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Relaxin is a hormone structurally related to insulin and
insulin-like growth factor, which exerts its regulatory
effect on the musculoskeletal and other systems through
binding to its receptor in various tissues, mediated by
different signaling pathways. Relaxin alters the proper-
ties of cartilage and tendon by activating collagenase.

This hormone is also involved in bone remodeling and
healing of injured ligaments and skeletal muscle. In this
review, we have summarized the literature on the effect of
relaxin in musculoskeletal system to provide a broad per-
spective for future studies in this field.

Relaxin, the mammalian 6-kDa heterodimeric polypep-
tide hormone, is a member of the insulin-like superfam-
ily (Hisaw, 1926) and consists of seven peptides of high
structural but low sequence similarity. Relaxin plays an
essential role in the biological processes such as metabo-
lism, growth, pregnancy, and parturition in different
species including humans and rodents. Relaxin circu-
lates in these species during pregnancy emanating from
the corpus luteum (Conrad & Baker, 2013) and placenta
(Goh et al., 2013); however, temporal pattern of change
and serum concentrations of this hormone are different.
In rodents, circulating relaxin peak concentrations at the
end of pregnancy reach 100 ng/mL, two times greater
than in human (Sherwood, 1994). While relaxin plays
important role in collagen catabolism of the pubic sym-
physis during gestation in lower mammals such as mice
and rats (Samuel et al., 1998), the role of this hormone
on pubic symphysis of human is however unknown
(Hashem et al., 2006; Wang et al., 2009). Several studies
have highlighted the therapeutic potential of relaxin for
ectopic pregnancy, male infertility, and heart failure, car-
diovascular and musculoskeletal diseases. Currently,

there are seven known relaxin family peptides (RXFP)
that are structurally related to insulin which include
relaxin (RLN)1, RLN2, RLN3, and insulin-like peptide
(INSL)3, INSL4, INSL5, and INSL6 (Bathgate
et al., 2013). RLN1 and RLN2 are strong regulators of
collagen expression and metabolism in fibroblasts, and
are differentially expressed in the corpus luteum,
decidua, and endometrium, as well as prostate tissue,
while RLN3 is specific to the brain (Sherwood, 2005).
Relaxin1 and 2 reconcile the hemodynamic changes
occurring during pregnancy such as cardiac output, renal
blood flow, and arterial compliance (Conrad, 2011), as
well as weakening the pelvic ligaments for parturition in
species such as guinea pigs and mice (Sherwood et al.,
1993). RLN3 is a highly conserved neuropeptide in
vertebrates, and is involved in a wide range of
neuroactivities such as response to stress and cognition,
as well as in neurological disease (Smith et al., 2011).

Relaxin binds to RXFP receptors and exerts its action
through a ligand-receptor system in multiple pathways.
The relaxin receptor is involved in signal transduction
between extracellular/intracellular domains. Relaxin1–4
hormones are ligands for the RXFP1, RXFP2, RXFP3,
and RXFP4, respectively (Fig. 1). This family peptides
act on four G-protein-coupled receptors (GPCRs; for-
merly LGR7, LGR8, GPCR135, and GPCR142) (Kong
et al., 2010). RXFP1 and RXFP2 are composed of large
extracellular domains which encompass of leucine-rich
repeats. On the other hand, RXFP3 and RXFP4 proteins
are more similar to small peptide ligands (Summers et al.,
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2009). Recently, it has been shown that there is a differ-
ence in the ligand binding mode between RXFP1 and
RXFP2 (Scott et al., 2012). RXFP1 and RXFP2 exist in
uterus, cervix, vagina, brain, and heart of a number of
animal species. However, production of these proteins
differs among tissues of various species. For example,
RXFP1 is expressed in rats and mice myometrium
(Vodstrcil et al., 2010), whereas in human, this receptor is
mainly localized to the endometrium (Campitiello et al.,
2011). Moreover, RXFP1 is expressed in the rats and mice
heart localized to the atria where it mediates positive
inotropic and chronotropic responses (Piedras-Renteria
et al., 1997), while there is currently no report of this
receptor binding or function in the human heart.

Evidence also suggests that the functional domains of
RXFP1, the cell type in which it is expressed, and the
ligand used to activate the receptor all have important
roles in the musculoskeletal system (Fig. 2). Relaxin
alters cartilage and tendon stiffness by activating colla-
genase (Hashem et al., 2006; Pearson et al., 2011).
Relaxin is also involved in bone remodeling process and
in healing of injured ligaments and skeletal muscles (Li
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Fig. 1. Interaction of RLN1, RLN2, and RLN3 proteins with
their receptors RXFP1, RXFP2, and RXFP3, respectively, as
well as with insulin-like growth factor (INSL3) and rearranged
L-myc fusion (RFL) in the network (http://www.genecards.org/).

Fig. 2. A summary of relaxin role in the locomotor system.
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et al., 2005; Dragoo et al., 2009). The soft tissue healing
cascade is composed of three phases, inflammation,
regeneration, and fibrosis, and relaxin is a regulator of
both inflammation and fibrosis (Mu et al., 2010).
Relaxin also acts as antifibrotic agent, and favors muscle
regeneration and against muscle fibrosis to promote
regrowth of myofibers in skeletal muscle healing. In this
review, our aim is to summarize and critically investigate
the available data, strictly related to relaxin and its regu-
latory effect on the musculoskeletal system.

Relaxin function in the musculoskeletal system

The musculoskeletal system is composed of bone,
synovium, ligament, muscle, tendon, articular cartilage,
and the related connective tissues that support the body’s
ability to move (Farley et al., 2012). Relaxin plays an
integral role in the remodeling of multiple tissues of the
musculoskeletal system.

Bone

Relaxin along with hormones such as estrogen and
growth factors such as transforming growth factor-beta
(TGF-β) helps orchestrate the bone remodeling process.
These factors regulate a cytokine system containing
three fundamental molecules: the receptor activator of
nuclear factor κB ligand (RANKL), RANK, and
osteoprotegerin (OPG). In the RANKL/RANK/OPG
system, RANKL on the preosteoblastic/stromal cells
binds to its receptor (RANK) on the osteoclastic precur-
sor cells and induces expression of a variety of genes to
provide the crucial signal to drive osteoclast recruitment
and development (Facciolli et al., 2009). OPG regulates
the system through blocking the effects of RANKL and
interfering with RANK signaling. Relaxin facilitates dif-
ferentiation of peripheral blood mononuclear cells into
mature osteoclasts during osteoclastogenesis by stimu-
lating osteoblastic/stromal cell production, while estro-
gen inhibits this process through increasing OPG
production (Facciolli et al., 2009). Therefore, relaxin is
one of the osteoclast-activating factors that increase bone
resorption. It is also overexpressed in tumors that
promote growth, differentiation, and invasiveness, which
lead to osteolytic metastases (Clezardin & Teti, 2007).
Together, these data indicate a possible role of relaxin in
osteoclastogenesis (Facciolli et al., 2009; Ferlin et al.,
2010). Relaxin 2 (RLX2) regulates bone metabolism and
proliferation in human osteoblasts. Stimulation of osteo-
blasts with RLX2 activates adenylate cyclase (AC) and
increases cAMP production by G- proteins and thereby
increases cell proliferation (Ferlin et al., 2009). Previous
studies have identified an inactivating mutation in the
RXFP2 gene (T222P), which caused idiopathic osteopo-
rosis in young men through functional osteoblast impair-
ment and reduced bone density (Ferlin et al., 2009). A
similar result was also observed in knockout mouse

model (Ferlin et al., 2008, 2011). There is also some
evidence to suggest that higher levels of estrogen and
relaxin in pregnant women correlated with an increased
prevalence of congenital dysplasia of the hip in neonates
(Uden & Lindhagen, 1988; Saugstad, 1991; Steinetz
et al., 2008). In view that relaxin affects both osteoclast
and osteoblast, therefore this hormone is involved in
bone remodeling process, and stimulation of osteoblast
by RLX2 suggests that this hormone is potentially useful
in the treatment of bone condition such as osteoporosis.

Synovium

Relaxin in combination with estrogens may also have
therapeutic value in the treatment of rheumatoid arthritis
(RA) (Santora et al., 2005; Ho et al., 2011). RA is a
chronic and systemic inflammatory disorder that may
affect many tissues and organs, but also causes bone
destruction through synovial hypertrophy. However, the
incidence and severity of this disease during pregnancy is
lower than normal. During pregnancy, relaxin and estro-
gen levels in the serum are elevated leading to decrease in
inflammation in RApatients (D’elia et al., 2003; Ho et al.,
2011). Relaxin exerts its anti-inflammatory effect through
down-regulation of neutrophil function (Bani et al., 1998)
and stimulates leukocyte adhesion and migration in
human mononuclear cells (Figueiredo et al., 2006). A
combined treatment using relaxin and estrogen appears to
reduce circulating tumor necrosis factor-α level in rat
adjuvant-induced arthritis model of RA and increased the
anti-inflammatory cytokine IL-10 in human cells.
(Santora et al., 2005; Figueiredo et al., 2006). In view of
this, relaxin has a potential beneficial effect in the treat-
ment of synovial diseases.

Ligament

Relaxin hormone alters ligament mechanics due to its
collagenolytic effect mediated by discharge of matrix
metalloproteinases (MMPs) (Qin et al., 1997), collage-
nase (Wiqvist et al., 1984; Granstrom et al., 1992), and
plasminogen activator (Koay et al., 1983). Relaxin treat-
ment in pregnant cattle increased pelvic width and height
(Perezgrovas & Anderson, 1982; Musah et al., 1986), but
not in other joints such as wrist and knee (Weinberg,
1956; Marnach et al., 2003). Increase in serum relaxin
concentration may also correlate with joint laxity
(Lubahn et al., 2006; Dragoo et al., 2011a, b), but this
effect during pregnancy is controversial (Forst et al.,
1997). Some studies have reported higher relaxin levels in
pregnant women with pelvic joint instability or hip joint
laxity as compared with controls (Saugstad, 1991;
Steinetz et al., 2008), while other studies did not (Ohtera
et al., 2002). Two studies on the relationship between
serum relaxin levels and joint laxity reported no signifi-
cant association between this hormone level and knee and
generalized joint laxity (Arnold et al., 2002; Wolf et al.,
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2013). Studies have also suggested a relationship between
higher relaxin and progesterone serum levels in pregnant
females with pelvic girdle pain syndrome (Maclennan
et al., 1986; Wreje et al., 1995; Kristiansson et al., 1999)
and pelvic floor dysfunction (Harvey et al., 2008),
whereas other studies have not found such a relationship
(Crelin & Brightman, 1957; Petersen et al., 1994;
Vollestad et al., 2012). Study design and methodological
differences may account for some of the conflicting data.

Relaxin appears to play a role in anterior cruciate
ligament (ACL) injury (Faryniarz et al., 2006; Dragoo
et al., 2009). Estrogen and relaxin receptors have been
found in the human female ACL (Faryniarz et al., 2006).
Studies on the mechanical properties of human ACLs
illustrate that those treated with relaxin have reduced
ligament integrity and may be at higher risk of injury
(Toth & Cordasco, 2001; Dragoo et al., 2011a). This
finding was also replicated in an animal model, where
rabbits treated with relaxin had significantly weaker
ACLs compared with controls. Additionally, there was
increased anterior tibial displacement on radiographic
assessment, indicating ACL laxity, in animals treated
with relaxin (Dragoo et al., 2009).

There may also be an association betweenACLinjuries
and stages of menstrual cycle. Occurrence of ACL inju-
ries during the ovulatory phase (midcycle) is more fre-
quent than the luteal phase (Wojtys et al., 2002). During
this period, estrogen and relaxin levels are high; therefore,
activation of the estrogen and relaxin receptors may be
increased (Min & Sherwood, 1996; Slauterbeck et al.,
2002). Relaxin activates collagenolytic system which
increases collagenase synthesis and finally degrades the
extracellular matrix composition (Garibay-Tupas et al.,
2004; Guttridge, 2004).

A prospective study of elite female athletes illustrated
that players with increased serum relaxin levels had an
increased risk of anACLtear compared with females with
lower relaxin levels (Dragoo et al., 2011a). Players
having a relaxin concentration of greater than 6.0 pg/mL
had more than four times greater risk ofACLinjury. Other
studies have collaborated these findings (Schauberger
et al., 1996; Wojtys et al., 2002; Beynnon et al., 2006;
Dragoo et al., 2011a). Relaxin appears to affect other
ligaments such as volar oblique in perimenopausal
women via a receptor-mediated process. In this ligament,
relaxin particularly binds and probably reveals in pres-
ence of cellular or extracellular matrix receptors (Lubahn
et al., 2006). Taken together, these findings indicate that
while relaxin effects are beneficial to the lower animals
especially during pregnancy, its proposed effect on the
peripheral ligament laxity in humans and animals may
predispose the joint to a non-traumatic injury.

Muscle

Relaxin helps regulate normal skeletal muscle through
two principle signaling pathways: AC and nitric oxide

(NO). Relaxin activates the AC signaling pathway in
skeletal muscles through the following signal chain:
relaxin receptor tyrosine kinase → Gi protein (βγ-dimer)
→ phosphatidylinositol 3-kinase (PI3K) → protein
kinase Cz (PKCζ) → heterotrimeric Gs protein → AC →
protein kinase A (Kuznetsova et al., 1999; Shpakov et al.,
2004, 2006a, b, 2007a, b; Pertseva et al., 2006; Plesneva
et al., 2008). Relaxin also activates the NO pathway in
skeletal muscle via relaxin-mediated activation of recep-
tor tyrosine kinase → Gi protein → PI3K → protein
kinase D1 → protein kinase B → NO (Plesneva et al.,
2008). NO regulates various biological processes, and is
produced by NO synthase (Stamler & Meissner, 2001).
There are data that indicate relaxin stimulates NO syn-
thase signaling in the skeletal muscles of type 2 diabetic
rats, leading to NO dysfunction (Kuznetsova et al., 2010).

Relaxin may be implicated in the skeletal muscle
healing process by regulating inflammation, tissue
remodeling, and fibrosis (Formigli et al., 2005;
Sherwood, 2005). The degree of fibrotic response varies
with the level of inflammation and injury. Relaxin may
improve spontaneous regeneration of injured skeletal
muscle as illustrated in an injured muscle mouse model
(Fukushima et al., 2001; Sato et al., 2003). During this
process, skeletal muscle cells regenerate and repair to
reduce the size of a damaged or necrotic area and replace
it with new living tissue. Degeneration/inflammation is a
retrogressive change in cells and tissues characterized by
abnormal structural changes and decreased functions (Li
et al., 2005; Merchav et al., 2005; Negishi et al., 2005;
Mu et al., 2010). Relaxin has been reported to regulate
several steps during inflammation which include inhibi-
tion of platelet aggregation (Bani et al., 2007), inhibits
activation and recruitment of neutrophils to the site of
inflammation (Emanuela et al., 2004), and promotes
migration of mononuclear leucocytes through RXFP1-
dependent mechanism (Figueiredo et al., 2006).

In regeneration phase, immature granulation tissue
containing active fibroblasts produces abundant type III
collagen, which fills the defect left by an open wound
(Volk et al., 2011). Granulation tissue moves, as a wave,
from the border of the injury toward the center. As granu-
lation tissue matures, fibroblasts produce less collagen
and become more spindly in appearance, which then
begin to produce a much stronger type I collagen (Syed
et al., 2011). Some of the fibroblasts mature into
myofibroblasts containing similar actin to the smooth
muscle, which enables them to contract and reduce the
size of the wound (Sarrazy et al., 2011). Fibrosis is the
last phase of healing where a non-functional scar tissue
is formed caused by excessive accumulation of connec-
tive tissue following damage. Fibrosis often delays and
impairs the recovery of damaged tissue (Diegelmann &
Evans, 2004). Relaxin has been shown to inhibit fibrosis
formation through several mechanisms that include neu-
tralization of the effect of TGFβ1 and activation of the
collagenolytic system, which increases collagenase
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synthesis (Garibay-Tupas et al., 2004; Guttridge, 2004;
Mendias et al., 2004, 2012; Mu et al., 2010; Vinall et al.,
2011). Through these mechanisms, relaxin reduces the
formation of fibrous scar tissue (Fig. 3). Relaxin admin-
istration to the injured skeletal muscle promotes activa-
tion of satellite cells, induces angiogenesis and
revascularization, as well as represses the extended
inflammatory reaction (Mu et al., 2010). Recently,
relaxin administration to diabetic wound in mice has
been shown to up-regulate the mRNA expression of vas-
cular endothelial growth factor, epithelial NO, and
stromal-cell-derived factor 1-α, stimulates angiogenesis
and vasculogenesis, enhances MMP-11 expression, and
increases wound-breaking strength (Bitto et al., 2013).
In view that relaxin plays important role in the healing
process, it can potentially be used as a therapeutic agent
to treat damaged skeletal muscle (Negishi et al., 2005).

Tendon

Relaxin has been reported to effect tendon metabolism
by controlling the length of tendon growth (Maclennan
et al., 1986; Wood et al., 2003) and reduce tendon stiff-
ness by increasing tendon laxity through activation of
collagenase (Pearson et al., 2011). An in vivo study
investigating the growth of rat tails and human patellar
tendons showed that relaxin levels correlate with tendon
length (Wood et al., 2003; Pearson et al., 2011). Rat tail
tendons treated with relaxin exhibited alterations in col-
lagen through interfering with fibril association and col-
lagen sliding (Wood et al., 2003). Another study in
women with normal menstrual cycle, who did not take
any contraception pills, demonstrated a significant link
between serum relaxin levels and patellar tendon stiff-
ness (Pearson et al., 2011). Besides the reported effects
of relaxin on the tendon, potential benefits of relaxin on
tendon repair and remodeling are largely unknown.

Cartilage

Relaxin appears to decrease knee articular cartilage stiff-
ness (Bonaventure et al., 1988; Hellio Le Graverand

et al., 1998) through induction of collagenase-1,
MMP-1, and MMP-3, which reduces collagen content
and expression in fibrocartilaginous cells. Modulation of
MMPs to loss of collagen by hormones may contribute
selectively to degeneration of specific joints fibrocarti-
laginous explants facilitated by proteinases (Naqvi et al.,
2005; Hashem et al., 2006). The degradation of extracel-
lular matrix in fibrocartilage is synergized by
β-estradiol. Relaxin exerts its effect through binding to
RXFP1 and RXFP2 receptors (Hellio Le Graverand
et al., 1998; Wang et al., 2009). The ratio of RXFP2 in
knee meniscus of pregnant rabbits was shown to be more
than RXFP1, which may indicate differential role of
these receptors in the remodeling of fibrocartilage
(Hellio Le Graverand et al., 1998; Wang et al., 2009).
Comparison of collagen content in articular cartilage of
nonpregnant and pregnant rabbits showed that the total
RNA levels and chondrocyte metabolism decreased
during pregnancy. Depending on the level of skeletal
maturity, pregnancy can exert both general and specific
effects on the RNA levels in articular cartilage of the
rabbit knee (Hellio Le Graverand et al., 1998). Thus,
relaxin may play a role in women’s susceptibility to
musculoskeletal disease (Naqvi et al., 2005). Taken
together, these findings suggested that in female,
increased relaxin level may result in undesirable effects
on the articular cartilage.

Perspective

Relaxin plays a vital role in biological processes includ-
ing metabolism, growth, and reproduction. Among the
four relaxin types, RLN1 and RLN2 regulate the mus-
culoskeletal system via multiple pathways through a
ligand-receptor system, depending on cell type and
ligand (Table 1). Our investigation of relaxin’s role in
the musculoskeletal system showed some limitations in
the literature. For example, most of the reports did not
delineate the relaxin isoform or its specific receptor.
Additionally, despite relaxin’s accepted role in the
regulation of AC and NO pathways, few studies have
focused on the regulatory effect of these pathways in the

Degeneration 

RegenerationFibrosis Healing

TGF-β1

Relaxin

Relaxin 

TGF-β1

Tissue injury 

Fig. 3. A competition exists between fibrosis and regeneration during healing of damage tissue. Relaxin and transforming growth
factor-beta1 (TGF-β1) make imbalance between regeneration and fibrosis process. Increased relaxin and decreased TGF- β1 result in
regeneration and consequently healing, while decreased relaxin and increased TGF- β1 lead to fibrosis.
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Table 1. Review of previously reported data of relaxin in the locomotor system

Organ Author (year) Sample Model Treatment Relaxin Role of relaxin

Skeleton
Cartilage Bonaventure et al.

(1988)
Chondrocyte cell Rb/vitro Porcine relaxin NI Modulation of type I, II, III collagen

expression
Naqvi et al. (2005) Joint

fibrocartilaginous
cells

Rb/vitro Human relaxin,
β-estradiol

NI No increase collagenase1 and MMP3
expression

Hashem et al.
(2006)

Knee meniscus
fibrocartilage and
articular cartilage

Rb/vitro Human relaxin,
β-estradiol,
progesterone

NI No significant change of GAGs and collagen

Wang et al. (2009) Joint
fibrocartilaginous
cells

M/vitro NI 1,2 Expression of RXFP2 > RXFP1

Bone Santora et al.
(2005)

Arthritis paw R/vivo Porcine relaxin
and 17-β-estradiol

NI Combination hormone therapy reduced
arthritis inflammation

Kristiansson et al.
(2005)

Normal osteoblast
cell

H/vitro. Relaxin 1,2 Bone resorption by mediators

Ferlin et al. (2008) Bone
densitometry,
cryptorchidism,
osteoblast cell

H,M/vivo, vitro Agonists INSL3,
relaxin, forskolin

2 Links RXFP2 gene mutations with human
osteoporosis

Facciolli et al.
(2009)

Osteoclast cell H/vitro Relaxin 1 Facilitation of the differentiation of
osteoclasts

Ferlin et al. (2009) Osteoclast cell H/vitro Relaxin 1 Relaxin is a potent stimulator of
osteoclastogenesis

Ferlin et al. (2011) Femoral heads
osteoblast cell

H/vitro Relaxin 2 2 RXFP2 system is involved in bone
metabolism

Ho et al. (2011) Joint tissues,
murine osteoblast
cells

R/vivo and vitro 17-β-estradiol,
porcine relaxin

NI Modulation of RANKL-OPG system

Joint Weinberg (1956) Four nonpregnant
and 11 pregnant

H/vivo Relaxin as releasin NI No change in pelvic measurement

Crelin and
Brightman (1957)

Pelvic joints R/vivo Relaxin, estrogen NI No difference in pelvic joint flexibility

Perezgrovas and
Anderson (1982)

Pelvic joint BF/vivo Porcine relaxin NI Expansion of the pelvic area (p)

MacLennan et al.
(1986)

Patients with late
pregnancy

H/vivo NI NI High relaxin link between pelvic pain and
joint laxity during late pregnancy

Musah et al.
(1986)

Pelvic joint BF/vivo Relaxin NI Induction of pelvic expansion, highly
significant interaction (p)

Udén and
Lindhagen (1988)

CDH patients H/vivo NI NI Increased sensitivity of the receptors of the
fibroblasts

Saugstad (1991) 153 pregnant
women

H/vivo NI NI Congenital hip dysplasia rate, consistent
with estrogen and relaxin levels

Petersen et al.
(1994)

472 pregnant
women

H/vivo NI NI Not associated with pregnancy pelvic pain

Wreje et al. (1995) 19 women H/vivo Oral contraceptive NI Higher relaxin with posterior pelvic and
lumbar pain

Schauberger et al.
(1996)

21 women H/vivo NI 2 No correlation with serum relaxin and joint
laxity

Forst et al. (1997) 90 newborn
children

H/vivo NI NI NI lower relaxin in newborns with pelvic
presentation hip instability

Vogel et al. (1998) 12 girls, three
boys newborn

H/vivo NI 2 Reduction of relaxin concentration with
increasing sonographic hip

Kristiansson et al.
(1999)

200 pregnant
women

H/vivo NI NI Relaxin correlated with pelvic pain in early
pregnancy

Ohtera et al.
(2002)

Knee joint of
nonpregnant and
pregnant

R/vivo NI NI Relaxin preventing the development of joint
contracture

Arnold et al.
(2002)

Athlete
eumenorrheic
women and men

H/vivo NI NI No effect on knee laxity

Marnach et al.
(2003)

Pregnant women H/vivo NI NI No correlation of wrist joint laxity and relaxin
level

Harvey et al.
(2008)

Pregnant women H/vivo NI NI Higher relaxin and fall significantly faster in
women with PFD

Vollestad et al.
(2012)

212 women pelvic
joints

H/vivo NI NI Contribution with pelvic joint laxity but no
responses to pain and disability

Wolf et al. (2013) 289 healthy
human

H/vivo NI 2 No link between serum relaxin and
generalized joint laxity

Musculoskeletal system

e225



musculoskeletal organs. Although relaxin may affect
many ligaments and tendons of the musculoskeletal
system, previous studies have mostly concentrated on
the anterior cruciate and wrist ligaments. Future studies
are warranted to gain a better understanding of relaxin’s
role in the musculoskeletal system.

Key words: relaxin, motor organs, skeletal muscle,
tendon, ligament.
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