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Introduction
Multiple studies have found an association between ambient 
PM2.5 and mortality, including cardiovascular and lung-can-
cer mortality following both acute1,2 and chronic3–7 exposure. 
These associations have also persisted below the current PM2.5 
standard of 12 µg/m3.8,9 Furthermore, there is evidence that race 

is a modifier of this relationship.8,10 One criticism of previous 
studies on this topic; however, is that they are observational, 
and although they adjust for confounding, inferring causality is 
more difficult.

Causal modeling, by contrast, seeks to make data from an ob-
servational study closely approximate that from a randomized 
controlled trial whose causal interpretation is widely accepted. In 
epidemiology, causal methods for eliminating confounding bias, 
such as standardization and inverse probability weighting, make 
the assumption of exchangeability; which is that conditioning on 
all confounders renders the exposed exchangeable with the un-
exposed.11 Another approach to control for confounding bias 
via methods such as instrumental variables, regression disconti-
nuity analyses, difference in differences, and natural experiments 
relies on the exclusion restriction assumption.12 This assumption 
assumes that an event/variable is causing variation in exposure that 
is not associated with any measured or unmeasured confounders.

There are several examples of natural experiments (i.e., events 
that lead to variation in exposure) that have been used to study 
the effects of air pollution. One example is a study by Pope et al13 
which took advantage of the sudden reductions in PM10 in Utah 
valley when a steel mill closed in order to look at the changes in 
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Abstract: The association between PM2.5 and mortality is well established; however, confounding by unmeasured factors is 
always an issue. In addition, prior studies do not tell us what the effect of a sudden change in exposure on mortality is. We con-
sider the sub-population of Medicare enrollees who moved residence from one ZIP Code to another from 2000 to 2012. Because 
the choice of new ZIP Code is unlikely to be related with any confounders, restricting to the population of movers allows us to have 
a study design that incorporates randomization of exposure. Over 10 million Medicare participants moved. We calculated change 
in exposure by subtracting the annual exposure at original ZIP Code from exposure at the new ZIP Code using a validated model. 
We used Cox proportional hazards models stratified on original ZIP Code with inverse probability weights (IPW) to control for indi-
vidual and ecological confounders at the new ZIP Code. The distribution of covariates appeared to be randomized by change in 
exposure at the new locations as standardized differences were mostly near zero. Randomization of measured covariates suggests 
unmeasured covariates may be randomized also. Using IPW, per 10 µg/m3 increase in PM2.5, the hazard ratio was 1.21 (95% con-
fidence interval [CI] = 1.20, 1.22] among whites and 1.12 (95% CI = 1.08, 1.15) among blacks. Hazard ratios increased for whites 
and decreased for blacks when restricting to exposure levels below the current standard of 12 µg/m3. This study provides evidence 
of likely causal effects at concentrations below current limits of PM2.5.

 This is an open access article distributed 
under the Creative Commons Attribution 
License 4.0 (CCBY), which permits unre-
stricted use, distribution, and reproduction 
in any medium, provided the original work 
is properly cited.

What this study adds
To our knowledge, this is the first study looking at the effect of 
change in PM2.5 exposure due to moving on risk of mortality. 
Our findings, which used Medicare data, show that per 10 µg/
m3 increase in exposure, the hazard rate was 1.21 among white 
movers and 1.12 among black movers. Associations persisted 
below current limits of PM2.5. Key strengths of our analysis are 
that we studied the entire national Medicare population who 
moved, including people living in smaller towns and rural areas 
that have been underrepresented in most cohort studies and the 
use of causal modeling techniques.
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hospital admissions. The study found that, relative to the time 
during closure, during mill operation these admissions doubled 
among children and increased by 47% among adults. More re-
cently, a article by Currie and Walker14 looked at the effect of 
reductions of traffic pollution due to the staggered introduction 
of electronic toll collection (which was effectively random), and 
found reductions in premature births and low infant birth weight 
among women living within 2 km of each toll booth.

These events are rare and it may be difficult to capture the effects 
without prior knowledge of their occurrence. An easier way to cap-
ture the effects of a sudden change in exposure was demonstrated 
by Avol et al.15 In this study, the authors looked at the effect of 
change in PM10 exposure on lung function among the child partic-
ipants of a longitudinal prospective cohort who moved during the 
study. They found that those who moved to a location with higher 
exposure showed decreased growth in lung function and vice versa.

This is an especially interesting approach because restricting 
an analysis to people who move allows us to study the effect 
of sudden change in exposure (given that the exposure at the 
new residence is different). This is rarely observed among people 
who do not move as year-to-year exposures at the same location 
are highly correlated.

Additionally, if we assume that, conditional on the decision 
to move, the choice of a new residence is independent of air pol-
lution, then post-move exposure is uncorrelated with measured 
and unmeasured covariates that cause mortality, a causal effect 
can be estimated. We believe this assumption is reasonable for 
most confounders because movers are generally unaware of the 
PM2.5 concentrations at the locations they consider moving to.

In this article, we applied 3 approaches to addressing causal 
modeling. First, we looked at the change in exposure between old 
and new ZIP Code as our exposure under the assumption that the 
change is independent of measured and unmeasured confounders. 
Second, we stratified our analysis on old ZIP Code, so that all con-
founders. Measured or unmeasured, that exist on the neighbor-
hood level are controlled, including past exposure. And finally, we 
used a propensity score model for individual level and ZIP Code 
level covariates at the new ZIP Code to create inverse probability 
weights to control for those potential confounders after the move.

We explored the assumption that moving leads to exposure ran-
domization by comparing the distribution of confounders by change 
in exposure among people who moved. We carried out this analysis 
separately among persons with white and black race (herein referred 
to as whites and blacks) due to the aforementioned effect modi-
fication by race and because residential segregation in the United 
States makes it difficult to balance some neighborhood covariates 
when both races are combined. To examine effects at lower concen-
trations, we performed an additional analysis restricted to persons 
with exposure at their new ZIP Code of 12 µg/m3 or lower.

Methods

Study population

We extracted records from a database of all Medicare enrollees 
(ages 65 and over) from 2000 to 2012 residing in the contiguous 
United States. We identified 12,131,927 movers (persons whose 
ZIP Code had changed at least once at any time during the study 
period), and after excluding 36,409 persons missing race and 
14 with unknown gender, we were left with 12,095,504 people.

Covariates

Age, race, sex, and ZIP Code of residence were available for 
enrollees, in addition to whether the participant was eligible for 
Medicaid, a supplemental coverage for low-income individuals 
which is an indicator of socioeconomic status. We used ICD-9 
discharge diagnoses to identify whether or not an enrollee had 
been hospitalized with the following conditions as a primary 

or secondary cause before they moved: Alzheimer’s disease, 
acute myocardial infarction, diabetes Mellitus, heart failure, 
Parkinson’s disease, pneumonia, other respiratory diseases, is-
chemic stroke, unstable angina, vascular dementia, chronic ob-
structive pulmonary disease and lung cancer.

Additionally, we obtained ZIP Code level variables from 
the American Community Survey and the 2000 and 2010 U.S. 
Census. These include median household income, population 
density, percentage black, percentage of owner-occupied housing 
units, median value of owner-occupied housing, percentage above 
age 65 living below the poverty level, and percentage above age of 
65 with less than high school education. We linearly interpolated 
any missing values that occurred between 2 years.

Exposure assessment

Mean annual exposure to PM2.5 for each enrollee at his/her res-
idential ZIP Code for each year between 2000 and 2012 was 
estimated using a neural network based hybrid prediction model 
which is described in detail elsewhere.16 In brief, the model used 
data from multiple sources including predictions of the chemical 
transport model GEOS-Chem, meteorological data and land-use 
terms in addition to satellite-based aerosol optical depth, surface 
reflectance, and absorbing aerosol index data. These variables were 
used to train a neural network to United States Environmental 
Protection Agency (EPA) Air Quality System monitoring data 
from the continental United States in order to generate daily PM2.5 
predictions on a 1 × 1 km grid. The model showed good perfor-
mance with ten-fold cross validation yielding an R2 of 0.84.

Daily predictions were generated and then averaged over the 
calendar year for the 4 grids closest to the centroid of the ZIP 
Code of residence. A mover’s ZIP Code of residence for each cal-
endar year was provided in the Medicare dataset but the exact 
date of move within the year was not available. It was there-
fore unclear what proportion of the calendar year was spent at 
the new ZIP Code versus the ZIP Code of original residence. In 
order to avoid exposure misclassification, we excluded the first 
year at the new ZIP Code and began our analysis in the second 
calendar year at the new ZIP Code. This reduced the sample to 
10,679,150 individuals. Of these, about 9 million were white 
and about 900,000 were black.

Change in exposure was calculated by subtracting the mean 
annual exposure in the last year at the old ZIP Code from the 
mean annual exposure in the first full calendar year at the new 
ZIP Code. We opted to use the difference in mean annual ex-
posure because we wanted to focus on the effect of change in 
exposure on change in mortality risk.

Statistical methods

We first checked if moving randomizes exposure by examining 
whether movers who experienced change in exposure greater 
than the median were exchangeable with those who saw a 
change exposure less than the median. We did this by calcu-
lating standardized differences in both individual and ZIP Code 
level covariates (measured at the new ZIP Code) among these 2 
exposure groups. The standardized differences were estimated 
using the equations proposed by Austin.17
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The standardized differences in continuous confounders 
(equation 1) and means of dichotomous confounders (equation 
2) were calculated among blacks and whites separately. This 
was repeated for change in exposure above and below the 90th 
percentile.

To deal with potential confounding by covariates at the new 
ZIP Code, we fit a propensity score model to estimate inverse 
probability weights (IPW). Inverse Probability Weighing is a 
method that allows for the estimation of causal effects from ob-
servational data by applying weights to the population so that the 
exposure is no longer associated with confounders. These weights 
are the inverse conditional probabilities of exposure given the 
covariates. Since we have a continuous exposure, we used a gen-
eralized propensity score model to calculate these conditional 
probabilities.18 We opted to use stabilized weights as the unstabi-
lized weights for continuous exposures can have infinite variance 
and are therefore unusable.11 Weights were stabilized using the 
marginal probability of exposure as a numerator as follows:

SW =
f PM

f PM | L'i
2.5,� i

2.5,� i

∆
∆
 

[ ]

where SWi  is the stabilized inverse probability weight for 
the ith mover, f PM i∆ 2 5. ,

 is the marginal density function of 

change in exposure evaluated at the observed change in expo-
sure for the ith mover, f PM Li[ | ]. ,∆ ′2 5  is the conditional density 
function of change in exposure where the vector of covariates is 
denoted by the vector L′, evaluated at observed covariate values 
for mover I.

Specifically, the numerator of the weights was estimated with 
an intercept only model:

∆ αPM = + e2.5,� i i

In order to estimate the denominator, we fit the following gen-
eralized propensity score model (among whites and blacks sep-
arately) which contains both individual and ZIP Code level 
covariates:

∆ β β β β β γ δPM �� Age � Sex Medicaid Year X' Z' �2.5,� i 0 1 2 3 4= + + + + + + +′ ′ eei

where ∆PM i2 5. ,  is the ith mover’s change in PM2. 5 exposure 
(mean annual PM2.5 in second calendar year at new ZIP Code – 
mean annual PM2.5 in year before move); Age is the participant’s 
age in the first year after move; Sex is the participant’s sex; 
Medicaid is an indicator variable for eligibility for Medicaid 
coverage, and a proxy for lower socioeconomic position (SEP); 
Year  is an indicator variable for calendar year k; γ ’  is a vector 
of coefficients; ′X  is a vector of indicator variables for hospi-
talization for any of the 13 conditions mentioned above if they 
occurred before the move; ′δ  is a vector of coefficients; Z’  is a 
vector of the following socioeconomic variables at the new ZIP 
Code: % black residents, % Hispanic residents, median house-
hold income, median house value, % occupants who own home, 
population density, % aged over 65 below poverty level and % 
aged over 65 with no high school education.

As illustrated by Hirano and Imbens19 the residuals of this 
model can be used to estimate the conditional probability of 
exposure. Conceptually, because the residuals represent the var-
iance in exposure that cannot be explained by covariates, the 
distribution of the residuals of this model represents the prob-
ability density of receiving the exposure each subject got, given 
the values of the covariates.

We included hospital admissions before move in our model, 
as we believe that poor health is a potential confounder of the 
relationship between change in PM2.5 exposure and mortality.

To ensure that the model was correctly specified, we checked 
the distribution of the continuous variables and log-transformed 

those that appeared log normal (median household income, me-
dian house value, and population density). We also used splines 
for the following continuous variables: age, % aged over 65 
below poverty level, % aged over 65 with no high school educa-
tion and % black residents. Finally, we added interaction terms 
for dual eligibility, calendar year, and gender.

To avoid the assumption that the residuals are normally dis-
tributed, we used a kernel density estimator on the residuals of 
both models in order to model the density functions of the mar-
ginal and conditional probabilities of exposure, and then calcu-
lated the marginal and conditional probability of exposure for 
each mover and divided one by the other. The optimal smooth-
ing bandwidth was selected based on obtaining “well-behaved 
weights” (mean = 1, small range).

In order to avoid the use of over-inflated weights,20 we 
assigned the 99th percentile weight to any weights at the 99th 
percentile or greater and the 1st percentile weights to any 
weights at the 1st percentile or lower.

We then estimated the effect of change in exposure on risk 
of all-cause mortality using a Cox proportional hazards model 
stratified by ZIP Code before move with inverse probability 
weighting to account for confounding after move and follow-up 
time as a time axis. Specifically we fit:

λ t PM t e strata zipi weights stabilizi
PM i|∆( ) = ( ) = =∆

2 5 0
2 5

. ,
. , , ,λ β eed IPW

where t is the follow-up time which began 1 year after move 
until either death or censoring; zipi is the ZIP Code before move.

Stratification by ZIP Code of origin assures that the com-
parison between exposure change and mortality is only done 
among people originating from the same neighborhood who 
moved to different locations. This eliminates confounding by 
any unmeasured neighborhood level confounder, including past 
PM2.5 exposure at the ZIP Code of origin. A robust variance es-
timator was applied in order to account for the use of weights.

Finally, we repeated all analyses among black and white mov-
ers with exposures of 12 µg/m3 or less.

Results

Our sample of movers had a mean age of 77.1 in the year be-
fore their move. About 60% were female and 85% were white 
(Table 1).

Comparing the standardized differences in individual and 
ZIP code level (at the new ZIP code) covariates of movers 
whose PM2.5 change in exposure was above versus below the 
median (median = −0.90 µg/m3 among blacks and −0.69 µg/m3 
among whites) before and after the use of IPW (Figure  1), it 
appears that overall, moving reduces these differences to 0.1 or 
less (on the absolute scale), indicating good balance (i.e., mov-
ing appears to have randomized exposure with respect to the 
covariates considered). After applying the IPW, these standard-
ized differences became even smaller. This supports our theory 
that moving seems to randomize a person’s exposure. When 
comparing those with change in exposure at the 90th percentile 
or greater to those below, it appears that most covariates are 
balanced with the exception of median household income and 
median house value (Figure 2). The use of weights for these vari-
ables restored balance, and all differences were 0.12 or lower on 
the absolute scale in the weighted populations.

Most movers (73.4%) moved within their own state and me-
dian follow-up time after moving was 4 years. Approximately 
61% of the cohort was exposed to PM2.5 concentrations below 
12 µg/m3 at the new location in the second calendar year after 
move. On average, exposure decreased by 0.91 µg/m3 among 
blacks, but the change in exposure ranged from a decrease of 
21.33 µg/m3 to an increase of 24.63 µg/m3. This was similar 
among whites, where the mean decrease in exposure was 0.73 
µg/m3 and the change ranged from −25.10 to 26.83 µg/m3.
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The IP weights we constructed for our analysis had a mean of 
1.01 with a SD of 0.34 among whites and a mean of 0.99 and 
SD of 0.47 in the black subset. Truncation did not significantly 
change these means or SDs.

Cox model estimates are presented in Table 2. We found that 
white movers appear more responsive to a change in exposure 
(harzard ratio [HR] = 1.21; 95% CI = 1.20, 1.22 per 10 µg/m3 
increment) compared to black movers (HR = 1.12; 95% CI = 
1.08, 1.15). The associations persist among movers whose new 
ZIP Code had an ambient PM2.5 concentration of 12 µg/m3 or 
lower, with a higher HR for whites, and a slightly lower HR for 
blacks.

Discussion
To our knowledge, this is the first study taking advantage of the 
natural experiment created by moving in addition to confound-
ing adjustment via IPW in such a large population in order to 
estimate the effect of change in PM2.5 on mortality using causal 
modeling. The balance plot shows that moving balanced all 
measured covariates. While this balancing can only be examined 
for measured covariates, the pattern provides support for the 
notion that moving likely balanced some unmeasured covariates 
as well, strengthening the argument for causality. We believe this 
is a significant contribution of the analysis. We also stratified 
by ZIP Code of origin, so the analysis is effectively a within 
ZIP Code of origin analysis looking at people from the same 
neighborhood who moved to places with different air pollution 
concentrations. We believe this is an important strength, which 
also controls for unmeasured confounders at the neighborhood 
level in the ZIP Code of origin.

To further our ability to draw causal inference, we also fit 
a propensity score model, controlling for both individual vari-
ables and contextual variables at the new ZIP Code. We believe 
the control for multiple preexisting diseases is rare in cohort 
studies of air pollution. This approach, if assumptions of pos-
itivity and exchangeability are met, provides causal estimates 
of the effects of change in PM2.5 exposure on mortality. Models 
restricted to exposures below the current EPA standard showed 
the same trend as models using all exposures (higher in whites 
and lower in blacks). Which is not surprising given that 60% of 
the sample were exposed to PM2.5 concentrations below 12 µg/
m3. Hence this study provides strong evidence both for a causal 
association and for an association at low concentrations.

Another key aspect of this analysis is the focus on change in 
exposure. Comparing change in exposure to change in mortality 
is analogous to a difference in differences analysis. In addition, 
because stratification on original ZIP Code controls for past ex-
posure before moving, the results of this analysis provide evi-
dence that the effect of annual PM2.5 on annual mortality rates 
reported in other studies does not primarily reflect exposure 
over many years in the past, but truly indicates the effect of that 
year’s exposure. This is important because many risk analyses 
for interventions, such as EPA’s regulatory impact assessments, 
assume that the health benefits of reducing exposure will not be 
achieved within a year, but will be spread out over many years.

A recent meta-analysis21 of 53 studies estimated a nonlinear 
concentration-response with an overall HR of 1.13 at a concen-
tration of 10 µg/m3, which is the median concentration in this 
cohort. However, they also estimated that the effect size in eld-
erly cohorts such as this one was higher, which would yield an 
HR of 1.16. This is between our estimate for whites and blacks. 
Another publication22 among persons with relatively low PM2.5 
exposures (mean exposure = 6.31 µg/m3) in Canada reported 
an HR of 1.26. Hence, these results are consistent with the pre-
vailing literature of observational studies, while applying causal 
modeling techniques.

Our finding that whites are more vulnerable to change in air 
pollution exposure in this population is novel. Baseline mor-
tality among blacks is higher than among whites, which can re-
sult in smaller relative effects but similar absolute effects when a 
proportionate hazard model is fit. Overall, whites were slightly 
older (mean age among whites was 77.4 compared to 76.0 
among blacks) and increased susceptibility by age might explain 
some of the racial difference.

Key advantages of this study include that the entire national 
Medicare population who moved was studied, including people 
living in smaller cities, towns, and rural areas that have been 
underrepresented in most air pollution cohort studies; the large 
population included in the study; and the use of causal modeling 
techniques. Hence it provides evidence of likely causal effects, 
and at low concentrations below currently acceptable limits.

Support for a causal interpretation of these effect estimates 
comes from the vast toxicological literature on PM2.5 that has 
developed over the last 2 decades. In experimental studies PM2.5 
has been shown to increase atherosclerosis,23,24 decrease the sta-
bility of atherosclerotic plaques,25 increase systemic inflamma-
tion and oxidative stress,26 worsen the response to ischemia,27 
produce proarrhythmic changes in electrocardiograms, increase 
blood pressure,28 impair lung clearance of bacteria,29 and in-
crease lung inflammation.30

Human intervention studies also support this conclusion. 
A randomized trial of air filtration versus sham filtration in 
dorm rooms of 55 college students for 9 days showed fil-
tration reduced PM2.5 concentrations and reduced cortisol, 
cortisone, epinephrine, norepinephrine, glucose, insulin resist-
ance, and blood pressure.31 A randomized trial of home air 
filtration reported improvements in microvascular function 
following a 48-hour exposure to filtered air versus sham fil-
tration (unfiltered air).32 In another study, 200 participants 

Table 1

Characteristics of black and white movers in the Medicare 
cohort

Whites  
(n = 9,115,205)

Blacks  
(n = 913,774)

Female (%) 60.81 61.93
Age, mean (SD) 77.39 (7.88) 76.00 (7.68)
Dual eligibility, % 14.98 42.58
Ever hospitalized, % 17.43 18.68
Ever hospitalized for   
 � Alzheimer’s disease (%) 4.69 5.08
 � Cardiovascular disease (%) 13.37 13.41
 � Acute myocardial infarction (%) 2.60 2.13
 � Diabetes mellitus (%) 9.20 16.14
 � Heart failure (%) 2.76 4.31
 � Parkinson’s disease (%) 1.00 0.68
 � Pneumonia (%) 4.83 5.16
 � Respiratory disease (%) 6.52 6.84
 � COPD (%) 5.10 1.83
 � Lung cancer (%) 0.22 0.17
 � Ischemic stroke (%) 5.10 6.29
 � Unstable angina (%) 0.42 0.55
 � Vascular dementia (%) 1.18 2.12
Total deaths over follow-up period (%) 864,443 (9.48) 97,290 (10.65)
Mean PM

2.5
 exposure (µg/m3) in  

the year before move
11.88 13.02

1st and 99th percentiles 5.70, 20.24 7.13, 20.68
Mean PM

2.5
 exposure (µg/m3) in  

the second year after move
11.15 12.12

1st and 99th percentiles 5.39, 18.08 6.65, 18.85
Mean change in PM

2.5
  

exposure (µg/m3)
−0.73 −0.90

1st and 99th percentiles −8.07, 6.14 −6.95, 4.76
Follow-up time in years—starting the year 

after the move until either death or the 
year 2012, mean (SD)

3.59 (3.07) 3.148 (2.91)

COPD indicates chronic obstructive pulmonary disease.



Awad et al.  •  Environmental Epidemiology (2019) 3:e054	 www.environmentalepidemiology.com

5

were randomized to a particle filter versus a sham filter for a 
year.33 The sham filter resulted in a 7.8 mmHg higher systolic 
blood pressure in residents of those homes compared to the 
people with real particle filters. In yet another trial, 50 healthy 
subjects exposed to air from a busy street (PM2.5 = 24 μg/m3) 
versus filtered air (PM2.5 = 3 μg/m3) for 5 hours had a 25% 
reduction in nitroglycerin-induced vasodilation, increased 
sympathetic tone, and decreased parasympathetic tone at the 
higher concentration.34 Another study had subjects walk the 
streets of Beijing for 2 hours twice, once wearing a particle-fil-
tering mask. Blood pressure was measured continuously and 
was lower when wearing the filter.35

One potential limitation of this analysis is that we do not 
have information on individual-level covariates such as smoking 
history or medical conditions with no hospitalization. However, 
in their analysis of risk of all-cause mortality in a subset of 
about 35,000 Medicare recipients for whom individual-level 
data were available, Makar et al36 showed that the estimates 
did not differ significantly when these individual-level covari-
ates were included. In addition, Di et al8 showed that there was 
no or very little association between individual behavioral risk 
factors including smoking and body mass index, and PM2.5 ex-
posure in a large subset of about 57,000 Medicare recipients 
indicating that omitting them would not significantly confound 

Figure 1. Standardized differences in both individual and ZIP Code level covariates at the new ZIP Code comparing movers with change in exposure above the 
median* to those with change in exposure below the median in weighted and unweighted populations. A, Black movers. B, White movers. *Median change in 
exposure is −0.9 µg/m3 among blacks and −0.7 µg/m3 among whites.
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the association. Additionally, by stratifying on ZIP Code be-
fore move, we are comparing movers who likely have similar 
individual-level SEP thus controlling for some pre-move indi-
vidual-level confounders. Finally, individual covariates are un-
likely to be confounders in this analysis. High blood pressure 
in an individual does not produce air pollution. Confounding 
can only occur if neighborhoods with higher prevalence of high 

blood pressure also have higher air pollution. This can hap-
pen if an antecedent of high blood pressure (e.g., SES) predicts 
both neighborhood clustering and neighborhood air pollution. 
Hence it is primarily neighborhood-level covariates that are po-
tential confounders. Again, stratifying on original neighborhood 
should control for all measured and unmeasured confounders 
there, and the IP weights likely control for the antecedents of 
such variables at the new neighborhood.

A second limitation of this study is exposure misclassification 
due to the use of modeled PM2.5 and potential incorrect ZIP Code 
assignment; if the ZIP Code reported in our dataset for billing 
purposes is not the ZIP Code of residence then the mover will 
be assigned the wrong exposure. We expect the first source of 
misclassification to be random with regards to exposure and out-
come which, because our predicted exposure is monotonically 
increasing with measured exposure,16 biases our results to the 
null.37,38 The second source of misclassification is reduced by our 
exclusion of the year the move occurred, and is also unlikely to be 
differential. Finally, the use of the ZIP code centroid to assign ex-
posure is not ideal as area-weighted methods or even residential 
exposures would have been preferred. Residential data are unfor-
tunately not available for this population; however, area weighted 
exposures should be considered in future studies.

We note that when movers change residence, their PM2.5 ex-
posure level is not the only factor that changes but so do other 
neighborhood characteristics of the new ZIP Code that in-
fluence mortality39 some of which may be correlated with air 
pollution. For example, it is possible that of 2 movers who in-
itially live in the same ZIP Code, the one with lower SEP ends 
up in a neighborhood with higher air pollution compared to 

Figure 2. Standardized differences in both individual and ZIP Code level covariates at the new ZIP Code comparing movers with change in exposure above the 
90th percentile* to those with change in exposure below the 90th percentile in weighted and unweighted populations. A, Black movers. B, White movers. *90th 
percentile change in exposure is 1.36 µg/m3 among blacks and 2.07 µg/m3 among whites.

Table 2

Hazard ratios of all-cause mortality associated with a 10 µg/m3 
increase in 1-year mean PM2.5 in the second year after move

Modela N
Hazard  
ratio 95% CI

White movers    
 � Unweighted model 9,115,205 1.26 1.25, 1.27
 � Weighted modelb 9,115,205 1.21 1.20, 1.22
 � Movers with exposures  

≤12 µg/m3

5,697,798 1.25 1.24, 1.27

Black movers    
 � Unweighted model 914,736 1.16 1.12, 1.19
 � Weighted modelb 914,736 1.12 1.08, 1.15
 � Movers with exposures  

≤12 µg/m3

438,386 1.08 1.01, 1.14

aAll cox models were stratified by ZIP Code before move.
bWeights accounted for the following confounders: age, race, sex, Medicaid eligibility, calendar year, 
hospitalization before move for: Alzheimer’s disease, AMI, COPD, CVD, Diabetes, Heart Failure, Lung 
Cancer, Parkinson’s Disease, pneumonia, any respiratory illness, stroke, unstable angina, vascular 
dementia and the new ZIP Code level variables of: median household income, % Black, % Hispanic, 
% of owner-occupied housing units, population density, median value of owner-occupied.
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the one with higher SEP. In this scenario, SEP would confound 
the PM2.5-mortality relationship. However, if the person with 
lower SEP moved to a neighborhood with higher pollution be-
cause property values are lower in neighborhoods with higher 
air pollution, then by controlling for ZIP Code level covariates 
like median household value, and similarly for median income, 
etc. we control for this confounding.

The strengths of our analysis include the use of multiple 
causal modeling approaches which provide considerable sup-
port for a causal inference. The focus on change in pollution 
rather than pollution level alone reduces potential confounding, 
the focus on movers appears to randomize measured covariates, 
and likely unmeasured ones as well, the focus on within ZIP 
Code of origin analyses eliminates confounding by all meas-
ured or unmeasured covariates at the original ZIP Code, and 
the use of IP weights to control for confounding by covariates 
at the new ZIP Code, when combined suggest that unmeasured 
confounding is unlikely. Another strength is the large number 
of persons available in our analysis which allowed for precise 
estimates. Finally, the finding that the hazard ratio is still greater 
than 1 at exposures below 12 µg/m3 indicates that the PM2.5 
standard needs to be lowered further to protect this older and 
more susceptible population.
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