that promise

to transform our understanding of living systems and usher in the

era of personalized genomics (Shendure and Ji 2008; Wheeler et al.

2008; Huang et al. 2009; Wall et al. 2009; Alexander et al. 2010;

Drmanac et al. 2010; Flusberg et al. 2010; Kan et al. 2010; Qin et al.

2010; van Bakel et al. 2010). However, extensive characterization

of the chemical composition of bases encountered in DNA se-

quences has resulted in the enumeration of many different types of

bases existing in nature that go beyond the fundamental de-

oxyribonucleotides (A’s, G’s, C’s, and T’s) that NGS technologies

produce as the end product of their sequencing reactions. Chem-

ical modifications and damage events such as 5-methylcytosine

(5-mC), 5-hydroxylmethylcytosine (5-hmC), 6-methyladenine

(6-mA), 8-oxoguanine (8-oxoG), pyrimidine dimers, and ribo-

nucleotides, have been shown to play an increasingly important

role in the regulation of genes and their association to disease.

Presently, only 5-mC can be routinely detected using NGS tech-

nology and then only after samples have been bisulfite treated,

a procedure that creates a number of experimental and in-

formatics challenges (Cokus et al. 2008). Thus, new technologies

and assays are needed to fully characterize DNA and RNA se-

quences if we hope to completely characterize variation in ge-

nomes and transcriptomes.

Single-molecule real-time (SMRT) technology is the first

commercially available platform to directly observe single mole-

cules of DNA polymerase as they synthesize DNA sequences, not

only leveraging the speed and processivity of this enzyme to ad-

dress many of the shortcomings of second-generation sequencing

technologies (Levene et al. 2003; Eid et al. 2009), but providing

a time dimension from which the kinetics of the DNA polymerase

enzyme can be inferred in real time as DNA sequencing is carried out

(Schadt et al. 2010). That is, as the DNA polymerase is synthesizing

8These authors contributed equally to this work.
9Corresponding author
E-mail eric.schadt@mssm.edu
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.136739.111.
Freely available online through the Genome Research Open Access option.

23:129–141 � 2013, Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/13; www.genome.org Genome Research 129
www.genome.org

mailto:eric.schadt@mssm.edu


a strand of DNA, incorporating a base or translocating to the next

base after an incorporation event, the time it takes the enzyme to

carry out those processes can be directly observed. While stochastic

processes drive much of the kinetic variation observed within and

between single-molecule sequencing reactions, we have recently

found that subtle changes in sequence context (e.g., methylation

of a given cytosine residue at a given base location in a DNA

template of interest) reproducibly alter the kinetics of base in-

corporation, providing for the possibility of directly observing

chemical modification or damage events to nucleotides, and even

discriminating between such events as a routine part of the SMRT

DNA sequencing process (Flusberg et al. 2010).

Presently, no statistical framework has been proposed to

identify kinetic variation events from SMRT sequencing data that

can serve as a surrogate for chemical modifications of DNA or RNA

sequences. In the first study published demonstrating the utility of

kinetic variation information for detecting chemical modifications

like 5-mC, a simple ratio measure was used to compare the kinetic

parameters between two experimental groups for a given base

position of interest (Flusberg et al. 2010). Empirically determined

thresholds for the ratio measure were applied to identify putative

modified bases in an artificially modified template sequence.

While this simple ratio approach is effective at identifying high-

confidence KVEs, it does not maximally leverage the available in-

formation. For example, the ratio method only makes use of mean

kinetic variation behavior at a single site, not taking into account

other features of the kinetic parameter distributions, such as

number of observations, variance, kinetic information at neigh-

boring bases that may reflect modifications at a given test site, and

interactions between neighboring sites. Empirical data have

shown that some base modification types induce correlated shifts

in kinetics at neighboring sites (Flusberg et al. 2010).

Here, we develop a statistical framework for inferring kinetic

variation from SMRT sequencing data. By modeling enzyme ki-

netics in the neighborhood of an arbitrary location in a given ge-

nomic region of interest as a conditional random field (referred to

here as the CRF model), we provide a way to incorporate kinetic

information not only at a test position of interest, but at neigh-

boring sites as well. This model encompasses interactions among

neighboring sites that can help enhance power to detect kinetic

variation events. We demonstrate that single-site likelihood

models, simple t-tests, and multisite likelihood models in which

the sites are assumed to be independent, are special instances of

the CRF model. The performance of the CRF model, reduced

models derived from the CRF model, and nonparametric single-

site models are compared using DNA templates in which the

modification type and positions modified are known with com-

plete certainty. Finally, we apply the best-performing models to

plasmid DNA isolated from Escherichia coli and mitochondrial DNA

isolated from postmortem human brain tissue. We highlight

widespread kinetic variation events, some of which strongly as-

sociate with known modification events, while others represent

putative chemical modifications.

Results

A general CRF model for detecting kinetic variation in SMRT
sequencing data

SMRT sequencing is carried out using zero-mode waveguides

(ZMW) that are capable of isolating a single DNA polymerase

molecule. Sequencing by synthesis in a ZMW is carried out at the

single-molecule level by anchoring one molecule of DNA poly-

merase bound to a single DNA sequence to be synthesized to the

bottom of the ZMW. Nucleotides, each type labeled with a differ-

ent colored fluorophore, are then allowed to diffuse in and out of

the ZMWs. While held by the polymerase, the fluorescent label

emits colored light. The sequencing instrument detects this as

a flash (or pulse) whose color corresponds to the base identity.

When the nucleotide is incorporated into the growing DNA

strand—a process that takes on the order of milliseconds—the

fluorophore is cleaved from the newly incorporated nucleotide.

Critically, the time it takes for the incorporation to be carried out is

measured and provided as the duration of the pulse (referred to as

pulse width or PW). Following incorporation, the signal immedi-

ately returns to baseline and the process repeats The time between

the incorporation events is also precisely measured (referred to as

the interpulse duration or IPD). While there is a fair degree of

stochastic variation in the IPD and PW values over different reads

covering a common genomic region, reproducible variations in

IPD and PWare induced as a result of modifications to the bases, as

has been previously shown (Flusberg et al. 2010). Given the high

degree of regulation involved in the base incorporation process,

PW is not as sensitive to shifts in sequence context induced by

modifications as IPD (Flusberg et al. 2010). Therefore, for the

purposes of developing an initial model of kinetic variation, we

restrict attention to IPDs.

Consistent differences in IPD values between two sets of

conditions at a given test site or between different groups of mol-

ecules in a given sample can serve as a surrogate for chemical

modification events. For example, consider the IPDs between two

samples at a given sequence location in which the site has an

unmodified G residue in one sample, and the G residue in another

sample has been modified to 8-oxoguanine, a common DNA lesion

resulting from reactive oxygen species (Kanvah et al. 2010). Rep-

resentative traces for the unmodified position and neighboring

bases and the modified base and the same neighboring bases are

shown in Figure 1A, with the IPDs after the modified base being

generally longer compared with the IPD after the unmodified base.

The consistency of this longer IPD over the different reads of in-

dividual molecules in the modified versus unmodified samples

is shown in Figure 1B using the modeling discussed below. Further,

as can be seen in Figure 1B, the IPDs of some of the neighboring

bases of the modified site are also altered in a statistically signifi-

cant way.

Another interesting feature of the DNA polymerase kinetics in

SMRTsequencing is that it is exquisitely sensitive to local sequence

context. That is, a significant proportion of the variance in the IPD

measures can be explained by local sequence context. In fact,

seven bases upstream of and two bases downstream from the in-

corporation site explain >80% of the variance in the IPD measures

(Fig. 2A). If this 10-mer sequence context is taken into account

between different sequence runs carried out on different species, it

still explains the vast majority of the variation in the IPD measures

(Fig. 2B). The strong dependence of IPD on local sequence context,

combined with the fact that modifications at one base can affect

the IPD at nearby bases, support that modifications to bases change

the local sequence context in ways that alter how the local sequence

(the 10-mer) interacts with the enzyme, and these interactions

can be nonlinear, with changes in one base affecting the kinetics

of the enzyme at nearby bases. Therefore, to test whether IPDs at

a given position reflect different kinetic rate distributions, taking

into account IPDs at neighboring positions and allowing for in-

teractions between the different IPD vectors at neighboring sites,
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Figure 1. Reproducible variation in interpulse durations as a surrogate for chemical modifications to nucleotide bases. (A) Sample traces of six DNA
molecules, three in which the DNA template contains a single 8-oxoG modification (right three traces), and the other identical but with no 8-oxoG
modification (left three traces). While the IPD is observed to vary significantly even within the same modification state (a consequence of the exponential
nature of the IPD), in the case of the 8-oxoG residue the IPDs are seen to be generally longer than the IPDs of the unmodified G residue. (B) After examining
hundreds of molecules in which the G residue was modified versus unmodified, the consistent lengthening of the mean IPD for the modified G residue
compared with the mean IPD for the unmodified G residue becomes statistically significant (red bar). The effect of the 8-oxoG modification to the
G residue is also seen to affect the IPDs of the neighboring bases in a statistically significant way. In this case, the P-value indicated at each position was
computed using the Mann-Whitney test.
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have the potential to enhance the power to detect kinetic variation

events.

Therefore, to characterize the IPD values at a given site of

interest and at positions flanking the site of interest, we de-

veloped a model that considers IPD information at sites flanking

the site of interest and allows for neighboring sites to interact

(Fig. 2C). To see how the graphical model depicted in Figure 2C is

developed, consider any number of aligned sequences N nucle-

otides long in which we wish to assess whether the IPDs or re-

lated trace-derived metrics for a given data set are sampled from

multiple distributions (each distribution corresponding to

a ‘‘rate class’’) at a given site of interest, and whether there is

interaction among the rate classes at neighboring sites. To model

this, we assume that associated with the N sites for a given read is

a random rate class vector, C ¼ C1; :::;CNf g, where the Ci can take

on different rate class values from the set 0; :::;R� 1f g, corre-

sponding to different IPD distributions that a given read (single

DNA molecule sampled from the population of reads of interest)

can follow. For a given rate class instance, ci, at position i in the

DNA sequence of interest, we have an associated kinetic rate lci
.

Given the exponential nature of the IPD distribution (see below)

and the want to account for interactions among the neighboring

sites, we model the rate class vector as a Gibbs random field (see

Methods).

Given this general construct, for each site i we have that the

IPD corresponding to that site can take on one of R kinetic rates,

li0 ; :::; liR�1
, corresponding to the different rate classes. We can as-

sume that the IPD for a given site follows a particular distribution,

like exponential or lognormal. Once a distributional form of the

IPD is chosen and once we limit the extent of spatial interaction

that is possible among the sites, an IPD likelihood function can be

formed and efficiently computed (see Methods for details). Pa-

rameterization of the potential function includes not only multi-

ple different rate classes for IPDs at a given site, but it also includes

interaction terms between the sites that reflect correlation of the

rate classes between sites, given modifications at one site can in-

fluence the IPDs at neighboring sites.

Parameter estimates in the likelihood model are obtained

using standard maximum likelihood techniques. While the model

we developed can accommodate any number of rate classes and

interaction terms, we consider herein a maximum of two rate

classes per site and only nearest neighbor interactions, referring to

the corresponding likelihood function as the full CRF model. We

are generally interested in testing specific positions in a sequence

Figure 2. DNA polymerase kinetics in SMRT sequencing is a function of the local sequence context of the incorporation site, motivating a conditional
random field approach to KVE detection. (A) Heatmap of the coefficient of determination (R2) for the IPD variance for the incorporation site of a SMRT
sequencing reaction explained by local sequence context. This heatmap suggests that seven bases upstream of and two bases downstream from the
incorporation site are the most informative, and that bases beyond this context do not provide much additional information about the enzyme kinetics. (B)
Scatter plot comparing IPDs in identical sequence contexts between whole-genome amplified E. coli and M. genitalium samples. Each point represents the
log of the IPD for a given 10-bp context (seven bases upstream of and two bases downstream from the incorporation site) in E. coli (y-axis) and M.
genitalium (x-axis): 2500 points sampled from the 1,048,576 possible 10-mer contexts are shown here for ease of viewing. The strong correlation
(Pearson’s correlation coefficient = 0.91) between IPDs in identical contexts assayed from completely independent sequencing runs of different species
demonstrate that the context effects are highly consistent between experiments. (C ) Graphical representation of the CRF model. The Xi variables rep-
resent the hidden modification states for site i, while the Zi represent the observed IPD values for site i that inform on the modification status of the site. In
this model we are considering interactions between the incorporation site, Z3, and the two nearest neighboring sites on each side of Z3. The edges
between the Zi variables indicate there can be interactions between the local sites, with the uj parameters representing the degree of interaction among
the nodes. The li;k parameters represent the exponential rates for the two possible rate classes at each position i (k ¼ 1; 2), while the mi;k parameters
represent the proportion of molecules in state k at position i (with mi;1 ¼ 1� mi;2).
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for kinetic variation, so that, typically, the full CRF model would

not be run over the entire sequence under consideration, but in-

stead would be applied to a small window around each test site of

interest. The window size should be set so as to capture all sites

neighboring the test site of interest that have the potential to in-

form on the modification status of the test site.

CRF-based tests for detecting kinetic variation events

There are two types of applications to consider in developing

a statistical test for kinetic variation using the CRF model. The first

is the supervised application in which two groups are compared at

each test position to determine whether the kinetic rates at the test

site vary between the two groups. For example, DNA sequence data

generated from DNA isolated from an organism of interest can be

compared with DNA sequence data generated from whole-genome

amplified (WGA) DNA isolated from the same organism. In this

case, WGA erases all of the base modifications from the DNA so

that WGA versus native DNA enables a direct comparison of rates

between the two groups. The second type of application is un-

supervised, in which DNA sequence data is generated for a given

sample and the aim is to then discover whether there are a mixture

of rate distributions at a given test site of interest within that given

sample.

For the unsupervised case, the null hypothesis is that there is

no kinetic variation at the test site of interest (only a single-rate

parameter) versus the alternative hypothesis that there is a mixture

of distributions for the IPD that have different rates (two rate pa-

rameters). These competing hypotheses can be tested using

a standard likelihood ratio test in which the null hypothesis is

rejected in favor of the alternative hypothesis if the resulting

P-value is below some significance threshold. The individual pa-

rameter estimates from the full CRF model can be used to test for

a variety of effects as well. For a given site there is a parameter that

estimates the proportion of reads whose IPDs were sampled from

a given rate class distribution, a parameter that indicates the degree

to which rate classes between sites in the window flanking the test

site are correlated over the space of reads considered, and a pa-

rameter for the actual rate of each rate class (see Methods for de-

tails). The supervised case is similar to the unsupervised case, but in

the supervised case the full CRF model no longer includes in-

teraction terms, given the grouping of sequences into different

rate classes is fixed, so that the rates between sites are perfectly

correlated.

The full CRF model includes as special cases a number of

simpler, but useful models. In the supervised case we can assume

that all interaction terms in the CRF model are 0, so that in this case

the CRF model reduces to a simple product of likelihoods (referred

to as the multisite likelihood model) in which rate class assign-

ments for a given site are made independently of all other sites. If

we set the window size to 1 (considering only a single base at

a time), the multisite likelihood model reduces to a single-site

likelihood model, in which we are simply comparing IPD values at

a given site between two groups. In the case where we assume that

the log of the IPDs are distributed as a normal random variable, the

single-site likelihood model is equivalent to a simple t-test. In the

unsupervised case, if we set the window size to 1, the CRF model

reduces to a simple single-site mixture model. Finally, we note that

while there are some features of the CRF model that could be

captured by a Hidden Markov Model (HMM), we chose the dis-

criminative CRF model over the generative HMM to allow for

greater flexibility in modeling nonconsecutive, spatially separated

dependencies between IPDs and for modeling interactions among

features.

The CRF model and derived submodels assume an underlying

distribution for the IPDs. The process of a DNA polymerase enzyme

sampling nucleotides during active synthesis to identify the ap-

propriate base for incorporation has previously been shown to be

a Poisson process, so that the waiting time between incorporation

events (the IPDs) is exponentially distributed. There is a highly

significant quadratic relationship between the IPD mean and

variance that supports the IPDs as exponentially distributed ran-

dom variables (Supplemental Fig. 1). However, direct observation

of the P-value distribution in the control data of the 5-mC set

under the null hypothesis that the IPDs are exponentially dis-

tributed, gave rise to a strong anticonservative distribution (Sup-

plemental Fig. 2A), whereas a uniform P-value distribution was

expected. We have previously noted that during the synthesis

process, the DNA polymerase enzyme may pause at times for

abnormally long intervals (Flusberg et al. 2010). We suspected

that the nonuniform P-value distribution could be driven by

such events. Therefore, we set an IPD threshold to treat very long

IPD values as missing data (given that the translocation kinetics

in these cases are obscured by enzyme-pausing issues), which

was effective in producing a uniform P-value distribution under

the null hypothesis of no kinetic rate variation (Supplemental

Fig. 2B).

Application and comparison of the CRF and related models

To explore the utility of the full CRF model and simpler models

derived from the CRF model, we examined a 3995-bp plasmid from

EcoK-, dam-/dcm- E. coli cells that lacked all methyltransferase en-

zymes except M. Sau3AI, an enzyme known to specifically meth-

ylate the C residue (5-methylcytosine) in a GATC sequence context

(Fig. 3A; Clark et al. 2012). The plasmid contains 19 GATC contexts

so the expectation is that the M.Sau3AI enzyme would methylate

all of these sites, and as a result we would expect to make 19 de-

tections covering all GATC contexts and no detections outside of

that context given the strong context sensitivity of M.Sau3AI. We

chose this type of methylation because it has among the most

subtle impacts on the enzyme kinetics (small effect size), en-

hancing the power to discriminate among the different models at

moderate fold coverage. We generated on average 1000-fold cov-

erage of sequence data on the modified template sequence in ad-

dition to roughly 1000-fold coverage on the unmodified (no 5-mC

residues) template sequence, using the Pacific Biosciences single-

molecule, real-time (SMRT) DNA sequencing instrument (Clark

et al. 2012). Given knowledge of the exact locations of the modi-

fied bases, sensitivity and specificity of the different models can be

assessed on observed data and compared using receiver operator

characteristic (ROC) curves, which simply reflect the rate at which

a given model identifies true positives as a function of false posi-

tives. The area under the ROC curves serves as a natural metric for

rank-ordering competing models, with an AUC score of 0.5 rep-

resenting what would be expected by chance and an AUC score of

1.0 representing perfect prediction. The P-value plot depicted in

Figure 3A is for the single-site model applied to the filtered full-

coverage data set, with all C residues in GATC contexts detected,

demonstrating the specificity of the M.Sau3AI enzyme to the

GATC context (see also Supplemental Fig. 3).

Figure 3B depicts the ROC curves for seven different kinetic

rate-variation detection models applied to the M.Sau3AI data set in

supervised mode at a lower fold coverage of 800 subsampled from

Modeling kinetics in 3rd generation DNA sequencing
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the original data for evaluation purposes and then filtered before

the models were applied: the exponential single-site model, a sin-

gle-site nonparametric model that makes no underlying assump-

tions on the IPD distributions (using the Kruskal-Wallis test,

a nonparametric analog to the t-test), three different multisite

models assuming exponentially distributed IPD values with dif-

ferent window sizes and positions relative to the test site, and

the CRF model assuming exponentially distributed IPD values. The

single-site models all performed similarly, detecting ;60% of the

modified sites at a 5% false-positive rate, and AUCs equal to 0.83,

0.82, and 0.82 for the lognormal, exponential, and nonparametric

single-site models, respectively. The CRF model outperformed

the single-site models, but the multisite models assuming in-

dependence among the sites outperformed the CRF and single-

site models to a significant degree (Fig. 3B), where in the best

case, 100% of the methylated sites were detected at a 5% false-

positive rate. The AUC measures for the multisite models as-

suming site-to-site independence at window sizes of 3, 4, 5, and

6 were 0.94, 0.98, 0.99, and 0.98, respectively, while the AUC

measures for the two CRF models considered were 0.85 (no in-

teraction terms) and 0.93 (nearest neighbor interactions). These

results suggest that for 5-mC data, the multisite models are

better powered to pick out kinetically varying sites that corre-

spond to chemically modified bases, reflecting that multiple

sites in the neighborhood of a test site can provide information

as to the state of a given site. The interaction terms in the CRF

model do not provide any additional information over the in-

dependent site information captured by the multiple-site models,

and so it is less powered to make detections given the loss of de-

grees of freedom to fit these parameters.

Figure 3C depicts the ROC curves for three different kinetic

rate-variation detection mixture models applied to the M.Sau3AI

data set in unsupervised mode: the single-site exponential mixture

model and two CRF models with different window sizes. To

Figure 3. Detecting kinetic variation events using different models derived from the full CRF model. (A) Plasmid pRRS depicted as a circos plot, with the
inside of the annulus representing the coordinates of the plasmid, the blue hash marks indicating C residues in a GATC context, and the two red curves
representing –log10(P-value) for the single-site likelihood model for the two DNA strands. The P-values are based on 475-fold filtered coverage of the
plasmid genome. In this case, at a 5% FDR threshold, all methylated sites in the GATC context were detected and no other sites outside of the GATC
context were detected. (B) Receiver operator characteristic (ROC) curves for the supervised models described in the text applied to the M.Sau3AI plasmid
and control data, with false-positive rate (FPR) plotted along the x-axis, and true-positive rate (TPR) plotted along the y-axis. The [�1,+1], [�2,+1], [�3,+1],
and [�4,+1] labels in the legend indicate the window size and position with respect to the test site (at 0 in each interval) to which the multisite model was
fitted. (C ) ROC curves for the unsupervised models described in the text applied to the M.Sau3AI plasmid data only. The ROC curves dipping below the
diagonal results from the relatively small number of true positive sites (relative to all sites tested) and that these sites were detected at a lower rate
compared with false-positive sites. (D) ROC curves for the unsupervised models applied to the 8-oxoG data.
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highlight the power difference between the supervised and un-

supervised cases, the single-site exponential model is provided in

Figure 3C for comparison. Interestingly, none of the unsupervised

models performs well at what would otherwise be considered more

than sufficient sequence coverage for this type of experiment

(>10003 coverage of the modified samples). The impact on en-

zyme kinetics in this case may be insufficient to make detections

even with unlimited sample size. To explore this, we simulated

IPDs for all sites for the plasmid sequence such that the IPD dis-

tributions were equivalent to those observed in the M.Sau3AI

set, and then applied the full CRF model, allowing for nearest

neighbor interactions. As we varied the sample size from 100- to

2000-fold coverage, the modified sites could not be identified with

any greater accuracy then we would expect by chance (Supple-

mental Fig. 4A). However, when we increased the effect size

by roughly three times that observed in the M.Sau3AI set, at 2000-

fold coverage we could perfectly identify all modified sites with

no false positives (Supplemental Fig. 4B). In this case, the addi-

tion of the interaction parameters in the CRF model significantly

enhanced the fit of this model to the simulated data set com-

pared with the multisite mixture models that do not include this

term.

To test the unsupervised models further on a modification

type with a much stronger impact on enzyme kinetics, we in-

troduced two 8-oxoG modifications, a common DNA lesion

resulting from reactive oxygen species (Kanvah et al. 2010), in

a 199-bp template, given we had previously observed this modi-

fication type to give rise to significantly longer IPDs compared

with 5-mC (data not shown). In this case, with a bigger effect size,

the unsupervised models performed significantly better than ran-

dom, with the CRF model taking into account multiple sites and

interactions among rate class assignments at these sites out-

performing the single-site mixture model (Fig. 3D; Supplemental

Table 1). Interestingly, beyond the kinetic variation events caused

by 8-oxoG, we observed a significantly increased error rate in the

neighborhood of the 8-oxoG events (Supplemental Fig. 5). In this

case, the errors can also be used to aid in the detection of 8-oxoG

events. Specifically, for each base we counted the number of reads

covering the corresponding position and the number of reads in

which an error was observed near the position (mismatches or

indels). Given these two counts in the control and experimental

groups, we applied a likelihood ratio test based on the binomial

distribution to test whether the error distributions for each site

were similar between the two groups. The tests based on error rates

perfectly coincided with the IPD-based

log-likelihood tests in the 8-oxoG cases

(Supplemental Fig. 5).

Detection of kinetic variation events
in plasmids modified by bacterial
DNA methyltransferases

Detecting kinetic variation events in DNA

templates that have been artificially mod-

ified at specific sites is useful for calibrating

model performance, but does not demon-

strate the utility of formal statistical

models well in detecting such events.

Given the strong performance of the

multisite likelihood model in detecting

kinetic variation events in the M.Sau3AI

data set in the supervised case, we further

explored the pattern of modifications in a plasmid (pRRS) isolated

from EcoK-, dam-/dcm- E. coli cells in which a plasmid expressing

dam had been introduced, a more biologically interesting context

in which to search for kinetic variation events (Clark et al. 2012).

While M.EcoKdam is an enzyme thought to only methylate A

residues in the GATC context, we previously demonstrated that

the specificity of this enzyme for the GATC context is not as high

as we observed with M.Sau3AI (Clark et al. 2012; Supplemental Fig.

6A). DNA from this plasmid was sequenced to high fold coverage

(500-fold or greater). With 24 GATC contexts in this plasmid, all

sites compared with control using the multisite likelihood model

were identified at a 5% false discovery rate (FDR; Supplemental

Fig. 6B). Kinetic variation events corresponding to the expected

modifications in all of the GATC contexts (referred to here as

on-target effects) represented in the plasmid sequence were

detected with 100% accuracy. However, many other detections

were made outside of the GATC context (referred to here as off-

target effects), indicating modifications to bases outside of the

expected target sites (Table 1). We note that the off-target effects

that we observed are highly unlikely to result from sequencing

errors given the random nature of the errors on the PacBio RS

platform and given the high-degree of consensus sequence accu-

racy achieved on this platform (>99.99%) (Rasko et al. 2011; Bashir

et al. 2012).

While there is reduced power to detect kinetic variation

events using the models in an unsupervised fashion, once kinetic

variation events have been identified for specific sites, we can ap-

ply single-site mixture models to assess the fraction of molecules in

a sample that are supported as modified. We applied the single-site

mixture model to all sites listed in Table 1 and, on average, for on-

target effects in which we expected 100% of the GATC sites to be

modified, the 95% confidence interval for the estimate of the

proportion of sites detected as unmodified did not include 0. The

lower bound for the 95% confidence interval for all sites tested was

16% (see Supplemental Table 2 for a full listing of all confidence

interval estimate). This result supports that while M.EcoKdam has

high efficiency in modifying A residues in the GATC context, the

modification rate may not be 100% for all molecules in a given

sample. For the majority of sites associated with off-target effects,

the average lower bound of the 95% confidence interval for the

mixing proportion did not include 0 and ranged between 5% and

15%, indicating that the efficiency with which M.EcoKdam mod-

ifies A residues outside of the GATC context is similar when such

sites are detected as modified. As shown in Table 1, many of the off-

Table 1. Pattern of kinetic variation events for motifs that differ from the GATC motif by only
a single nucleotide, detected at the 5% FDR level in plasmid pRRS isolated from dam-/dcm-
E. coli cells in the absence of all methyltransferases except for M.EcoKdam

Context
[�1, +2]

# Sites detected
at 5% FPR on
light strand

# Sites detected
at 5% FPR on
heavy strand

% Detected out
of all such sites

in genome

# Detected sites
with mix prop. 95%

C.I. excluding 0 and 1

GATC 23 (23) 23 (23) 100% (46/46) 46
TATC 16 (21) 12 (15) 78% (28/36) 13
GACC 6 (6) 11 (11) 100% (17/17) 16
CATC 9 (17) 7 (9) 62% (16/26) 8
AATC 6 (7) 9 (11) 83% (15/18) 10
GATA 3 (15) 11 (21) 39% (14/36) 5
GATT 7 (11) 4 (7) 61% (11/18) 6
GAGC 1 (1) 6 (26) 26% (7/27) 4
GATG 1 (9) 2 (17) 12% (3/26) 1
GTTC 1 (15) 1 (12) 7% (2/27) 2
GAAC 2 (12) 1 (15) 11% (3/27) 2
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target effects are associated with sequence contexts that differ at

only a single base position from the GATC context.

Detecting kinetic variation events in mtDNA sequences

The M.Sau3AI, 8-oxoG, and M.EcoKdam data sets involved sce-

narios in which the type of modification and sites affected were

known a priori. To explore the extent of kinetic variation in DNA

isolated from a more natural setting, we sequenced mtDNA iso-

lated from mitochondria extracted from human postmortem brain

tissue. The mitochondrial genome encodes 13 polypeptides re-

quired for electron transport and oxidative phosphorylation,

along with rRNA and tRNA required for their translation. Lesions

in mtDNA, like 8-oxoG, have been shown to occur and to affect

gene function (Saxowsky et al. 2008) and are postulated to play

a role in human brain aging as well as the development of vari-

ous neurodegenerative diseases (Beal 2005). The mtDNA was se-

quenced to high fold coverage (>500-fold) and, again, kinetic

variation events were detected using the multisite likelihood

model. We identified 302 kinetic variation events at a 5% FDR in

the mtDNA sample, with 172 detections occurring on the heavy

strand encoding 22 of the 37 mtDNA genes versus 130 detections

occurring on the light strand (Fig. 4A; Supplemental Table 3),

representing ;1% of the mitochondrial genome. Interestingly,

G residues were 2.01-fold more likely to be identified as modified

than we would expect by chance (given the proportion of G resi-

dues in the mtDNA genome), while A and T residues were 2.5- and

1.7-fold, respectively, less likely to be detected as kinetically vary-

ing compared with what would be expected by chance (Supple-

mental Table 3).

Figure 4. Kinetic variation events detected in the mitochondrial genome. (A) The bottom left circular plot is an annotation of the mitochondrial genome
with respect to the genes found on the heavy and light strands. The larger circular plot indicates the –log10 P-values for each position tested on the
mitochondrial genome, with inside and outside of the circle representing the heavy and light strands, respectively. (B) Putative 8-oxoG event detected at
position 4186 in the mitochondrial genome (heavy strand). (Left) The IPDs values are shown for six molecules from the neuronal mtDNA sample, with each
molecule read five to 10 times within individual SMRTbells for each molecule. The color coding reflects the IPD value, with dark blue indicating IPDs <0.5
sec and dark red indicating IDPs >3.0 sec. Molecules 1–3 indicate highly variable IPDs with long IPDs represented, expected if the IPD distribution is
exponentially distributed with a high IPD mean. Molecules 4–6 have significantly lower IPD values compared with molecules 1–3. These data suggest that
molecules 1–3 are modified at this position compared with molecules 4–6. (Right) The mean IPD computed for each position within each molecule. The
mean values at the highlighted test position are clearly different between molecules 1–3 and molecules 4–6, indicating why this site was detected as
a kinetic variation event. None of the sites within 10 bases of this test site were detected as kinetic variation events. (C ) DNA samples with (right) and
without (left) evidence of modification were treated with a glycosylase to create single-strand breaks at oxidatively modified positions. The samples were
PCR amplified before and after treatment to demonstrate the degree of modification. First-derivative plots of the amplification are shown.

Schadt et al.

136 Genome Research
www.genome.org



Identification of putative 8-oxoG events in mtDNA

To determine whether the overrepresentation of G residues

detected as kinetically varying could be due to 8-oxoG, we tested

for increased rates of error using the error-based loglikelihood ratio

test described above at the G residues detected as kinetically

varying. G residue sites supported as significantly kinetically

varying and with significantly increased error rates are prime

candidates for 8-oxoG events. Of the 141 sites with a G residue

detected as kinetic variation events, 12 were also detected as sites

enriched for increased rates of sequencing error (Supplemental

Table 3). Supplemental Figure 7 highlights an example of a pu-

tative 8-oxoG event discovered from the mtDNA sample, with

the G base of interest having significantly longer IPDs and error

rates compared with controls, similar to what we observed for

the 8-oxoG events in the artificial template. Figure 4B shows one

putative 8-oxoG event detected at position 4186 in the mito-

chondrial genome (heavy strand), which was further predicted

by the unsupervised mixture model to have partial modification.

The high variability of the signal depicted in this figure well illus-

trates the utility of a formal statistical model that takes variability

into account in assessing significance. Increased modification

at this site was confirmed using a PCR-based technique that

detects the difference in the sensitivity of template DNA to treat-

ment with 8-oxoG glycosylase. The sample with a predicted

modification at position 4186 had a 10-fold (0.101 6 0.09) re-

duction in amplification after glycosylase treatment when com-

pared with a control sample in which no kinetic variation was

detected (Fig. 4C).

Kinetic variation events at A residues

Given the detection of 34 kinetic variation events at A residues,

and that A residues are not known to be modified in the mtDNA,

we explored whether the data that supported those events are

specific to the A residues where detections occurred. One reason

these sites may be detected is that they are adjacent to other sites

that are modified and that cause shifts in IPDs of the neighboring

bases that include A residues. To focus on the sites that are unlikely

to be affected due to neighboring modification events, we selected

14 sites (from the 34) that were greater than 20 bases from the

nearest neighboring kinetic variation event, far greater than the

range we have detected for any modification type (Flusberg et al.

2010; Supplemental Table 4). These 14 confident modifications of

A residues could result from 8-oxo-A events (similar to 8-oxoG) or,

less likely, from 6-mA events. While there is no literature support

for 6-mA modifications being detected in human mtDNA, we do

note that 6-mA events that we detected in the M.EcoKdam plasmid

(Supplemental Fig. 6) were always most strongly detected at the

A residue, consistent with our observations in the mtDNA genome.

While the kinetic variation data on its own cannot resolve the

modification type, the data do support that the A residues in these

cases are modified in some way.

To experimentally validate whether KVEs at A residues are

supported as 6-mA events, we rank ordered all 34 KVEs at A residues

by –log10 (P-value) and selected the top 12 most significant KVE that

were not within 6 bp of another KVE (Supplemental Table 5). Given

the very strong dependence of local sequence context on IPDs (Fig.

2A,B) and the fact that modifications to bases change this context,

we synthesized three 50-mer oligos for each of the 12 sites. Each

oligo represents the local sequence context for the corresponding

KVE site, with the 10 bases flanking the KVE site identical to the

corresponding sequence in the mtDNA (Supplemental Table 5).

The three oligos for each KVE differed at the KVE site, with one

oligo harboring a standard A base at the KVE site (A oligos), an-

other harboring a 6-mA base at the KVE site (6-mA oligos), and

another harboring an 8-oxoA base at the KVE site (8-oxoA oligos).

We then sequenced each of the oligos and generated kinetic

variation signatures for the 6-mA and 8-oxoA oligos by compar-

ing them with the A oligos. The 6-mA and 8-oxoA oligo kinetic

signatures were then compared with the kinetic signature ob-

served in the mtDNA for each site. The overall pattern was clear,

with the 6-mA oligo kinetic variation signature most closely

matching the observed mtDNA signature, while the 8-oxoA oligo

kinetic signature was observed to give rise to secondary peaks that

were not observed in the 6-mA oligo and mtDNA kinetic variation

signatures (Supplemental Fig. 8).

Discussion
We have developed and applied a number of modeling techniques

to third generation DNA sequencing data to detect kinetic varia-

tion events in these data that correspond to chemical modification

of bases in the DNA sequences. Not only are these methods capable

of detecting modifications with a high degree of sensitivity and

specificity when fold coverage is high, but models like the CRF are

capable of estimating the percentage of molecules within a given

sample that harbor modifications at a given site, providing quan-

titative information on modification states that can in turn be

associated with gene activity, protein states, disease status, genetic

loci, or other biologically interesting covariates of interest. We

note that the kinetic variation events are detected from SMRT

sequencing data generated as part of routine sequencing, without

any modifications required to the standard sequencing protocols

for the PacBio RS platform. Further, we note that while the mod-

eling approaches developed here were applied to the only com-

mercially available third-generation DNA sequencing instrument

available at the time this manuscript was written (the PacBio RS)

(Schadt et al. 2010), we anticipate that this approach will be ap-

plicable to all single molecular sequencing technologies. Our

model is predicated on being able to observe rate information as-

sociated with individual DNA (or RNA) molecules as they are

processed. A recent demonstration of single-nucleotide resolution

nanopore sequencing highlighted the ability to detect base mod-

ification (Manrao et al. 2012), supporting that detection of base

modifications will likely be a feature of all emerging nanopore-

based technologies.

The objective, data-driven fashion with which putative mod-

ification events can be detected from the kinetic and error rate

variations is unprecedented, given no a priori assumptions need to

be made as to the type of modification desired to be detected. Not

only does this approach provide a way to understand the extent of

such variations in genomes, but it provides the data necessary to

associate these events with other biological information to un-

derstand the functional consequences of the chemical modifica-

tions to the bases. This advantage was well highlighted in the case

of the pRRS plasmid in which N6-methyladenine events were not

only detected in the expected GATC context, but in unexpected

contexts as well (Table 1), like GACC, providing direct experi-

mental support that the M.EcoKdam enzyme is more promiscuous,

affecting many more sites than previously believed, and so pro-

viding for the possibility of far more extensive influence on gene

regulatory activity. In the case of GACC, the predictions of the

A sites being modified are supported experimentally using methyl-

sensitive restriction digests (Clark et al. 2011). Similarly, the many
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detections made in the brain mtDNA genome opens the door for

a completely novel form of DNA variation information to be as-

sociated with biologically relevant traits like gene expression,

metabolite levels, disease-associated traits, and disease status. The

extensive kinetic variation events uncovered in the mitochondrial

genome can be scored in population-based mtDNA samples to test

for association to DNA variations, or the mixing proportions of

these events can be treated as a quantitative trait for which

quantitative trait loci can be mapped.

The modeling presented herein should be considered as a first

step in leveraging the extensive kinetic information provided

by SMRT sequencing to uncover information that heretofore

has been hidden from view. Exploring how spatial interactions in

a given local context change as a function of the context will

be important for maximizing the power to make detections. As

more and more sequence information is generated under different

conditions, it may be possible to define the neighborhood size

that the DNA polymerase is sensitive to regarding the kinetics.

Once all contexts are understood, baseline models can be estab-

lished for all contexts and the detection of kinetic variation events

will simply be a matter of comparing the IPD patterns for a given

observed context against the baseline model constructed for that

context. In addition, because the DNA polymerase enzyme is so

exquisitely sensitive to local sequence context in the DNA template

being synthesized, where modification events represent changes in

the local sequence context, this type of data will be very useful in

reducing error rates in the sequencing process, since kinetic patterns

will be context specific.

Methods

Forming and computing the CRF likelihood function
In order to detect kinetic variation events at a specific site of in-
terest, we must model the IPDs for that site, as well as neighboring
sites, where we assume the assignment of rate classes between sites
is not necessarily independent. Conditional random fields enable
an explicit representation of dependencies between sites (Fig. 2C)
in addition to an explicit parameterization of the distribution of
IPDs at sites of interest, and so this approach was chosen as a very
flexible modeling approach for this problem. Toward this end, for
a given read in the alignment covering a position of interest, we can
form the likelihood that the different IPDs corresponding to the
different base positions in the read were sampled from a given rate
class vector, by assuming the random rate class vector is distributed
as a Gibbs random field, which assigns the prior probability

Pr C ¼ c j Ið Þ ¼ eH cð Þ

+
d

eH dð Þ ;

for the realization C ¼ c given the observed interpulse duration
matrix I, where H is the potential function (for notational sim-
plicity we have omitted the usual minus signs in the definition of
potentials and priors), and +deH dð Þ is the partition function con-
sisting of a multiple sum extending over all vectors d ¼ d1; :::; dNf g
drawn from the N-fold Cartesian product of 0; :::;R� 1f g.

Without loss of generality we assume that the IPDs are ex-
ponentially distributed (a reasonable assumption given nucleotide
incorporation is well modeled as a Poisson process) (Eid et al.
2009), so that for a given rate assignment over a given sequence, n,
the IPD likelihood is given by

F c1; :::; cN ; IPDn1
; :::; IPDnN

ð Þ ¼
YN
j¼1

lcj
e
�lcj

IPDnj ;

and then over all M reads in the alignment this likelihood can be
written as:

F c; Ið Þ ¼
YM
i¼1

YN
j¼1

lcj
e
�lcj

IPDij ;

where c is the rate class vector and I is the matrix of IPD values
IPDij

� �
.

Now, we are in a position to compute the full likelihood that
includes rate variation over all sites and that considers all possible
rate assignments:

L ¼ 1

+
d

eH dð Þ +
c1

:::+
cN

F c1; :::; cN ; Ið ÞeH c1 ;:::;cNð Þ;

where the ci are the rate class variables taking on rate class values
0; :::;R� 1f g that correspond to the rate parameters for a given site.

At this level of generality it is not possible to suggest an efficient
method of evaluating L. However, once we limit the extent of spatial
interaction among the sites, evaluating the likelihood becomes
straightforward. Because we want to allow the rate classes at differ-
ent sites to be correlated, we propose a simple potential function:

H cð Þ ¼ +
N

i¼1

+
R�1

j¼0

mj1 ci¼jf g þ +
n�1

i¼1

+
min k;n�if g

j¼1

uj1 ci¼ciþjf g;

for a linear logistic model in which interactions extend over the k
nearest neighbors. Here mj accounts for the proportion of sites in
class j, and the vector uj accounts for the spatial interaction over
a distance. The indicator function 1D equals 1 when condition D is
true and 0 otherwise. Positive values of uj favor positive interactions
between sites and induce clumped rate class assignments. Negative
values of uj favor negative interactions and induce alternating rate
class assignments. The full likelihood is then written as

L ¼ 1

+
d

eH dð Þ +
c1

:::+
cN

YM
l¼1

YN
i¼1

lci
e�lci

IPDil emci

 ! Yk

j¼1

YN�j

i¼1

e
uj1

ci¼ciþjf g
0
@

1
A:

We obtain estimates for the parameters in this likelihood
model using standard maximum likelihood techniques.

Preparing and sequencing DNA from plasmids
and mitochondria

Synthetic template with 8-oxoG

A custom DNA template 199 bp in length was used to characterize the
performance of the different statistical models in detecting 8-oxoG
modifications.

AAAGAGAGAGAGAAGTGCACGGTCGATCAAGTACAGATC
ATGCGTTGCACGGTCGATCAAGTACAGATCATGCGTCGGGCT
CGGAACTTTCGTTCCGAGCCCGACGCATGATCTGTACTTGAT
CGACCGTGCAACGCATGATCTGTACTTGATCGACCGTGCACT
TCTCTCTCTCAACAACAACAACGGAGGAGGAGGA.

The 8-oxoG modifications were incorporated at positions 54
and 69 in this DNA template by Trilink BioTechnologies. The
template DNA was then prepared for sequencing as described be-
low for the 6-mA synthetic oligonucleotides.

Preparation of the plasmid DNA samples

Ligation products were used to transform NEB-Express E. coli (or
NEB dam-/dcm- E. coli in the case of the M.Sau3AI ligation) and
recombinant plasmid DNAs were isolated from ampicillin-resistant
transformants, and the presence of inserts of the expected size was
confirmed by restriction analysis. Plasmids were then used to
transform ER2796, also called DB24, a strain that lacks all known E.
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coli MTase genes (Kong et al. 2000). Plasmid DNAs were reisolated
from ER2796 cells and their methylation status was assessed by
restriction with PstI plus the relevant cognate restriction endonu-
clease in the case of the construct containing M.Sau3AI. The
construct containing the gene encoding M.EcoKdam, was assessed
by restriction with PstI plus the MboI endonuclease. Unmethyl-
ated control substrates for each construct were produced by PCR
amplification (using Phusion-HF polymerase) of the complete
plasmids—using oligonucleotide primers that anneal to opposite
strands of the vector DNA at a position 18 nt 59 of the vector SbfI/
PstI site. Control substrates were restricted with the same enzymes
as the methylated plasmids but without PstI.

Preparation of mtDNA samples

The mtDNA sample was isolated from the cerebellum of a subject
using a previously described method specifically designed for
synaptosomal preparations (Dunkley et al. 2008) and for DNA
preparation from the mitochondria that were isolated (Strauss
2001). These samples and patient data were handled in accordance
with the policies and procedures established at the University of
Pennsylvania. An aliquot of ;25 ng of mitochondrial DNA was
whole-genome amplified (WGA) using the REPLI-g Midi Kit
(Qiagen) to erase DNA modifications. WGA and native plasmid
and mitochondrial DNA were sheared to an average size of 300 bp
via adaptive focused acoustics (Covaris). For the native mtDNA
samples, a small amount of lambda DNA was spiked in as a control
for the sample preparation and sequencing processes. After ap-
plying a local perfect-match filter over the range (�7:+2) for each
test site, the average coverage in the native and control data was
953 and 2303, respectively.

Confirmation of DNA-modification by qRT-PCR

DNA modification was confirmed by comparison of amplification
over a modified position before and after treatment with 8-oxo-
guanosine glycosylase (FPG, New England Biosciences) as pre-
viously described (Lu et al. 2004). DNA from samples (1 ng) with
and without predicted modification were incubated in the pres-
ence or absence of 4U FPG. DNA was amplified with forward
(m.4145–4164) and reverse (m.4246–4227) primers. Amplification
was monitored by real-time PCR (Applied Biosystems). The post-
treatment crossing-threshhold was compared with the pre-
treatment amplification for both samples and quantitated in DDCt

mode.

Construction of sequencing libraries and SMRT sequencing

With the DNA prepared from plasmids and mitochondria, SMRTbell
sequencing libraries were prepared as previously described (Travers
et al. 2010). Briefly, sheared DNA was end repaired, A-tailed, and
hairpin adapters with a single T-overhang were ligated. Incom-
pletely formed SMRTbells were degraded with a combination of
Exonuclease III (New England Biolabs) and Exonuclease VII (USB).
Primer was annealed and samples were sequenced on the PacBio RS
as previously described (Korlach et al. 2010; Chin et al. 2011).

Constructing synthetic oligonucleotides with 6-mA
modifications

Custom oligonucleotides containing modified bases were pur-
chased from Trilink BioTechnologies and Integrated DNA Tech-
nologies. All oligonucleotides contained 59 phosphate groups.
SMRTbell templates were generated by ligating several synthetic
oligonucleotides. Complementary and hairpin oligonucleotides
were annealed by heating to 80°C for 2 min and slowly cooling to
25°C (0.1°C/sec) in 10 mM Tris (pH 7.5), 100 mM NaCl. Annealed

oligonucleotides were ligated using T4 DNA Ligase (NEB) for 60
min at 25°C, followed by heat kill for 10 min at 65°C. Incompletely
formed SMRTbell templates were degraded with a combination of
Exonuclease III (NEB) and Exonuclease VII (USB) at 37°C for 30
min. SMRTbell templates were purified using QIAquick PCR Puri-
fication columns (Qiagen).

Data processing

SMRT Sequence data

Reads were processed and mapped to the respective reference se-
quences for each reference sequence (artificial template, plasmid,
or mtDNA) using the BLASR mapper (http://www.pacbiodevnet.
com/SMRT-Analysis/Algorithms/BLASR) and the Pacific Biosci-
ences SMRTAnalysis pipeline (http://www.pacbiodevnet.com/
SMRT-Analysis/Software/SMRT-Pipe) using the standard map-
ping protocol. Inter-pulse durations (IPDs) were measured as
previously described (Flusberg et al. 2010) for all pulses aligned to
each position in the reference sequence. For each group, WGA
control versus native as described in the main text, we removed the
boxplot outliers at each reference position. Each IPD, measurement
was replaced by log(IPD + 0.01), and from each of these values we
subtracted the mean for the corresponding subread. IPD ratio plots
were visualized using Circos (Krzywinski et al. 2009).

Application of single and multisite models in the supervised case

For the single-site models, the likelihood under the null is nested in
the likelihood under the alternative hypothesis. The null model
assumes that the IPDs are sampled from a single-rate distribution,
whereas the alternative model assumes they are sampled from two
different rate distributions. When using a lognormal model for the
IPD distributions, we used a pooled estimate of the variances for
both the null and alternative models. The nonparametric test
statistic was computed using the Kruskal-Wallis test with two
groups. The theoretical distribution for all three single-site test
statistics is x2 with a single degree of freedom under the null
hypothesis.

For the multisite likelihood model assuming independence
between the sites, and for a given test position t of interest, the
likelihood was found by summing up the exponential single-site
test statistics in the window [t – u, t + d]. The theoretical distribu-
tion for the multisite test statistic over a window [�u, +d] is x2 with
u + d + 1 degrees of freedom. In the case of the partially supervised
CRF, the window sized used was [�1, +1]. In this case, as in the
single-site likelihood model case, the likelihood corresponding to
the null hypothesis is nested within the likelihood corresponding
to the alternative hypothesis. For the null model, the interaction
terms are constrained to be 0, while in the alternative model they
are allowed to vary. We refer to this model as partially supervised
because it is assumed that the rate class for the first base in the
window is known. In the ROC curve plots, the curve labeled Par-
tially Supervised CRF [�1, +1] was obtained by taking the test
statistics found for the partially supervised CRF and then summing
them over a window of size [�1, +1], just as in the computation of
the multisite test statistics. For this curve, the test statistic at po-
sition t includes information from a window of size [t – 2, t + 2]. We
explored the use of different window sizes but found the results
were not very sensitive to the selection of larger window sizes (data
not shown).

Application of the CRF and derived models in the unsupervised case

For the unsupervised cases, the data were preprocessed as described
above to normalize and remove outliers. For each reference posi-
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tion t, we retained only those subreads that had an IPD measure-
ment available for each position in the window [t – 2, t + 1]. The
asymmetric nature of this window size reflects that the DNA
polymerase is more sensitive to the nucleotide composition up-
stream of the test position compared with the downstream nu-
cleotide composition. Extending the window size for the data
presented herein did not significantly enhance the power to make
detections (data not shown).

The single-site mixture model under the null assumes a sin-
gle-rate distribution at the test site, just as in the supervised case.
The model for the alternative hypothesis assumes that the IPDs at
the test position are sampled from two rate distributions. The null
model is nested within the alternative model, and so the test of
hypothesis was carried out using a standard loglikelihood ratio
test.

For the CRF models, the curve labeled as CRF0 in the ROC
curve plots is essentially the unsupervised analog of the multisite
model described for supervised detection and can be found by
summing the mixture model statistics over a window [�2, +1]. The
CRF statistic (labeled as CRF1 in Fig. 3C,D) is also computed from
a nested loglikelihood ratio test. The null model assumes that the
IPDs at the test position are sampled from a single exponential rate
distribution. The alternative model is found by fitting the CRF
model described in the main text to the data using standard
maximum likelihood techniques. In this case, under the alterna-
tive hypothesis, the model contains parameters for the rates,
mixing proportions, and interaction terms.

To compute confidence intervals for the mixing proportions
estimated in the unsupervised single-site likelihood model and in
the CRF model, we case resampled 100 times to obtain standard
error (SE) estimates. Assuming that the estimates would be ap-
proximately normally distributed, we estimated a lower/upper
bound on the 95% confidence interval using 61.96 SE.

The CRF and related models were all implemented in the
software package R version 2.12; all code is available upon request.

Generating ROC curves

To generate the ROC curves shown in the main text and Supple-
mental figures, we randomly selected 25,000 subreads, fit the
models as described, and then counted the number of true posi-
tives and the number of false positives for a range of P-value
thresholds. This process was repeated 15 times and the results were
averaged together.

Data access
The raw sequence data and alignments for the raw reads for the
199-bp DNA template with 8-oxoG modifications, the M.EcoKdam
and M.Sau3AI plasmids, and the human mtDNA have been
deposited in the NCBI Sequence Read Archive (SRA) (http://
www.ncbi.nlm.nih.gov/sra) and are available under accession
number SRA058893. In addition, all data are also available at http://
www.pacbiodevnet.com/Share/Datasets/CRF-for-Base-Modification.
A description of the data formats, software tools to manipulate
these data formats, and all R code implementing the statisti-
cal models described herein can also be found at http://
www.pacbiodevnet.com.
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