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INTRODUCTION

Burbot (Lota lota) is the sole freshwater representative of the family Gadidae and represents the
widest longitudinal distributed freshwater fish species worldwide. It is mainly distributed in rivers
and lakes above 40° north latitude, including Eurasia and North America water systems (Cohen,
et al., 1990). Burbot evolved from marine codfish to freshwater fishes about 10 million years ago and
retained many characteristics of its marine ancestors, including cold-water preference, low-
temperature spawning, high fecundity, and larval pelagic stage (Blabolil, et al., 2018). For
instance, burbot spawns in winter or early spring with very low water temperatures (below 4°C),
and the water temperature of above 5°C will be detrimental to the survival of burbot eggs (Żarski,
et al., 2010). Therefore, burbot serves as a good model for adaptive evolution studies on both marine
freshwater transition and cold-water preference.

Due to the stenothermal distribution, burbot is vulnerable to environmental changes and regarded as
an excellent indicator for cold-water fish species (Stapanian et al., 2010a; Stapanian et al., 2010b). In recent
decades, the burbot stocks and distribution have been severely decreasing due to overfishing, pollution,
and habitat destruction (Li et al., 2020), which also resulted in lower genetic diversity, lower age, and
miniaturization of burbot individuals. At present, many burbot populations have been threatened and
endangered or even extirpated in some regions of North America and Eurasia (Stapanian et al., 2010a).
Therefore, the appropriate management measures, such as the protection of habitat and spawning
grounds, are essential for the population recovery of burbot. In the meantime, it is important to develop
genomic resources to protect, restore, and effectively manage the natural resources of burbot.

Owing to its high levels of unsaturated fatty acids and various amino acids, burbot also has an
important economic value, and it is famous for its delicious liver and testis of male fish. In recent
years, various progresses of reproduction, larval domestication, and farming of burbots have been
achieved (Yang, et al., 2021). A high-quality burbot genome is necessary for the genome-assisted
breeding. Here, we constructed a high-quality chromosome-level genome assembly of L. lota, and the
availability of reference genome will provide valuable resources for in-depth biological and
evolutionary studies and genetic improvement of burbot.

DATA

In total, we generated about 52.99-Gb Nanopore long reads with an average read length of 20,705 bp,
66.13-Gb Illumina short reads, and 66.45-GbHi-C data for genome assembly (Supplementary Table
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S1). To estimate the main genome characteristics of L. lota, the
k-mer-based method was applied, and 22, 444, 539,464 of 17-
kmers were generated from the Illumina sequencing data. Finally,
the L. lota genome size was estimated to be 565.64 Mb with 0.5%
heterozygosity (Supplementary Table S2).

We used Nanopore long reads to construct the primary
assembly, the size of which was 583.75 Mb with contig N50 of
15.29 Mb (Supplementary Table S3) after correction. To
improve the accuracy of the assembly, a chromosome-level
genome was constructed by clean Hi-C data. Based on the
genome-wide Hi-C heatmap, the interacting signals around
the diagonal was strong, and the 24 pseudochromosomes
could be distinguished clearly, consistent with the karyotype
results based on cytological observation (Kirtiklis, et al., 2016;
Zhou, et al., 2019) (Supplementary Figure S1). The final genome
assembly was 583.78 Mb, with a contig N50 of 9.08 Mb, and a
scaffold N50 of 21.89 Mb (Table 1). In comparison with a
recently released burbot genome assembly by Han et al.
(2021), it was suggested that the genome assembled in this
study has better quality for higher contig N50 and more
accurate chromosome number (Supplementary Table 4). The
contig N50 of the genome assembled by Han et al. (2021) was
2.01 Mb, and the assembled sequences were anchored to 22
pseudochromosomes, which might be attributed to a low
resolution of Hi-C assembly or chromosome loss or fusion
caused by local adaptation. A total length of 537.89 Mb of the
genomic sequence was anchored, accounting for 92.1% of the
entire assembly (Supplementary Table 5). Furthermore, the
quality of the genome was evaluated by mapping short reads
to genome and benchmarking universal single-copy ortholog
(BUSCO v3) analysis (Simão, et al., 2015); 99.56% of short
reads were mapped, which covered 99.88% of the assembled
genome. The genome contained 3,452 (94.8%) complete
BUSCOs, including 3,419 single-copy BUSCOs and 33
duplicated BUSCOs (Supplementary Table 6), indicating that
the genome assembly had high completeness.

We identified a total of 332.58-Mb repeat sequences in the
burbot genome, which accounted for 56.97% of the whole
genome. The top three categories of repetitive elements were
long terminal repeats (LTRs; 38.04%), simple sequence repeat
(SSR; 8.36%), and DNA elements (8.00%) (Supplementary
Table 7). A total of 21,672 protein-coding genes were
annotated in the genome by three strategies as described in
the materials and methods (Supplementary Table 8).
Approximately 97.63% of the predicted genes were successfully
annotated using five protein databases: National Center for

Biotechnology Information (NCBI) Refseq (NR) (97.19%),
EuKaryotic Orthologous Groups (KOG; 70.77%), Kyoto
Encyclopedia of Genes and Genomes (KEGG; 67.96%), Gene
Ontology (GO; 58.97%), and Swiss-Prot (94.44%)
(Supplementary Table 9). Furthermore, noncoding RNAs
were predicted across the burbot genome; and a total of 853
microRNAs (miRNAs), 7,588 transfer RNAs (tRNAs), 155
ribosomal RNAs (rRNAs), and 1,371 small nuclear RNAs
(snRNAs) were detected (Supplementary Table 10).

To investigate the phylogenetic relationships between L. lota
and other teleosts, OrthoFinder v2.3.4 (Emms and Kelly 2015) was
applied for ortholog group identification. A total of 7,524 gene
families and 6,211 single-copy orthologs shared by L. lota and other
fishes were identified. A total of 474 gene families were specific to L.
lota (Figure 1B). We constructed a phylogenetic tree using
6,211 single-copy orthologs by Iq-TREE v2 (Minh, et al., 2020),
which showed that Atlantic cod (Gadus morhua) was most closely
related to L. lotawith a divergence time around 49.21 million years
ago (Figure 1A). Through synteny analysis between G. morhua
and L. lota, we found that the chromosomes between L. lota and G.
morhua were highly conserved (Figure 1C). We also detected that
chromosome 1 of L. lota was compared with chromosomes
NC044058 and NC044061 of G. morhua, and chromosomes 21
and 24 of L. lota were mapped to chromosome NC044051 of G.
morhua (Figure 1C), which indicated chromosome fission and
fusion events of the ancestral chromosomes.

The expansion and contraction of gene family are two of the
most important factors for formation of special adaptive
mechanisms during evolutionary process. We estimated the
gene family evolution using CAFÉ v4.2.1 (Han et al., 2013);
there were 349 and 302 gene families that experienced
significant expansions and contractions for L. lota, respectively.
The expanded genes were significantly enriched in 16 GO terms,
mainly involved in endopeptidase inhibitor activity (GO:0004866,
GO:0006313), homophilic cell adhesion via plasma membrane
adhesion molecules (GO:0030286), and iron ion binding (GO:
0005506) (Figure 1D, Supplementary Table 11). Meanwhile,
functional enrichment analyses using KEGG database mapped
expanded genes to 53 pathways, including immune-associated
pathways, such as NOD-like receptor signaling pathway,
complement and coagulation cascades, and T-cell receptor
signaling pathway. In addition, the pathway involved the
biological process regulation, mTOR signaling pathway, which
was significantly enriched (Figure 1E, Supplementary Table 12).

MATERIALS AND METHODS

Sample Collection and Sequencing
For genome sequencing and assembly, the muscle tissue of a male
burbot was dissected, and genomic DNA was extracted using
Qiagen GenomicTip100 (Qiagen, Hilden, Germany). To generate
long reads used for genome assembly, we constructed a Nanopore
20-kb insert library with 1 µg of genomic DNA. The constructed
library was sequenced by the Oxford Nanopore Technologies
using PromethION sequencer. Then Illumina short reads were
generated for base-level correction after assembly. A paired-end

TABLE 1 | Genome assembly statistics for the Lota lota.

Type Scaffold Contig

Total length (Mb) 583.78
N50 length (bp) 21,891,956 9,082,484
N90 length (bp) 15,782,100 470,183
Maximum length (bp) 53,663,097 23,977,901
GC (%) 44.78 44.78

Note. GC, guanine–cytosine.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7475522

Song et al. High Quantity Burbot Genome

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


(PE) library with 500-bp insert size was constructed, and it was
sequenced on Illumina HiSeq 4000 platform; finally, 150-bp PE
reads were generated. To obtain a chromosome-scale genome,
liver tissue from the same individual was used for Hi-C library
preparation and sequencing. Firstly, the liver tissue was fixed in

1% formaldehyde solution to perform cross-linking. Nuclei were
further obtained and digested withDpnII, marked with biotin-14-
dCTP, and then ligated by T4 DNA ligase. The DNA was
extracted and sheared, the biotin-labelled DNA fragments
were enriched, and finally, PE libraries with 500-bp insert size

FIGURE 1 | Phylogeny, orthologs, collinearity, and gene family evolution. (A) Phylogeny, dating, and gene family evolution. The value of significantly expanded
(orange) and contracted (blue) gene families is designated on each branch. The estimated species divergence time (million years ago) is labelled at each branch site. (B)
Statistics of orthologs and paralogs. “Others orthologs” indicates unclassified orthologs; “Unclustered genes,” orthologs that cannot be assigned into any orthogroups.
(C) Collinearity analysis of Lota lota and Gadus morhua genomes. (D) Function enrichment of Gene Ontology (GO) for significantly expanded gene families. (E)
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for significantly expanded gene families. Only the top 20 categories are shown.
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were constructed. The Hi-C libraries were sequenced on Illumina
HiSeq 4000 platform with 150-bp PE mode.

With the samemethod used in short-read sequencing, for gene
prediction, RNA-seq was performed with several tissues,
including three liver, heart, brain, ovary, and testis tissues. We
constructed cDNA libraries for each tissue sample and
sequencing on Illumina platform.

Genome Estimation and Genome Assembly
Before genome assembly, the k-mer analysis was conducted to
estimate the genome size and heterozygosity of L. lota using
Jellyfish v2.2.10 (Marçais and Kingsford 2011) and Genomescope
v1.0 (Vurture, et al., 2017) based on Illumina short reads filtered
by fastp v0.22.0 (Chen, et al., 2018). We corrected the Nanopore
long reads by NextCorrect modules of NextDenovo v2.3.0
(https://github.com/Nextomics/NextDenovo) to assemble the
primary genome using software wtdbg2 (Ruan and Li 2020).
Three rounds of genome sequence polishing were performed to
correct random sequencing errors using Pilon v1.23 (Walker,
et al., 2014) with the cleaned short reads. For chromosome-level
genome assembly, two ends of paired reads were independently
aligned to the polished genome using Bowtie v1.2.2 (Langmead
2010), and only the read pairs that were uniquely mapped to the
genome were selected. Last, the valid Hi-C read pairs were applied
for clustering, ordering, and orienting to aid in anchoring the
contig to the chromosomes using Lachesis (Burton, et al., 2013).
Finally, to evaluate the quality of L. lota genome, the Illumina
reads were mapped back to the genome using BWA-MEM v0.7.
17 (Li and Durbin 2009) and the BUSCO analysis (Simão, et al.,
2015) based on the actinopterygii_odb9 database performed.

Genome Annotation
To annotate repeat sequences in the genome of burbot, we combined
homology repeat prediction with de novo repeat prediction. TRF
v4.09 (Benson 1999), RepeatMasker v4.06 (Tarailo-Graovac and
Chen, 2009), and RepeatProteinMask v4.06 were used for homology
prediction by aligning the genome sequences against the RepBase
library. For the second method, we employed RepeatModeller v1.08
and LTR-FINDER v1.06 (Xu andWang 2007) based on the de novo
repetitive element database.

Protein-coding genes of the genome were predicted based on
ab initio, homology-based and transcriptome-based strategies.
The de novo approach was conducted using Augustus v3.2.1
(Stanke, et al., 2008), Snap v2013-11-29 (Leskovec and Sosič
2016), GeneMark-EP+ (Bruna, et al., 2020), Geneid v1.4 (Alioto,
et al., 2018), and GlimmerHMM v3.0.4 (Majoros, et al., 2004)
based on the repeat-masked genome. For homology-based
annotation, the protein sequences of (Anabas testudineus,
Danio rerio, Oryzias latipes, G. morhua, Poecilia formosa, and
Myripristis murdjan) were downloaded from Ensemble and
aligned to the genome of burbot using TBlastN v2.8.1 (E-value
≤ 1e−05) (Altschul, et al., 1990). Genewise 2.4.1 (Birney, et al.,
2004) was then used to identify accurate gene structures of
alignment. For transcriptome-based prediction, the Illumina
transcriptome sequence reads were aligned via Hisat2 v2.1.0
(Kim, et al., 2015); subsequently, StringTie v1.3.3b (Pertea,
et al., 2015) was used to predict gene models. All gene models

generated by the above methods were integrated with
EVidenceModeler (EVM) v1.1.1 (Haas, et al., 2008).
Functional annotation of the predicted genes was performed
by searching public databases, including NR (Marchler-Bauer,
et al., 2011), Swiss-Prot, KEGG (Kanehisa and Goto 2000), GO
(Dimmer, et al., 2012), and KOG (Tatusov, et al., 2001) databases.

Noncoding RNAs, including miRNAs, snRNAs, tRNAs, and
rRNAs were identified and annotated across the L. lota genome.
The tRNAs were identified by program tRNAscan-SE v2.0.6
(Chan and Lowe 2019), and the highly conserved rRNAs were
annotated using BlastN v2.8.1. Other ncRNAs were identified by
searching against the Rfam database using Infernal v1.1.2
(Nawrocki and Eddy 2013).

Phylogenomics and Gene Family Evolution
The protein sequences of 10 teleosts (D. rerio,Gasterosteus aculeatus,
Oreochromis niloticus, O. latipes, Takifugu rubripes, Xiphophorus
maculatus, G. morhua, P. formosa, Larimichthys crocea, and M.
murdjan) were downloaded from Ensembl database (http://www.
ensembl.org/index.html?redirect�no) (Supplementary Table S1),
and the longest one was retained to represent each gene. Then
the filtered sequences of the 10 species and L. lota were analyzed to
construct different types of orthologs using OrthoFinder v2.3.4
(Emms and Kelly 2015). In order to study the evolutionary
relationship, the single-copy protein sequences were used to
construct the phylogenetic tree by Iq-TREE v2 (Minh, et al.,
2020). We also estimated the divergence time through Bayesian
relaxed molecular clock approach using MCMCTree in PAML v4.9j
package (Yang 2007). Here, four soft-bound calibration times taken
from www.timetree.org were applied: D. rerio–G. aculeatus
(205–255 Mya), G. morhua–G. aculeatus (141–170 Mya), M.
murdjan–O. niloticus (117–154 Mya), and O. niloticus–O. latipes
(87–151 Mya). To visualize the consistency between the genomes of
L. lota and its closely related species, G. morhua, the 24 L. lota
chromosomes were aligned with G. morhua chromosomes by
MCScanX (Wang et al., 2012).

We used the results from OrthoFinder and software CAFÉ
v4.2.1 (Han, et al., 2013) to estimate expansion and contraction
gene families among the 11 teleosts. The gene family with p-value
<0.05 was thought to experience significant expansion or
contraction. Then the significantly expanded families were
functionally enriched by GO and KEGG enrichment analyses.
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