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ABSTRACT

Chromatin structure and function are determined by a plethora of proteins whose genome-wide
distribution is typically assessed by immunoprecipitation (ChIP). Here, we developed a novel tool to
investigate the local chromatin environment at specific DNA sequences. We combined the
programmable DNA binding of dCas9 with the promiscuous biotin ligase BirA* (CasID) to biotinylate
proteins in the direct vicinity of specific loci. Subsequent streptavidin-mediated precipitation and
mass spectrometry identified both known and previously unknown chromatin factors associated
with repetitive telomeric, major satellite and minor satellite DNA. With super-resolution microscopy,
we confirmed the localization of the putative transcription factor ZNF512 at chromocenters. The
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versatility of CasID facilitates the systematic elucidation of functional protein complexes and locus-

specific chromatin composition.

Introduction

Regulation of gene expression involves a yet undeter-
mined number of nuclear proteins ranging from tightly
bound histones to loosely attached or transiently inter-
acting factors that directly and indirectly bind DNA
sequences along the genome. Establishment, mainte-
nance and alteration of functional DNA states during
development and disease requires dynamic changes in
local enrichment and posttranslational modification of
chromatin proteins. The genome-wide distribution of a
given protein is traditionally determined by chromatin
immunoprecipitation (ChIP) and subsequent sequenc-
ing of co-precipitated DNA fragments. However, ChIP
experiments rely on the availability of suitable antibod-
ies and provide data on global antigen distribution
rather than local chromatin composition.

Previously described strategies to directly analyze
chromatin complexes such as HyCCaPP (Hybridiza-
tion Capture of Chromatin Associated Proteins for
Proteomics)’ and PICh (Proteomic Isolation of Chro-
matin fragments)” were based on chemical crosslink-
ing and precipitation with complementary DNA

probes. Alternatively, DNA binding proteins were
used for chromatin precipitation and subsequent anal-
ysis by mass spectrometry.’”

For visualization and manipulation, specific geno-
mic loci can be targeted by different recombinant
DNA binding proteins such as engineered polydactyl
zinc finger proteins (PZFs),° designer transcription
activator-like effectors (dTALEs)”® or an enzymati-
cally dead Cas9 (dCas9).”"" Whereas target specific-
ity of PZFs and dTALEs is determined by their
amino acid sequence, DNA binding of dCas9 is pro-
grammed by an easily exchangeable single guide
RNA (sgRNA)."

Here, we exploited the RNA-programmable DNA
binding of dCas9 to direct a biotin ligase to specific
genomic sites and mark adjacent chromatin proteins
for subsequent identification by mass spectrometry.
Proximity-dependent biotin identification (BioID)
employs a promiscuous biotin ligase (BirA*) fused to
a target protein for biotinylation of proteins within a
10 nm range.">'* Biotinylated proteins can then be
identified by robust streptavidin-mediated capture
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and subsequent mass spectrometry. Based on BirA™
and dCas9 we developed a hybrid approach (CasID)
to elucidate chromatin composition at specific DNA
sequences.

Results and discussion

Immunofluorescence microscopy reveals protein
biotinylation at targeted loci

To evaluate whether the CasID approach is suited to
biotinylate proteins at specific genomic loci we con-
structed a BirA"-dCas9-eGFP fusion (Fig. 1). We
co-transfected C2C12 myoblasts with this BirA*-
dCas9-eGFP construct and a sgRNA plasmid, target-
ing dCas9 to either telomeres, major or minor satellite
sequences. We previously showed that all sgRNAs
used in this study successfully target dCas9-eGFP to
the desired loci.'® Although here dCas9 is tagged on
both N- (BirA*) and C-terminus (eGFP), we observed
specific recruitment to the designated sequences (Sup-
plementary Fig. 1). In control cells without sgRNA
expression, BirA*-dCas9-eGFP shows a diffuse locali-
zation throughout the cell and a nucleolar enrichment
(Supplementary Fig. 1). Importantly, in the presence
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of functional sgRNAs, BirA*-dCas9-eGFP was tar-
geted to the respective loci and co-localized with a
strong biotin signal, when the growth medium was
supplemented with exogenous biotin (Fig. 2). These
results demonstrate that the promiscuous biotin ligase
BirA* can be directed to endogenous loci via dCas9.

Determination of local chromatin composition at
distinct genomic loci by mass spectrometry

To identify proteins associated with distinct genomic
regions, cells stably expressing BirA"-dCas9-eGFP tar-
geted to either telomeric regions, minor satellite
repeats or major satellite repeats were supplemented
with 50 uM biotin for 24 h, representing standard
BioID conditions."> We enriched for biotinylated pro-
teins from crude nuclear extract with streptavidin-
coated magnetic beads and analyzed them via tandem
mass spectrometry (LC-MS/MS, Fig. 1). With label
free quantification, we compared protein levels in
pulldowns from cells expressing both BirA*-dCas9-
eGFP and a sgRNA with control samples of cells stably
expressing untargeted BirA*-dCas9-eGFP (without
any sgRNA). Common BioID contaminants,” like
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Figure 1. Workflow for CasID. BirA*-dCas9-eGFP/sgRNA expressing cells are cultured in growth medium without exogenous biotin. The
BirA*-dCas9-eGFP fusion is directed to the desired target by sequence complementarity between sgRNA and the genomic locus. Upon
addition of biotin to the medium, BirA* ligates biotin to lysine residues of proteins in close proximity. Successful biotinylation of locus-
associated proteins can directly be visualized via immunofluorescence microscopy. For mass-spectrometric analysis, cells are harvested,
followed by isolation of crude nuclei. After a denaturing lysis, biotinylated proteins can be pulled from the lysate with streptavidin and
subjected to mass spectrometry. White dashed lines indicate the border between nucleus and cytoplasm. Scale bar: 10 zem.
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Figure 2. Targeted biotinylation of telomeres, major and minor satellites. Representative confocal images of C2C12 cells, co-
transfected with CAG-BirA*-dCas9-eGFP and a plasmid encoding either telomere- (A, TelgRNA), minor satellite- (B, MiSgRNA) or
major satellite-specific sgRNA (C, MaSgRNA). Nuclear enrichment of biotin at targeted sequences is only detectable after addi-
tion of exogenous biotin. White dashed lines indicate the border between nucleus and cytoplasm. Scale bar: 10 um.



endogenously biotinylated mitochondrial carboxylases
were found in all pulldowns including the negative
control (Supplementary Table S1). Besides proteins
predicted to associate with DNA, we also detected
numerous unexpected proteins in our dataset (Supple-
mentary Table S1) providing a basis for the identifica-
tion of new chromatin factors and their future
comprehensive characterization. For statistical analy-
sis in a two-sided Student’s T-test, only proteins pres-
ent in at least 3 out of 4 biological replicates were
included.
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First, we targeted telomeric regions and observed
a strong enrichment of several proteins when com-
pared to pulldowns from control cells (Fig. 3A).
Most prominent among these significantly enriched
proteins were TERF2, TINF2 and ACD which are
components of the shelterin complex known to
directly bind telomeric DNA.'"® We did not identify
additional shelterin components which could be
explained by sterical hindrances leading to an selec-
tive labeling of complex subunits. Altogether, these
data show that CasID is suitable to investigate the
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Figure 3. Chromatin composition of distinct genomic loci determined by mass spectrometry. Volcano plots of proteins enriched at telo-
meric regions (A), major satellites (B) and minor satellites (C), respectively. Black: significantly enriched/de-enriched proteins relative to
BirA*-dCas9-eGFP control cells without sgRNA. FDR = 0.01, SO = 0.1, n = 4. (See Table S1.) (D) Overlap between proteins identified at
major satellites by CasID and candidates from PICh analysis."” (E) Overlap between proteins significantly enriched at minor and major
satellite repeats. (F) Localization of ZNF512-eGFP at major satellite repeats in transiently transfected C2C12 cells. Blow-ups depict DAPI
and eGFP signal of boxed regions. Conventional confocal microscopy (upper panel) shows a homogeneous and strong association of
ZNF512 at heterochromatin and high-resolution microscopy (3D-SIM, lower panel) reveals a network-like structure. Scale bars: 10 um
(confocal) and 5 um (3D-SIM). Scale bars in blow-ups: 2 £m (confocal) and 1 pm (3D-SIM).
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native protein environment at specific genomic loci
in mammalian cells.

Second, we investigated the local protein environ-
ment at major satellite repeats. Here, we find not only
known heterochromatic proteins such as MECP2,
SMCHD1 and HP1BP3 but also previously uncharac-
terized proteins like ZNF512 (Fig. 3B). We validated
the localization of ZNF512 by recombinantly express-
ing a GFP fusion (ZNF512-eGFP) which showed a
distinct signal at heterochromatic loci in C2C12 cells
(Fig. 3F). ZNF512 strongly associates with the major
satellites also during mitosis (Supplementary Fig. 2),
hinting at a structural or regulatory role for this pro-
tein throughout the cell cycle. One third of the pro-
teins significantly enriched at major satellite repeats
were also found in a data set obtained by PICh in
mouse embryonic stem cells'” (Fig. 3D). Proteins
found in both studies as well as those exclusively
detected by CasID are categorized as DNA and RNA
binding proteins or repressors (Supplementary
Fig. 3A). In contrast to PICh, CasID requires BirA*-
dCas9 to be introduced in target cells, yet it can be
performed with considerably smaller sample sizes
(~4 x 107 vs. ~8 x 10° cells per sample'’) rendering
CasID feasible and cost-effective. In total, fewer pro-
teins were considered significant with CasID, which
may be caused by a stringent statistical cutoff (FDR =
0.01) as well as the proximity-dependent nature of the
CasID strategy. Collectively, these results validate
CasID as a novel method to study local chromatin
composition.

Third, we explored proteins in close proximity to
minor satellite repeats and obtained both enriched
and de-enriched proteins (Fig. 3C). To our knowledge,
this is the first data set describing the protein environ-
ment of this genomic element. Among the signifi-
cantly enriched proteins 12 annotated repressors or
chromatin regulators and 25 DNA binding- or zinc
finger motif containing-proteins were identified (Sup-
plementary Fig. 3B). Furthermore, we find the known
centromere-associated  proteins CENPC'®  and
PCM1," which may reflect the close proximity of
minor satellite repeats and centromeric regions or
functions of these factors outside centromeres. Nota-
bly, the overlap between minor satellites and major
satellite-associated proteins comprises only 9 out of 96
proteins (Fig. 3E), suggesting a distinct protein land-
scape of these two heterochromatic regions.

In summary, with CasID we developed a simple
and robust workflow for in vivo labeling and system-
atic elucidation of locus specific chromatin composi-
tion that does not require prior cell fixation or protein
cross-linking. We validated CasID for repetitive
sequences where multiple
recruited to one target site. This approach could be
extended to single copy loci by either using multiple

Cas9 molecules are

sgRNAs, larger sample sizes and/or adapted pulldown
conditions. In general, CasID experiments could be
further fine-tuned by varying concentration and dura-
tion of biotin pulses and the use of a smaller biotin
ligase (BioID2)*° with various linker lengths. While
traditional ChIP techniques produce data on genome-
wide distribution of specific antigens, CasID allows to
study local chromatin composition including the iden-
tification of new factors. Therefore, ChIP and CasID
are complementary approaches that bring together
global and local views of dynamic and functional
chromatin complexes and thus help to reveal how
these complexes control structure and function of the
genome and how they change during development
and disease.

Material and methods
Cell culture and transfection

C2C12 cells*! were cultured at 37°C and 5 % CO, in
Dulbecco’s modified Eagle’s medium (DMEM,
Sigma), supplemented with 20 % fetal bovine serum
(FBS, Biochrom), 2 mM L-glutamine (Sigma), 100 U/
ml penicillin and 100 pg/ml streptomycin (Sigma).
For the CasID assay the culture medium was addition-
ally supplemented with 50 ;M biotin (Sigma) one day
prior to analysis. For transfections, ~5 x 10> cells
were seeded in a p35 plate one day prior of transfec-
tion and transfections were performed with Lip-
ofectamine® 3000 (Thermo Fisher Scientific)
according to the manufacturer’s instructions.

Plasmid generation

All plasmid and primer sequences can be found in
Supplementary Tables S2 and S3, respectively. To gen-
erate the BirA®-dCas9-eGFP construct, BirA® was
amplified from pcDNA3.1-mycBioID'® (Addgene
plasmid #35700) with primers BirA*-F and BirA*-R.
The resulting PCR product was ligated into the Xbal



site of pCAG-dCas9-eGFP' via Gibson Assembly
(New England Biolabs). To generate the pEX-A-U6-
sgRNA-PuroR plasmid, the PGK-PuroR cassette was
amplified from pPthc-Oct3/4°* and ligated into the
Sacl site of pEX-A-sgRNA'® via Gibson Assembly.
sgRNA protospacer sequences were introduced into
pEX-A-U6-sgRNA-PuroR by circular amplification as
described previously.'” The Znf512-sequence was
amplified from wt E14 cDNA with gene specific pri-
mers and cloned between the AsiSI/Notl sites of
pCAG-eGFP* via Gibson Assembly. The H2B-mRFP
expression plasmid was described previously.**

Generation of stable cell lines

C2C12 cells were transfected with pCAG-BirA*-
dCas9-eGFP using Lipofectamine® 3000 according to
the manufacturer’s instructions. Twenty-four h after
transfection, the culture medium was supplemented
with 10 pg/ml blasticidin S (Thermo Fisher Scientific).
After two weeks of selection, eGFP-positive cells were sin-
gle-cell sorted with a FACS Aria II (Becton Dickinson). A
clonal cell line, stably expressing BirA*-dCas9-eGFP was
used as entry cell line for transfections with sgRNA plas-
mids. Twenty-four h after transfection, the medium was
supplemented with 2 pg/ml puromycin (Applichem).
Two weeks after the start of selection, puromycin
resistant cells were single-cell sorted. Individual clones
(C2C12PrA -dCaso-eGRP/sgRNA
BirA"-dCas9-eGFP
microscopy.

) were checked for correct

localization by epifluorescence

Immunofluorescence staining and image acquisition

Immunofluorescence staining was performed as
described previously.* Briefly, C2C12 cells transfected
with pCAG-BirA*-dCas9-eGFP and the respective
sgRNA were grown on coverslips (thickness 1.5H,
170 pm £ 5 pum; Marienfeld Superior), washed with
phosphate buffered saline (PBS) 24 h after addition of
50 uM biotin and fixed with 3.7 % formaldehyde for
10 min. After permeabilization with 0.5 % Triton X-
100 in PBS, cells were transferred into blocking buffer
(0.02 % Tween, 2 % bovine serum albumin and 0.5 %
fish skin gelatin in PBS) and incubated for 1 h. Anti-
bodies were diluted in blocking buffer and cells were
incubated with antibodies in a dark, humidified cham-
ber for 1 h at room temperature (RT). Nuclei were
counterstained with DAPI (200 ng/ml in PBS, 1 pug/ml
in PBS for 3D-SIM). Coverslips were mounted with
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antifade medium (Vectashield, Vector Laboratories)
and sealed with nail polish. Immuno-fluorescence in
situ hybridization (FISH) detection of telomeres was
performed as described previously.'® Primary antibod-
ies used in this study were: anti-GFP (1:400, Roche),
anti-H3K9me3 (1:500, Active Motif), anti-CENP-B
(1:500, Abcam), Streptavidin conjugated to Alexa 594
(1:800, Dianova) and GFP-booster conjugated to Atto
488 (1:200, Chromotek). Secondary antibodies used in
this study were: anti-rabbit IgG conjugated to Alexa
594 (1:400, Thermo Fisher Scientific) and anti-mouse
IgG conjugated to Alexa 488 (1:300, Invitrogen).

Single optical sections or stacks of optical sections
were acquired with a Leica TCS SP5 confocal micro-
scope using a Plan Apo 63x/1.4 NA oil immersion
objective. Super-resolution images were acquired with
a DeltaVision OMX V3 3D-SIM microscope (Applied
Precision Imaging, GE Healthcare), equipped with a
100x/1.4 Plan Apo oil immersion objective and Cas-
cade II EMCCD cameras (Photometrics). Optical sec-
tions were acquired with a z-step size of 125 nm using
405 and 488 nm laser lines and SI raw data were
reconstructed using the SoftWorX 4.0 software
(Applied Precision). For long-term imaging experi-
ments, C2C12 cells were seeded on 8-well chamber
slides (ibidi) and transfected with ZNF512-eGFP and
H2B-mRFP. Images were obtained with an Ultra-
VIEW VoX spinning disc microscope (PerkinElmer),
equipped with a 63x/1.4 NA Plan-Apochromat oil
immersion objective and a heated environmental
chamber set to 37°C and 5 % CO,. Confocal z-stacks
of 12 um with a step size of 2 um were recorded every
30 min for ~20 h. Image processing and assembly of
the figures was performed with FIJI*® and Photoshop
CS5.1 (Adobe), respectively.

Denaturing pulldown of biotinylated proteins and
sample preparation for mass spectrometry

Four x 107 C2C]2BirA-dCas9-eGEP/sgRNA (el|g jncubated
for 24 h with 50 uM biotin were processed as
described previously.”” > In brief, cells were washed
once in buffer A (10 mM HEPES/KOH pH 7.9,
10 mM KCl, 1.5 mM MgCl,, 0.15 % NP-40, 1x prote-
ase inhibitor (SERVA)), then lysed in buffer A and
homogenized using a pellet pestle. After centrifugation
(15 min, 3200 rcf, 4°C), the pellet was washed once
with PBS. Crude nuclei were resuspended in BiolD
lysis buffer (0.2 % SDS, 50 mM Tris/HCl pH 7.4,
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500 mM NaCl, 1 mM DTT, 1x protease inhibitor), 0.2
% Triton-X100 was added and proteins were solubi-
lized via sonication (Diagenode Bioruptor®, 200 W,
15 min, 30 s “on,” 1 min “off”). Lysates were 2-fold
diluted with 50 mM Tris/HCl pH 7.4, centrifuged
(10 min, 16000 rcf, 4°C) and the supernatant was
incubated with 50 ul M-280 Streptavidin Dynabeads
(Life Technologies) overnight at 4°C with rotation. A
total of 5 washing steps were performed: once with
wash buffer 1 (2 % SDS), wash buffer 2 (0.1 % desoxy-
cholic acid, 1 % Triton X-100, 1 mM EDTA, 500 mM
NaCl, 50 mM HEPES/KOH pH 7.5), wash buffer 3
(0.5 % desoxycholic acid, 0.5 % NP-40, 1 mM EDTA,
500 mM NaCl, 10 mM Tris/HCl pH 7.4) and twice
with 50 mM Tris/HCl pH 7.4. Proteins bound to the
streptavidin beads were digested as previously
described.”” Beads were resuspended in digestion
buffer (2 M Urea in Tris/HCl pH 7.5), reduced with
10 mM DTT and subsequently alkylated with 50 mM
chloroacetamide. A total of 0.35 ug trypsin (Pierce,
Thermo Scientific) was used for overnight digestion at
RT. Desalting of peptides prior to LC-MS/MS analysis
was performed via StageTips.”

LC-MS/MS analysis

Tandem mass spectrometry analysis was performed as
described previously.”” In brief, reconstituted peptides
(20 ul mobile phase A: 2% v/v acetonitrile, 0.1% v/v
formic acid) were analyzed using a EASY-nLC 1000
nano-HPLC system connected to a LTQ Orbitrap Elite
mass spectrometer (Thermo Fisher Scientific). For
peptide separation, a PepMap RSLC column (75 um
ID, 150 mm length, C18 stationary phase with 2 um
particle size and 100 A pore size, Thermo Fisher Sci-
entific) was used, running a gradient from 5% to 35%
mobile phase B (98% v/v acetonitrile, 0.1% v/v formic
acid) at a flow rate of 300 nl/min. For data-dependent
acquisition, up to 10 precursors from a MS1 scan (res-
olution = 60,000) in the range of m/z 250-1800 were
selected for collision-induced dissociation (CID:
10 ms, 35% normalized collision energy, activation q
of 0.25).

Computational analysis

Raw data files were searched against the UniprotKB
mouse proteome database (Swissprot)’! using Max-
Quant (Version 1.5.2.8)** with the MaxLFQ label free
quantification algorithm.”> Additionally to common

contaminants specified in the MaxQuant “contami-
nants.fasta” file, a custom-made file containing
sequences of BirA*-dCas9 and fluorescence proteins
was included in the database search. Trypsin/P
derived peptides with a maximum of 3 missed clea-
vages and a protein false discovery rate of 1 % were set
as analysis parameters. Carbamidomethylation of cys-
teine residues was considered a fixed modification,
while oxidation of methionine, protein N-terminal
acetylation and biotinylation were defined as variable
modifications.

For evaluation of the identified protein groups, Per-
seus (Version 1.5.2.6) was used.*” The data set was fil-
tered for common contaminants classified by the
MaxQuant algorithm and only proteins quantified in
at least 3 out of 4 replicates per cell line were subjected
to statistical analysis. For minor satellite repeats, the
dataset was further filtered to exclude proteins only
detected in the control sample. Missing values were
replaced by a constant value of 17 for significance test-
ing with a two-sided Student’s T-test and a permuta-
tion based FDR calculation. Venn diagrams were
obtained using the Webtool of the University of Gent
(http://bioinformatics.psb.ugent.be/webtools/Venn/).

Abbreviations

BioID proximity dependent biotin
identification

ChIP chromatin immuno precipitation

dCas9 enzymatically dead Cas9

eGFP enhanced green fluorescent protein

FDR false discovery rate

LC-MS/MS liquid chromatography coupled to tan-
dem mass spectrometry

MaS major satellite repeats

MiS minor satellite repeats

PICh Proteomic Isolation of Chromatin
fragments

sgRNA single guide RNA

Tel telomere
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