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Environmental exposures represent a significant health hazard, which cumulatively may be
responsible for up to 2/3 of all chronic non-communicable disease and associated
mortality (Global Burden of Disease Study and The Lancet Commission on Pollution
and Health), which has given rise to a new concept of the exposome: the sum of
environmental factors in every individual’s experience. Noise is part of the exposome
and is increasingly being investigated as a health risk factor impacting neurological,
cardiometabolic, endocrine, and immune health. Beyond the well-characterized effects
of high-intensity noise on cochlear damage, noise is relatively well-studied in the
cardiovascular field, where evidence is emerging from both human and translational
experiments that noise from traffic-related sources could represent a risk factor for
hypertension, ischemic heart disease, diabetes, and atherosclerosis. In the present
review, we comprehensively discuss the current state of knowledge in the field of
noise research. We give a brief survey of the literature documenting experiments in
noise exposure in both humans and animals with a focus on cardiovascular disease.
We also discuss the mechanisms that have been uncovered in recent years that describe
how exposure to noise affects physiological homeostasis, leading to aberrant redox
signaling resulting in metabolic and immune consequences, both of which have
considerable impact on cardiovascular health. Additionally, we discuss the molecular
pathways of redox involvement in the stress responses to noise and how they manifest in
disruptions of the circadian rhythm, inflammatory signaling, gut microbiome composition,
epigenetic landscape and vessel function.
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INTRODUCTION

Around 50% of the world’s population currently resides in urban
environments, following a trend of increasing worldwide
urbanization which is expected to continue in the near future
(The World Bank, 2020). By 2050, the United Nations (UN)
estimates that 6.68 billion people will reside in cities (United
Nations, 2018). These demographic shifts, alongside the SARS-
CoV-2 pandemic pushing the employment paradigm towards a
scheme of working from home (Pew Research Center, 2020),
make a healthy home environment and healthy urban planning
more important than ever (Munzel et al., 2021b). As an important
component of the exposome (Wild, 2005), or the cumulation of
health-related exposures over the course of life (Vrijheid, 2014;
Sainani, 2016; Vineis et al., 2020), excess noise is an increasingly
recognized health risk factor to which urban dwellers are
particularly susceptible because it is found at potentially
hazardous levels in highly trafficked areas and in areas
surrounding airports. The effects of noise have been well-
quantified in the context of occupational hearing loss, wherein
it has been reported that 22 million Americans are exposed to
hazardous levels of noise per year (Tak et al., 2009), and several
studies have indicated that exposure to levels of noise above
85 decibels (dB) in industrial settings has a correlation with
increased systolic blood pressure (Kerns et al., 2018; Li et al.,
2019b). These numerous studies do not account for exposures at
low or moderate levels outside of the workplace, which are sound
pressure levels more relevant to daily exposures. Noise frommore
common sources has also recently been implicated as harmful as
put forward in the most recent World Health Organization
(WHO) Noise Guidelines for the European Region (2018) and
meta-analysis thereof (Guski et al., 2017; Clark and Paunovic,
2018; Kempen et al., 2018). Based on the latter data, significant
health effects have already become evident upon chronic
exposure to an average sound pressure level of >45 dB(A)
during the night and >55 dB(A) during the day. Traffic noise,
particularly during the night, appears to be a major contributor to
the noise burden of the average person (Sorensen et al., 2011;
Heritier et al., 2019; Munzel et al., 2020).

Traffic noise arises from several sources and can span a wide
variety of intensities and frequencies, making the correlation
between exposure and effects on human health difficult to
fully elucidate. The Caerphilly study was established in 1984
and was conducted until the mid-1990s with the goal of
correlating ischemic heart disease with road traffic noise
exposure using exposure levels as mapped in 1984. The study
did not find a significant association between ischemic heart
disease and noise exposure (51–70 dBA, 6–22 h), but did uncover
associations between risk factors including increased systolic
blood pressure, estradiol, total cholesterol, plasma viscosity,
antithrombin III, cortisol, and decreased platelet count
(Babisch et al., 1988). These data provided the first notable
insights into risk posed to cardiovascular health by noise
below the threshold commonly accepted as being hazardous.
Since these initial insights, many more population-based studies
have been conducted (reviewed in detail in Münzel et al. Munzel
et al., 2018a; Munzel et al., 2020; Munzel et al., 2021a). Amongst

these were 22 studies yielding high quality evidence linking road
traffic noise and incidence, prevalence, or mortality from
ischemic heart disease (van Kempen et al., 2002; Kempen
et al., 2018). Correlations between traffic noise exposure and
other cardiovascular diseases like hypertension, stroke, and
diabetes were generally positive but suffered from low quality
evidence due to heterogeneity of methods (van Kempen et al.,
2002; European Region, 2018). These epidemiological findings
are particularly concerning given the near-ubiquitous presence of
noise; theWHOhas estimated that 40% of Europeans are exposed
to road traffic noise exceeding the strongly recommended
daytime level of 55 dB(A) and 30% exceed the lower level of
45 dB(A) recommended at night (Fritschi et al., 2011). More
densely populated Asian urban centers could exceed even those
estimates, with a noise day-evening-night level (Lden) of
60–65 dB(A) (Lelieveld et al., 2015).

The epidemiological evidence that associates traffic noise with
onset and progression of cardiovascular disease is abundant, but
in order to truly understand how noise and cardiovascular disease
are connected, deeper mechanistic insights are necessary. In
human field studies, vitamin C was shown to alleviate
endothelial dysfunction associated with one night of aircraft
noise exposure (Schmidt et al., 2013; Herzog et al., 2019). This
implies that oxidative stress has an important role in the
underlying pathophysiology (Heitzer et al., 2001), which is
also compatible with a number of cardiovascular sequela that
were associated with noise exposure (Figure 1). It was even
shown that aircraft noise exposure for one night increased the

FIGURE 1 | Overall mechanism of noise-triggered adverse health
effects. Noise perception starts in the brain leading to neuronal activation in
association with disruption of circadian rhythms (especially by nighttime noise
causing sleep deprivation and fragmentation), neuroinflammation and
cerebral oxidative stress. Noise activates down-stream stress responses such
as activation of the sympathetic nervous system (SNS) and the hypothalamic-
pituitary-adrenal (HPA) axis leading to stress hormone release such as
catecholamines and cortisol with secondary activation of the renin-
angiotensin-aldosterone system. This cascade will converge in oxidative
stress and inflammation in association with eNOS uncoupling, endothelial
dysfunction and high blood pressure as well as hyperglycemia, well-known
triggers of cardiovascular sequela. Image was created using Biorender.com.
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serum levels of 3-nitrotyrosine-positive proteins in patients with
established coronary artery disease (Schmidt et al., 2015; Kroller-
Schon et al., 2018), whereas train noise exposure for one night
caused a shift to pro-oxidative and pro-atherothrombotic milieu
of the plasma proteome in healthy volunteers (Herzog et al.,
2019). These studies (Schmidt et al., 2013; Herzog et al., 2019) and
others (Schmidt et al., 2021) have demonstrated that the
interruption of sleep may be an important mechanism for
prompting this pro-oxidative environment, and in exposure
while awake, annoyance in response to noise appears to be
correlated to anxiety and depression (Beutel et al., 2016; Beutel
et al., 2020) as well as atrial fibrillation (Hahad et al., 2018; Hahad
et al., 2021b). These human lines of evidence for a role of
oxidative stress or adverse redox signaling for noise-induced
adverse (cardiovascular) health effects were further supported
by numerous mechanistic animal studies that will be discussed in
detail within this review and were already partially summarized
previously (Munzel et al., 2018a; Munzel et al., 2018b; Munzel
et al., 2020; Munzel et al., 2021a).

ANIMAL RESEARCH ON NOISE-INDUCED
CARDIOVASCULAR AND NEURONAL
DYSREGULATION
Research into the mechanisms by which noise exerts detrimental
impact on human health has been underway for decades, though
it has been intermittent. An important paradigm was put forth by
Babisch (Babisch, 2002), which stipulates that noise could have
both a direct and indirect pathway in its impact on human health.
The direct pathway entails auditory damage by high-intensity
sound exposure, which culminates in damage of the inner ear and
stress responses (Figure 1). The indirect pathway is relevant to
“sub-hazardous” noise exposures, including traffic noise, and
manifests as annoyance or disturbance of sleep. These
cognitive/emotional and physiological responses intersect with
the direct pathway by causing stress responses, which can then
manifest as cardiometabolic disease (Daiber et al., 2019a). There
is overlap between the adverse effects of stress and sleep
disruption, which are cardiovascular risk factors in their own
right, but can also lead to increases in catecholamine,
adrenocorticotropic hormone (ACTH), and cortisol secretion,
circadian disruption and decreased melatonin production,
decreased insulin sensitivity and leptin levels, increases in
ghrelin and appetite, upregulation of inflammatory proteins
such as tumor necrosis factor alpha (TNFα), interleukins (e.g.,
IL1, IL6), and C-reactive protein (CRP), as well as increases in
oxidative stress (Medic et al., 2017). Importantly, stress responses
are triggered in the brain and activate the sympathetic nervous
system (SNS), hypothalamic-pituitary-adrenal (HPA) axis, and
endocrine systems which can lead to presentation of the
aforementioned cardiovascular risk factors through hormonal
signaling (Daiber et al., 2019a).

The noise reaction scheme has been generally upheld by pre-
clinical work in the field of noise research (Munzel et al., 2018a;
Munzel et al., 2018b; Munzel et al., 2020; Munzel et al., 2021a).
Evidence that stress responses are a key component in the appearance

and exacerbation of cardiovascular risk factors has been both
explicitly and tangentially explored. Enhanced glutaminergic
signaling in the amygdala of rats (Singewald et al., 2000) and
amygdalar activation in humans (Osborne et al., 2020; Hahad
et al., 2021a; Osborne et al., 2021) demonstrates a stress-induced
arousal in response to noise. Activation of the HPA axis is evident in
the increased plasma corticosterone of noise-exposed rats and
increases in plasma cortisol in noise-exposed mice aligns with
readouts of sympathetic activation, adrenaline and noradrenaline,
increased in plasma and kidney of noise-exposed mice (Munzel et al.,
2017) and rats (Gannouni et al., 2013). Activation of these stress
response systems accounts for the adverse cardiovascular readouts
detected in noise-exposed animals, which includes several reports of
increases in blood pressure (Peterson et al., 1981; Peterson et al.,
1984a), increased myocardial fibrosis (Herrmann et al., 1994), as well
as atrial interstitial fibrosis (Lousinha et al., 2020). Our own work
sheds light on themolecular workings behind these effects. Using our
standardized noise exposure protocol, we reliably report elevation of
blood pressure in noise-exposed animals, which exacerbates pre-
existing hypertension. Our model also finds increases in leukocyte
infiltration into the aortic endothelium, causing endothelial
dysfunction (Kroller-Schon et al., 2018) that appears to be
phagocytic NADPH oxidase (Nox2) (Kroller-Schon et al., 2018)
and macrophage/monocyte-dependent (Frenis et al., 2021). These
effects can be prevented by induction of the antioxidant principle
nuclear factor E2 related factor-2 (Nrf2)/heme oxygenase 1 (HO-1)
axis (Bayo Jimenez et al., 2021), implying a critical link between
oxidative stress and the onset of adverse cardiovascular effects of
noise. This postulate is also supported by numerous oxidative stress
markers found in noise-exposed animals such as 3-nitrotyrosine-,
malondialdehyde- or 4-hydroxynonenal-positive proteins in different
tissues and plasma/serum as well as S-glutathionylated endothelial
nitric oxide synthase (eNOS) and uncoupled neuronal nitric oxide
synthase (nNOS) and directly measured reactive oxygen species
(ROS) formation by high performance liquid chromatography
(HPLC)-based quantification of 2-hydroxyethidium and various
other staining techniques or oxidative burst (Munzel et al., 2017;
Kroller-Schon et al., 2018; Kvandova et al., 2020; Steven et al., 2020;
Frenis et al., 2021). Classical biomarkers of oxidative stress such as
malondialdehyde-, 4-hydroxynonenal or 3-nitrotyrosine-positive
proteins (described for various cardiovascular disease conditions
Daiber and Chlopicki, 2020; Daiber et al., 2021) were also
observed upon noise exposure.

For a full accounting of the studies of noise exposure in
animals with a focus on non-auditory damage see Table 1.
However, it is noteworthy that studies arising from different
laboratories use different protocols for noise exposure, which
accounts for variation in the time of day and duration of the
exposure, the length of the noise event (if nonconstant), the type
of noise, and the species of the subject.

REDOX SWITCHES ACTIVATED BY NOISE
EXPOSURE

Oxidative stress is a central pathomechanism in response to
noise exposure as demonstrated by genetic deletion of the
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TABLE 1 | Studies on non-auditory noise effects on cardiovascular and endothelial dysfunction, inflammation or oxidative stress in animalsa. Only articles that are not
discussed in detail in the main article text are listed here.

Study Animals and
model

Noise scenario Major outcome of noise exposure Ref

Peterson 1981 Rhesus
Monkey

85 dB, 97 dB peak, unknown
type, 9 months

Blood pressure elevation ∼30 mmHg Peterson et al. (1981)

Borg 1981 Rat 80 dB, 100 dB, unknown type,
10 h, lifelong

Noise-exposed spontaneously hypertensive rats had
shorter lifespan and higher incidence of cardiovascular
disease, but no differences were found in normotensive
rats

Borg and Jarplid (1981)

Peterson 1984 Macaque
Monkey

86.6 dB, construction noise, 4 h/
8 h, 97 days

Mean blood pressure elevation remained elevated after
noise cessation, but heart rate returned to normal
relatively quickly

Peterson et al. (1984b)

Kirby 1984 Macaque
Monkey

95 dB, broadband noise, 30 m Offspring of hypertensive monkeys were more sensitive
to blood pressure increases from loud noise

Kirby et al. (1984)

Dengerink 1985 Guinea Pigs 120 dB, white noise, 30 m Effects in cochlear vessel lumen and RBC behavior
appear to normalize after 2 days of “noise washout”

Dengerink et al. (1985)

Paparelli 1992 Rat 100 dB, white noise, 12 h Increased density of noradrenergic cardiac fibers in
young animals. In aged animals, increased aortic
maximal response to the α-agonist on the aortic
musculature and reduced responsiveness to the
β-agonist in cardiac fibers

Paparelli et al. (1992)

Morvai 1994 Rat 95 dBA, industrial noise, 6 h,
3 weeks

Noise and alcohol modify the α-adrenergic effect of
noradrenaline

Morvai et al. (1994)

Herrmann 1994 Rat 65 dBA, unknown type,
52 weeks

Increased microvessel area, cardiac fibrosis, and
ischemic myocardial lesions in SHR exposed to noise

Herrmann et al. (1994)

Breschi 1995 Rat 100 dB, white noise, 1 h/6 h Diazepam and clonazepam pre-treatment reversed the
effects of noise on CBR binding and protected cardiac
tissue and aortic responses from the effects of 6 h noise
stress

Breschi et al. (1995)

Salvetti 2000 Rat 100 dBA, white noise, 6/12 h Significant decrease in the binding sites availability of
peripheral benzodiazepine receptors following noise

Salvetti et al. (2000)

Singewald 2000 Rat 95 dB, unknown type, 3 m Noise stress resulted in exaggerated glutaminergic
responses in the amygdala of SHR versus Wistar-Kyoto

Singewald et al. (2000)

Bauer 2001 Sheep 161 dB, airborne impulse noise,
20 impulses

Fetal heart rate was affected in both REM and NREM
sleep, power of delta, theta, and alpha band power was
reduced and cortical activity was detected

Bauer et al. (2001)

Gesi 2002 Mouse 100 dBA, white noise, 6 h Cardiomyocytes from the right atria and left ventricles
display disarranged cristae and matrix dilution in
mitochondria

Gesi et al. (2002)

Lenzi 2003 Rat 100 dBA, white noise, 12 h Increased catecholamine content in myocardium, DNA
damage in cardiomyocytes, mitochondrial membrane
swelling in right atrium

Lenzi et al. (2003)

Frenzilli 2004 Rat 100 dBA, white noise, 12 h DNA damage in the adrenal gland, possible redox
involvement

Frenzilli et al. (2004)

Baldwin 2007 Rat 90 dB, unknown type, 15 m, 3/
5 weeks

Noise increased leakiness of mesenteric arteries,
mitigated by vitamin c

Baldwin and Bell (2007)

Antunes 2013 Rat 90 dB, low frequency, unknown
duration

Significant myocardial fibrosis detected via CAB staining
and alterations in connexin 43 and collagen expression in
noise-exposed rats

Antunes et al. (2013a); Antunes et al.
(2013b); Antunes et al. (2013c)

Arpornchayanon
2013

Guinea Pigs 106 dB, unknown type, 30 m TNF-α signaling is activated in the cochlea following
noise exposure, causing vessel constriction. Improved
by etanercept.

Arpornchayanon et al. (2013)

Gannouni 2013 Rat 70 dB, 80 dB, unknown type,
6 h, 90 days

Increased corticosterone levels, affected various
parameters of the endocrine glands and cardiac
function. Markers of oxidative stress (catalase,
superoxide dismutase and lipid peroxidation) were
increased

Gannouni et al. (2013)

Gannouni 2014 Rat 70 dBA, unknown type, 6 h/day,
3/5 m

Structural alterations within the adrenal gland consistent
with chronic stress. Signs of necrosis and inflammation
in myocardium

Gannouni et al. (2014)

Said 2016 Rat 80–100 dB, chronic and
intermittent, unknown type, 8 h,
20 days

Increases in plasma levels of corticosterone, adrenaline,
noradrenaline, endothelin-1, nitric oxide and
malondialdehyde. Decreases in superoxide dismutase

Said and El-Gohary (2016)

(Continued on following page)
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Nox2, which can completely prevent adverse noise effects
(Kroller-Schon et al., 2018). We have also demonstrated
additive effects of noise-induced oxidative stress with ROS
formation originating from angiotensin-II triggered arterial
hypertension, an animal model well-known for its pronounced
activation of the Nox2 isoform of NADPH oxidases (Steven
et al., 2020). Our laboratory also provided molecular proof that
the phagocytic Nox2 in lysozyme M (LysM)-positive
inflammatory cells (most probably monocytes and
macrophages) is responsible for adverse cardiovascular
effects of noise since genetic ablation of these LysM-positive
cells (by diphtheria toxin treatment of mice with transgenic
LysM-specific diphtheria toxin receptor expression) prevented
noise-induced vascular oxidative stress, inflammation,
endothelial dysfunction and increase in blood pressure
(Frenis et al., 2021). A pro-oxidative phenotype was also
revealed by RNA sequencing data indicating down-
regulation of genes encoding for antioxidant defense
proteins such as superoxide dismutase 1 and glutathione
peroxidase 1 as well as antioxidant transcription factors
such as Forkhead box proteins O (FOXO) (Munzel et al.,
2017). Untargeted plasma proteome analysis supported a
pro-inflammatory phenotype in noise-exposed mice that
was associated with a pro-oxidative shift in ratio of
unsaturated to saturated fatty acids, enhanced interaction of
leukocytes with the endothelium and overall microvascular
dysfunction, which was all corrected by genetic deletion of
Nox2 (Eckrich et al., 2021). The noise-induced oxidative stress
leads to secondary damage such as adverse redox signaling on
eNOS and nNOS as previously reviewed (Daiber et al., 2020).
Direct scavenging of nitric oxide by the diffusion-controlled

reaction with superoxide also represents a redox switch and
supports an antagonistic action of superoxide on nitric oxide
signaling (Daiber et al., 2017b).

Noise Causes Activation of the Phagocytic
NADPH Oxidase With Subsequent Redox
Activation of Inflammatory Cells
Professional phagocytes possess a powerful tool to aid in their
innate immune activity: Nox2 (or gp91phox). Namely
neutrophils, monocytes, macrophages, and their central
nervous system (CNS) equivalent microglia are constitutive
expressors of Nox2. While this enzyme is critically important
in the normal defense against invading pathogens, it also has an
apparent role in the development and progression of
cardiovascular diseases, including endothelial dysfunction
(Chan and Baumbach, 2013), hypertension (Murdoch et al.,
2011), ischemic heart disease (Guzik et al., 2006), and
atherosclerosis (Sorescu et al., 2002). Importantly, when
reconstituting Nox2-containing wildtype monocytes back to
LysM-positive cell ablated mice, the protection from
angiotensin-II induced hypertension is absent—indicating that
vascular impact of Nox2 expression is dominated by its
abundance in phagocytic cells (Wenzel et al., 2011). Nox2
inhibition has also been shown to mitigate anxiety-like
phenotypes and oxidative stress associated with chronic mild
stress (Lv et al., 2019). Accordingly, our own studies demonstrate
that upon noise exposure, Nox2 protein and mRNA is
consistently upregulated in the murine aorta (Munzel et al.,
2017) alongside activation mechanisms of Nox2, such as
angiotensin-II dependent diacylglycerol-mediated protein

TABLE 1 | (Continued) Studies on non-auditory noise effects on cardiovascular and endothelial dysfunction, inflammation or oxidative stress in animalsa. Only articles that are
not discussed in detail in the main article text are listed here.

Study Animals and
model

Noise scenario Major outcome of noise exposure Ref

Lyamin 2016 Beluga Whale 140–175 dB, unknown type,
2–4 h, 60 events

Heart rate acceleration following noise exposure. Calves
were more susceptible to the effects of noise and did not
habituate

Lyamin et al. (2016)

Konkle 2017 Rat 87.3 dBA, unknown type,
15 min–1 h, 21 days

Plasma ACTH, adrenal gland weight, IL6, IL1b levels
were unchanged following noise exposure. Increases in
TNFα and CRP were seen.

Konkle et al. (2017)

Lousinha 2018 Rat 120 dB, high intensity infrasound,
28 days

Exposed mice had prominent perivascular tissue with
notable fibrosis that was mitigated by dexamethasone
treatment.

Lousinha et al. (2018)

Yang 2020 Mouse 105 dB SPL, unknown type,
1/4 h

DNA damage response genes appear to fail to respond
to noise-induced DNA damage in cochlea, heart, liver,
and cortex

Yang and Guthrie (2020)

Lousinha 2020 Rat 120 dB, high intensity infrasound,
12 weeks

Atrial interstitial fibrosis was increased and connexin 43
weas decreased following noise exposure

Lousinha et al. (2020)

Kvandova 2020 Mouse 72 dBA, intermittent aircraft,
4 days

Oxidative parameters and DNA damage increased
following noise exposure with synergetic increases in
Ogg-/- mice.

Kvandova et al. (2020)

Gogokhia 2021 Rat High intensity white noise, 1 h,
10 days

Male rats show higher anxiety-like response following
noise

Gogokhia et al. (2021)

Bayo Jimenez
2021

Mouse 72 dBA, intermittent aircraft,
4 days

Induction of NRF2/HO-1 protected against oxidative
damage, normalized blood pressure, and vascular
endothelial function

Bayo Jimenez et al. (2021)

aTable was taken from PhD thesis of Katie Frenis.
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kinase C activation with subsequent phosphorylation of themajor
cytosolic regulator of Nox2, p47phox, at serine 328 (Figure 2)
(Kroller-Schon et al., 2018).

We also find that oxidative stress in the aorta, heart, and brains
of noise-exposed mice is significantly increased over those of
unexposed controls, which is entirely mitigated in mice with a
genetic deletion of Nox2 (Kroller-Schon et al., 2018). These mice
were similarly protected from increases in blood pressure,
dysregulation of NO signaling, and endothelial dysfunction,
which is in line with reports of NOX-derived superoxide being
partially determinative in the endothelial dysfunction
accompanying genetic, angiotensin, and deoxycorticosterone
acetate (DOCA) salt hypertension (Laursen et al., 1997; Zalba
et al., 2001; Harrison et al., 2003). Nox2 deletion also protected
mice frommicrovascular dysfunction in the cerebral microvessels
and proteomic analysis demonstrated that there was no noise-
induced increase in inflammatory signaling in the plasma
(Eckrich et al., 2021). In addition, Nox2 inhibition by
GSK2795039 suppressed ROS signals in cerebral cryo-sections

of noise-exposed mice (Kroller-Schon et al., 2018). It may be also
speculated that noise-induced ROS formation promotes an
inflammatory phenotype in the heart, vessels and the brain as
central mediators of inflammatory reactions such as the NLR
family pyrin domain containing 3 (NLRP3) inflammasome and
high-mobility group box 1 protein (HMGB1) are activated under
oxidative stress conditions via redox switches as well as redox-
sensitive transcription factors such as nuclear factor kappa B
(NFκB) (Wenzel et al., 2017; Steven et al., 2019). This is probably
the reason, aside from stress hormone-dependent activation and
infiltration of immune cells into the vasculature, for the observed
noise-triggered inflammation in exposed mice (Munzel et al.,
2017; Kroller-Schon et al., 2018; Steven et al., 2020; Eckrich et al.,
2021; Frenis et al., 2021) but also the shift to a pro-
atherothrombotic phenotype of the plasma proteome of train
noise-exposed healthy human subjects (Herzog et al., 2019),
epigenetic changes that promote immune cell activation and
expression of CRP (Cai et al., 2017; Eze et al., 2020) and
amygdala activation driven coronary atherosclerosis (Osborne

FIGURE 2 | Activation of the phagocytic NADPH oxidase (Nox2, gp91phox) by noise (Kroller-Schon et al., 2018) and role of LysM-positive myelomonocytic cells for
noise-induced cardiovascular inflammation and damage (Frenis et al., 2021). Noise causes cerebral and vascular ROS formation as envisaged by more pronounced
dihydroethidium (DHE)-derived red fluorescence in cerebral and aortic cryo-sections that was partially corrected in gp91phox (Nox2) knockout mice (representative
stainings). Nox2 activation by noise was probably based on angiotensin-II (ATII)-dependent AT1-receptor activation with subsequent activation of phospholipase C
and diacylglycerol (DAG) formation, a strong protein kinase C (PKC) activator. PKC activation was documented by noise-triggered phosphorylation of the PKC target
myristoylated, alanine-rich C kinase substrate (MARCKS) as well as phosphorylation of p47phox at serine 328, a regulatory cytosolic subunit of Nox2. Translocation of
pSer328-p47phox, among other cytosolic regulators, to the cytoplasmatic membrane-bound gp91phox leads to full activation of Nox2 and subsequent superoxide
formation. Genetic ablation by treatment of mice with LysM-positive cell (myelomonocytic) specific overexpression of an inducible diphtheria toxin receptor (LysMiDTR)
with low dose diphtheria toxin (Wenzel et al., 2011). Mice free of LysM-positive cells showed no noise-dependent infiltration of monocytes, macrophages or granulocytes
and preserved endothelial function, normal blood pressure and no aortic oxidative stress indicating that LysM-positive cell ablation protects the periphery from noise-
induced damage. In contrast, microglia in the brain of LysMiDTR mice were not ablated by diphtheria toxin and noise-induced neuroinflammation, cerebral oxidative stress
and release of stress hormones was not prevented. Image was created using Biorender.com. DHE staining images were reused from (Kroller-Schon et al., 2018) with
permission.
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et al., 2020; Hahad et al., 2021a; Osborne et al., 2021). Noise-
mediated inflammation in mice was also prevented by genetic
Nox2 deletion as shown by two independent preclinical studies
(Kroller-Schon et al., 2018; Eckrich et al., 2021) and antioxidant
pharmacological activation/induction of the Nrf2-HO1-axis
(Bayo Jimenez et al., 2021).

We were able to further discern that Nox2-bearing cells were
primarily responsible for noise-induced cardiovascular and
cerebral damage through a selective ablation protocol
targeting cells expressing lysozyme M. Monocytes and
macrophages are generally LysM+, whereas microglia are only
weakly LysM+ or even LysM−. As a result, we found that upon
ablation, blood pressure, endothelial function, and oxidative
stress parameters were largely protected in the periphery
(Figure 2) (Frenis et al., 2021). However, an exaggerated
stress response measurable through plasma corticosterone
level was seen in mice whose monocytes/macrophages were
ablated, accompanied by a neuroinflammatory phenotype.
Markers of microglial activation, CD68, CD86, and MHC-II,
were significantly elevated in flow cytometry analysis of noise-
exposed murine brains and not normalized by genetic ablation
LysM-positive cells (Figure 2) (Frenis et al., 2021). This
apparent disparity somewhat implies that the blood-brain-
barrier may be affected by noise, which has been reported in
hypertension as well (Setiadi et al., 2018). Furthermore, the pro-
oxidative and pro-inflammatory environment appears to have
also affected the state of astrocytes in the brains of noise-
exposed mice, as an increase in GFAP+ staining can be
detected. These results are in line with reports of Nox2
activation in microglia in several pathologies affecting the
cerebrovasculature (Simpson and Oliver, 2020) and may
connect these studies in animals with data from the
Gutenberg Health Study of 11,905 participants that
demonstrates that annoyance to noise predicts depression
and anxiety (Beutel et al., 2020).

Noise Causes Inactivation and Uncoupling
of eNOS
The nitric oxide synthase (NOS) family is critically important for
the normal functioning of vessels, due to their role in the
production of bioavailable nitric oxide (•NO) (Forstermann
and Munzel, 2006; Daiber et al., 2019b). Because of the
actions of •NO, the presence of normally functioning eNOS
and nNOS is cardioprotective (Schulz et al., 2008). However,
there is a substantial chink in NOS’s cardioprotective armor:
eNOS requires a cofactor, tetrahydrobiopterin (BH4), to facilitate
the transfer of electrons in order to produce •NO. The
physiological consequence is that when BH4 levels are
reduced, the rate at which this electron transfer occurs is
slower than the rate of oxidative degradation, which effectively
causes NOS to produce superoxide (Forstermann and Munzel,
2006). BH4 can be oxidized to an unusable form by ROS, which
sets the stage for NOX-derived ROS to further “kindle” the
production of other reactive intermediates by encouraging the
uncoupling of NOS enzymes. In fact, superoxide is regarded as
somewhat of a direct antagonist of nitric oxide (Gryglewski et al.,

1986; Daiber et al., 2017b). Decreased BH4 levels in response to
noise exposure were so far not reported.

In addition to cofactor BH4 availability, eNOS is tightly
regulated through redox mechanisms (Schulz et al., 2014;
Daiber et al., 2017a). The redox status of eNOS greatly
impacts its synthase activity and can be modulated by the
presence of oxidative stress. There are several sites for
phosphorylation which can either enhance or decrease the
synthase activity of eNOS, however, the most common
readouts of eNOS activity are at Ser1177 (Akt-dependent
positive effect Dimmeler et al., 1999) as well as Tyr657 and
Thr495 (both negative effects) (Figure 3). Importantly, all
phosphorylations are redox-sensitive and stimuli-dependent,
which is well-established for the protein tyrosine kinase 2
(PYK-2)-dependent phosphorylation at Tyr657 (Fisslthaler
et al., 2008; Loot et al., 2009) and the protein kinase C (PKC)-
mediated phosphorylation at Thr495 (Fleming et al., 2001; Lin
et al., 2003) as both kinases can be activated by hydrogen
peroxide. In the presence of oxidative stress, eNOS can also
undergo S-glutathionylation, leading to uncoupling (Chen
et al., 2010; Karbach et al., 2014). Finally, peroxynitrite
appears to have the ability to release zinc from the zinc-
thiolate complex coordinating eNOS monomers in the active
dimer, representing another mechanism for uncoupling via
oxidative stress (Zou et al., 2002).

In our own noise studies, we consistently reported an
overexpression and overactivation of NADPH oxidase (NOX)
enzymes (Munzel et al., 2017; Kroller-Schon et al., 2018; Steven
et al., 2020). It is most likely that due to this overexpression of
superoxide-producing enzymes, eNOS in the aorta (and nNOS in
the brain) uncouples following noise exposure, as shown by
dihydrethidium staining with eNOS inhibitor NG-nitro-L-
arginine methyl ester (L-NAME) (Kroller-Schon et al., 2018;
Steven et al., 2020; Frenis et al., 2021). The paradoxical
increase in eNOS protein expression and activating Ser1177
phosphorylation in mice exposed to 4 days of aircraft noise
can be best explained by the presence of a largely uncoupled
eNOS enzyme. Upregulation of an uncoupled eNOS and
increased Ser1177 phosphorylation of an uncoupled eNOS
would be detrimental through enhanced superoxide, largely
compatible with the observed diminished NO bioavailability
(Munzel et al., 2017; Kroller-Schon et al., 2018). However, we
also found a reduction in activating phosphorylation at Ser1177
in hypertensive mice who were also exposed to 7 days of noise
[mean 72 dB(A)] (Steven et al., 2020). Since oxidative stress was
normalized in noise-exposed mice with Nox2 deletion (Kroller-
Schon et al., 2018), it is presumptive that extinguishing the
initiating spark of superoxide production from Nox2 was
sufficient to prevent the uncoupling of eNOS in these mice. In
the brains of noise-exposed mice, however, nNOS appeared to be
downregulated and uncoupled, which was also preventable
through the deletion of Nox2 (Kroller-Schon et al., 2018). In
addition, we found eNOS S-glutathionylation in aorta and heart
of noise exposed mice (Munzel et al., 2017) that was normalized
in Nox2 knockout mice (Kroller-Schon et al., 2018) and was
aggravated in an additive manner in noise-exposed hypertensive
mice (Steven et al., 2020). Increased eNOS phosphorylation at
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Thr495 or Tyr657 in response to noise exposure was so far not
reported but could be expected due to the redox-sensitivity of the
kinases PKC and PYK-2 that confer these phosphorylations.
Monomerization of eNOS due to zinc-sulfur complex
oxidation in noise-exposed animals was so far also not observed.

Noise Causes Down-Regulation,
Inactivation and Uncoupling of nNOS
In our own studies, noise exposure of mice resulted in decreased
nNOS protein expression and triggered uncoupling of nNOS in
cerebral tissue. Noise caused phosphorylation of nNOS at serine
847 (Kroller-Schon et al., 2018), which was previously reported to
be associated with inhibited (Komeima et al., 2000) or even
uncoupled nNOS enzyme (Kasamatsu et al., 2014). Of note,
phosphorylation at serine 847 of nNOS is mediated by the
redox sensitive calcium/calmodulin-dependent protein kinase
(Kasamatsu et al., 2014). The oxidative stress signal in brains
of noise-exposed mice could be also partially blocked by specific
inhibition of nNOS by ARL-17477, which was in support of
nNOS-derived ROS generation and compatible with uncoupling
of nNOS enzyme (Kroller-Schon et al., 2018). Oxidative depletion
of the protective neurotransmitter •NO also provides an
explanation for the observed noise-induced neuroinflammatory
phenotype, loss of the protective antioxidant transcription factor
Foxo3, all of which contributes to the noise-induced cerebral
oxidative stress (Kroller-Schon et al., 2018; Frenis et al., 2021). In
addition, suppression of nNOS signaling and shift to a pro-
oxidative/inflammatory phenotype of noise-exposed brains

provides a feasible explanation for impairment of cognitive
development (memory/learning) of school children exposed to
high noise levels (Stansfeld et al., 2005). In line with this, impaired
learning andmemory in adult rats was also found to be associated
with Nox2 activity (Kan et al., 2015).

Noise Upregulates Endothelin-1 That
Activates Nox2 and Vice Versa
We also found induction of endothelin-1 expression in the aorta of
noise-exposed mice and also exacerbation of endothelin-receptor
signaling as envisaged by more pronounced endothelin-1 dependent
vasoconstriction (Munzel et al., 2017; Kroller-Schon et al., 2018).
Importantly, endothelin-1 is not only one of the most potent
endogenous vasoconstrictors but also a potent activator of Nox2
activity, by induction of gene expression (Duerrschmidt et al., 2000;
Chen et al., 2012) and direct endothelin-receptor-dependent
NADPH oxidase derived ROS formation—demonstrated by ex
vivo stimulation with endothelin-1 or ROS suppression by
ETA-receptor blockade of vascular cells (Cerrato et al., 2012; Chen
et al., 2012; Steven et al., 2018) or white blood cells (Steven et al.,
2017). Endothelin-1 triggered NADPH oxidase-dependent ROS
formation was also observed in different models of hypertension
(Li et al., 2003a; Li et al., 2003b; Li et al., 2003c). Vice versa, it is also
well established that oxidative stress conditions in general and Nox2-
derived ROS formation in particular may increase the activity of the
endothelin-1 promoter and thereby increase endothelin-1 expression
(Kahler et al., 2000; Kahler et al., 2001). Given the cross-activation of
Nox2 and endothelin-1, the stimulation of either pathwaymay lead to

FIGURE 3 | Adverse regulation of eNOS function by noise. (A) Schematic explanation of increased eNOS S-glutathionylation in mouse tissues (a surrogate marker
for uncoupling of the protein) upon noise exposure (Munzel et al., 2017; Kroller-Schon et al., 2018; Steven et al., 2020). In the “coupled” eNOS homodimer, electrons are
usually transferred from the NADPH and flavins to the hem iron. Cysteine residues 689 and/or 908 undergo S-glutathionylation with structural changes (Chen et al.,
2010), followed by misdirection of the electrons to molecular oxygen and superoxide formation, termed “uncoupled” state of eNOS. (B) eNOS activity is regulated
by various kinase-dependent modifications such as activating phosphorylation at serine 1177 or Ser615 and inactivating ones at serine 114, threonine 495 (or 497
depending on the species) and tyrosine 657 (Fleming and Busse, 2003; Mount et al., 2007). Although pThr495-and pTyr657-eNOSwas not reported for noise exposure,
these inactivating phosphorylations may be expected since they are mediated by oxidatively activated kinases (PKC and PYK-2). Whereas higher eNOS protein
expression and Ser1177 phosphorylation was observed in noise (4d)-exposed mice indicating counterregulatory upregulation and activating modification to rescue
uncoupling of eNOS enzyme (Munzel et al., 2017; Kroller-Schon et al., 2018), suppression of pSer1177-eNOS was observed in noise-exposed hypertensive mice
exposed to 7 days of noise (Steven et al., 2020). Other eNOS phosphorylation sites are not completely explored with respect to their functional effects (Ser633 and
Tyr81). Image was created using Biorender.com.
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a vicious circle that contributes significantly to the cardiovascular
oxidative stress and damage (Daiber et al., 2017a). Mitochondrial
ROS can also stimulate the release of endothelin-1 as shown in
pulmonary artery cells (Ouyang et al., 2012). Endothelin-1 shares also
several cross-activation mechanisms with the renin-angiotensin-
aldosterone system as evident from higher endothelin-1 expression
levels in angiotensin-II treated hypertensive rats (Rajagopalan et al.,
1997) and by decreased blood pressure as well as lower plasma
angiotensin-II levels in hypertensive animals with bosentan (ETA/B
receptor blocker) therapy (Tran et al., 2009). Noise-driven renin-
angiotensin-aldosterone system activation by stress hormones can
lead to endothelin-1 upregulation or vice versa noise-triggered
oxidative stress can stimulate endothelin-1 release and
subsequently higher renin-angiotensin-aldosterone system activity.
By these mechanisms, endothelin-1 may also contribute to the
pronounced toxic effects of noise on Alport (Col4a3-/-) mice who
display glomerular dysfunction and hearing loss (Meehan et al.,
2016).

OTHER NOISE-INDUCED PATHWAYS
THAT AFFECT SYSTEMIC REDOX
PROCESSES OR ARE AFFECTED BY
OXIDATIVE STRESS

Noise and the Circadian System
The circadian clock regulates a number of essential biological
functions such as sleep, body temperature, appetite, cognitive
functions via time-dependent hormone release such as cortisol or
melatonin (Van Laake et al., 2018). Circadian disruption has been
identified as a risk factor for cardiovascular disease independently
of noise (Crnko et al., 2019), but has also been associated with
high (night-time) noise exposure burden (Eze et al., 2017; Munzel
et al., 2020; Munzel et al., 2021a) or disrupted sleep pattern such
as in shift workers (Furlan et al., 2000; Morris et al., 2016; Thosar
et al., 2018). Importantly, given the context of the previous
sections detailing the importance of oxidative stress in the
adverse effects of noise exposure, redox mechanisms have also
been implicated as important in the “redox control of cellular
timekeeping” (Putker and O’Neill, 2016). Direct redox
modifications of circadian components cryptochrome (CRY),
period (PER), and F-box/leucine rich-repeat protein 3
(FBXL3) arise as thiol oxidation/reduction and the formation
or disruption of zinc-sulfur complexes, which then control the
binding of these components to the regulators circadian
locomotor output cycles protein kaput (CLOCK) and brain
and muscle Arnt-like protein 1 (BMAL1) complex, an
essential part of the feedback mechanism inherent to circadian
control (Figure 4) (Schmalen et al., 2014). While the direct redox
modifications of clock components in the context of noise
exposure have yet to be realized, other regulatory redox
mechanisms also exist. Redox-sensitive kinases, histone
deacteylases, stress-response proteins, and transcription factors
can be modulated by the presence of ROS with further impact on
the clock system (Figure 4) (Li et al., 2019a). The impact of
various environmental stressors, including mental/social

isolation stress, air pollution, heavy metals and pesticides on
the circadian clock, especially its adverse redox regulation, was
reviewed in (Li et al., 2020).

Bridging the concepts of circadian disruption by noise and
redox control of the clock system, there is evidence of an
important role in environmental cues and stressors in the
regulation of the circadian rhythm (Li et al., 2019a). In mice
exposed to continuous aircraft noise for 4 days [mean sound
pressure level (SPL) of 72 dB(A)], expression patterns of key
components of the circadian pathway in aorta and kidney were
altered in comparison to unexposed controls (Kroller-Schon
et al., 2018), including downregulation of Per1 and REV-ERB-
α/β (Nr1d1/2) or RORα and upregulation of Bmal1, Cry1, Cul1,
Prkag1/2, Parp1. In total, more than 30 circadian genes were
altered in their expression levels. Downregulation of forkhead-
box-protein O3 (FoxO3), a transcription factor that seemed to
function as a central signalling hub regulating the circadian genes
in the vascular tissue, was also reported. Pharmacological
activation of FoxO3 by bepridil successfully prevented noise-
induced oxidative stress in the aorta and the endothelial
dysfunction that arises from it (Kroller-Schon et al., 2018). In
a study of the transcriptomics of neurons within the inferior
colliculus, a brain structure that has an important role in sound
processing, distinct profiles between day and night-time exposure
appeared in clock genes (Park et al., 2016).

FIGURE 4 | (Redox) dysregulation of circadian clock by noise. The clock
core components consist of the positive regulators circadian locomotor
output cycles protein kaput (CLOCK) and brain and muscle Arnt-like protein
(BMAL) that directly control circadian gene expression as well as the
negative regulators period (PER) and cryptochrome (CRY) (Van Laake et al.,
2018). Numerous components are redox regulated (reviewed in Li et al., 2020)
and modified by aircraft noise exposure of mice (Kroller-Schon et al., 2018).
ROS, reactive oxygen species; AMPK, AMP-activated protein kinase; MAPK,
mitogen-activated protein kinase; PARP1, poly (ADP-ribose) polymerase-1;
FoxO3, forkhead box O; RORA, RAR-Related Orphan Receptor; SIRT1,
sirtuin 1; HO-1, heme oxygenase 1, HIF1α, hypoxia-inducible factor 1alpha;
PGC1α, peroxisome proliferator-activated receptor gamma coactivator 1-
alpha; RONS, reactive oxygen and nitrogen species. Scheme summarized
from (Li et al., 2020) with permission under the the terms of the Creative
Commons CC BY license. Image was created using Biorender.com.
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Noise and the Microbiome
The investigation of gut microbiota in the pathomechanisms of
disease has experienced an explosion in recent years. The
microbiome affects fundamental processes such as
inflammation and redox signalling in the gastro-intestinal tract
(Figure 5) (Campbell and Colgan, 2019). As a result, significant
associations between the state of gut microbiota and
cardiometabolic diseases have been made (Jones and Neish,
2017; Campbell and Colgan, 2019). Additionally, the existence
of a gut-brain axis appears to be a central player for mood and
behavior regulation as well as for the development of
neuropsychiatric disorders and intestinal inflammatory disease
(Collins et al., 2012; Cryan and Dinan, 2012). This may also be of
particular interest for the present review as transportation noise is
obviously also associated with a higher incidence of all-cause
dementia, namely Alzheimer’s disease (Cantuaria et al., 2021).

These states are noteworthy in the current context due to their
known cardiovascular andmental risk (Hahad et al., 2019). Relatively
few studies explicitly probe the relationship between noise exposure
and alterations of the gut microbiome, but those that have been
conducted show notable effects of noise. In one study of chronic
exposure for 4 h/d during the sleeping phase over the course of
30 days [88–98 dB(A)], alterations of the microbiome-gut-brain axis
were reported (Cui et al., 2018). The mice of the study were a model
for Alzheimer’s disease, and chronic noise exposure was associated
with cognitive impairment and amyloid beta peptide (Aβ)
accumulation. The mice correspondingly had decreased
neurotransmitter levels (5-HT and GABA), increased markers of
neuroinflammation, and impaired intestinal and brain endothelial
tight junction protein expression (e.g., claudins and occludin).
Underlying these changes, alterations of the intestinal flora were
revealed by 16S ribosomal RNA sequencing, which was supported by

FIGURE 5 | Noise and the microbiome. The gastro-intestinal microbiome is connected to neuropsychiatric processes via the gut-brain axis and thereby affects
neuropsychiatric disorders, whereas mood and neuropsychiatric health may affect intestinal inflammatory disease (Collins et al., 2012; Cryan and Dinan, 2012). Noise
causes neuronal activation with subsequent stress hormone release and is associated with annoyance, depression and dementia. Accordingly, noise triggers alterations
of the gut-brain axis leading to a shift to harmful bacteria in the intestine associated with cognitive impairment and Aβ accumulation in a murine model of Alzheimer’s
disease (Cui et al., 2018). Noise also disrupts the equilibrium of intestinal pro-oxidative and antioxidant mechanisms in association with low-grade systemic inflammation
in mice (Chi et al., 2021) and generally causes an imbalance of health-compromising versus -promoting bacteria together with impaired mental health. As a proof-of-
concept these adverse health effects of noise where mostly corrected by probiotic therapy (Hadizadeh et al., 2019), whereas feces transplantation from noise-exposed
to unexposedmice induced the above mentioned health complications (Cui et al., 2018). Image was created using Biorender.com by modifying the central scheme from
https://de.freepik.com/vektoren-premium/menschlicher-doppelpunktvektor-der-guten-bacterial-flora-illustration_3804027.htm.
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additional experiments utilizing fecal transplantation (Figure 5).
Feces from mice exposed to 98 dB(A) noise were transplanted
into unexposed mice, who subsequently developed an Alzheimer-
like phenotype (Cui et al., 2018). Changes in the gut microbiome in a
mouse model for Alzheimer’s disease were associated with an
imbalance between intestinal pro-oxidative and antioxidant
pathways as well as low-grade systemic inflammation in response
to noise exposure (Chi et al., 2021).

Results of altered gut composition were also reported for noise-
exposed rats in a similar experimental exposure (Cui et al., 2016), as
well as an alteration in the balance of health-compromising
proteobacteria and health-promoting actinobacteria as measured
by 16S rRNAseq (Zymantiene et al., 2017). These noise-induced
changes in microbial balance were accompanied by increased TNF-α
and IL-1β as well as alterations of body weight, and haematological
parameters as well as histopathological changes in the organs
(Zymantiene et al., 2017). Anxiety-like behavior arose following
noise exposure in rats, where higher serum corticosterone levels
reflecting the increased stress response. Probiotic treatment alleviated
these symptoms by apparently restoring the gut-brain axis (Figure 5)
(Hadizadeh et al., 2019). Though the data up until now is rather
sparse, these early findings indicate that noise disruption of the gut-
brain axis through disturbance of the gut microbiota could be
exacerbating the inflammatory phenotype that arises following
noise exposure, which could potentially lead to cardiometabolic
disease development (Karl et al., 2018).

Noise and Metabolic Syndrome
Metabolic syndrome comprises a cluster of co-occurring
conditions which lead to or complicate cardiometabolic
disease. These conditions include hypertension, hyperglycemia,
insulin resistance, dyslipidemia, type 2 diabetes, nonalcoholic
fatty liver disease, and dementia. These conditions are all
associated with oxidative stress via the increased production of
ROS (Spahis et al., 2017a; Spahis et al., 2017b; Carrier, 2017).
Notably, metabolic syndrome has known associations with the
two modes of disturbance outlined in the noise reaction scheme:
sleep and stress. Metabolic syndrome has a positive correlation
with both abnormal sleep patterns, such as overly long or short
duration (Smiley et al., 2019), sleep apnea (Borel, 2019), as well as
circadian disruptions (Depner et al., 2014).

While we are unaware of any translational animal studies
explicitly investigating metabolic syndrome as a cluster, there are
several studies in mice and rats that focus on type 2 diabetes and
insulin resistance. One such study found that diabetes induced by
high fat diet was worsened by merely 4 h/d of 85 dB SPL noise
exposure, as measured through glucose intolerance, insulin
resistance, fasting hyperglycemia, and apparent dyslipidemia
(Liu et al., 2018b). Another study found that in male mice,
4 h/d of 95 dB SPL noise exposure caused insulin resistance
accompanied by phosphorylation of Akt, IRS1, and JNK,
increased levels of circulating inflammatory cytokines TNF-α
and IL6, and increased SOD and catalase activity, indicative of
oxidative stress (Liu et al., 2018a). Insulin resistance was also
documented in noise exposure of 1, 10, and 20 days (Liu et al.,
2016). Rats exposed to 28 days of 95 dB noise were also found to
have increased corticosterone, triglycerides, total cholesterol, and

altered the balance of lipoproteins (Morakinyo et al., 2019). These
findings are also in agreement with observational studies on the
prevalence and incidence of metabolic syndrome conducted in
humans, both during occupational and other noise exposures
(Huang et al., 2020; Khosravipour et al., 2020; Yu et al., 2020).
Road traffic noise was also associated with incident diabetes in the
population-based Danish Diet, Cancer and Health cohort
comprising 57,053 participants (Sorensen et al., 2013). Overall,
there is evidence of a possible link between high noise exposure
and several components of metabolic syndrome, with a possible
mechanistic link through stress and sleep disruption prompting
the production of ROS, though more investigation is certainly
required.

Noise and Epigenetic Pathways
Epigenetic changes can modulate the development and
progression as well as the severity of cardiovascular diseases
by control of atherosclerotic processes (Ordovas and Smith,
2010; Kuznetsova et al., 2020). Epigenetic processes are largely
redox-regulated (Mikhed et al., 2015; Kietzmann et al., 2017;
Leisegang et al., 2017) and thereby noise-induced oxidative stress
will most likely change the epigenetic landscape at multiple layers.
We and others reported noise-induced changes of coding RNA by
next-generation sequencing in models of non-auditory noise
effects (Munzel et al., 2017; Kroller-Schon et al., 2018) and
studies on hearing loss (Wei et al., 2020; Lavinsky et al.,
2021). However, noise exposure, sleep deprivation and mental
stress can also lead to altered expression patterns of non-coding
RNA, e.g., in microRNAs that have significant health impact
(Miguel et al., 2018; Miguel et al., 2020). The dysregulation of
microRNAs can be mediated by the indirect pathway, e.g., the
known stress response, but also via direct mechanical damage of
the inner ear during hearing loss (Miguel et al., 2018). Higher
expression levels of miR-134/183 in the central amygdala were
observed after acute stress exposure (Meerson et al., 2010). Both
microRNAs seem to have significant health impact as they were
found at higher concentrations in patients with coronary artery
disease and depression. Numerous of these microRNAs that are
associated with environmental risk factors such as noise exposure
or mental stress are either regulated by oxidative stress or
themselves influence gene transcription encoding for
antioxidant defense or pro-oxidative proteins (Miguel et al.,
2018; Miguel et al., 2020). Methylation of DNA bases is another
epigenetic regulatory process with large impact on
cardiovascular risk (Greco and Condorelli, 2015). Alterations
of the DNA methylome, the sum of all methylated DNA bases
with significant effect on transcriptional activity of DNA, were
demonstrated in the brain of rats after chronic noise exposure,
pointing towards epigenetic regulation of metabolic pathways
by stress signalling in the form of noise exposure (Guo et al.,
2017). Of note, a cohort study (SAPALDIA) conducted in
Switzerland found an association between long-term
exposure to transportation noise and DNA methylation
patterns indicating activation of inflammatory pathways,
alterations of cellular development and changes of immune
responses (Eze et al., 2020). Epigenetic effects observed by
human and animal studies on hearing loss but also
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epigenetic changes in non-auditory models were reviewed in
(Leso et al., 2020).

CONCLUSION

In conclusion, noise is a somewhat “pleiotropic” stressor, with
the ability to incur damage through both cognitive and
noncognitive input pathways. Cognition of noise, as
happens during noise exposure while awake, appears to be
linked to the anxiety and depression, as reported following
noise exposure in humans. These symptoms in humans
correspond well with a neuroinflammatory phenotype
stemming from both astrocytic and microglial activation in
mice, accompanied by downregulation and uncoupling of
nNOS. Critically, noise exposure also activates both the
SNS and HPA axis, causing hormonal dysregulation, which
can inflict changes in the peripheral systems. Studies in mice
suggest that these hormonal disruptions coupled with
circadian interruption promote the production of oxidative
stress, which appears to be the common thread through all the
detrimental effects of noise and seems to be largely based on
Nox2 activation as the major source of ROS. In short,
infiltration of monocytes and macrophages in response to
stress appears to trigger the production of oxidative stress,
which then uncouples e/nNOS via specific redox switches, disrupts
nitric oxide signaling, disturbs essential phosphorylation within
circadian pathways, and activates ROS-sensitive transcription
factor NFκB as well as defense systems such as Nrf2/HO-1 or
causes impairment of FoxO3 signaling. These effects also have
potential for affecting epigenetic regulation and microbiome
homeostasis. Because of the importance of these effects for
affecting human health, it is necessary for noise research to be
conducted in a systemized manner in both humans and animals to
explore both the unknowns in redox and cardiovascular biology,
but also those in other fields.

FUTURE DIRECTIONS

The molecular underpinnings of noise-induced physiological
consequences appear as a consequence of hormonally-induced
hyperactivity of cells of the monocytic line bearing Nox2. Cellular
metabolic changes are not only important in cardiovascular
research, but also in several other fields of study, including
cancer and neurological disorders. Given that the effects in
the brain are so notable in translational work and behavioral
and emotional effects are apparent in humans, there appears to
be a wide field of study in the effects of noise within both the
cerebrovasculature and in directly studying neuronal health.
Since mice have thus far been a relatively faithful model for at
least one mode of noise exposure, translational studies
investigating the behavioral and cognitive effects of noise
are warranted. Our own work suggests that there is a
combinatorial effect between pre-existing hypertension and
noise exposure, which worsens the phenotype. Additional
study into the effects of noise in other disease states

appears to have potential for linking the exposome to
tangible effects on human health.

LIMITATIONS

Though the field of noise research is quickly expanding, the
major limitation remains to be a paucity of mechanistic
studies. Most of the investigations in humans are through
the lens of occupational exposure to noise, which is often
high-intensity and acute, whereas the majority of people are
exposed in lower levels in their daily life (i.e., through
ambient traffic noise). While the consensus that very high
exposure has links to metabolic and cardiovascular
consequences, more and better standardized studies are
required to investigate the everyday noise burden,
especially at a mechanistic level on-top of the so far
mostly observational epidemiological studies that focus on
the overall health impact (e.g., disease incidence and
prevalence). Another significant limitation is the variance
in exposure: each individual’s daily exposure will vary, which
complicates observational studies in human communities.
Though mouse models can replicate the consequences of
noise in some aspects, it is unlikely that mice can feel the
depth of emotional response a human would to an
unwelcome noise, meaning that translational research can
only reflect one half of the noise-reaction scheme and that
the noise in these experiments is probably imparting its
effects through sleep disruption. This may be overcome by
technical advances in the field of personal monitoring
devices, which would allow continuous recording of the
noise exposure levels of the individual during daily life.
Lastly, it is notable that the majority of translational
studies are conducted in male mice, which is useful for
lower variation range of the data but may not accurately
reflect the range of response to a stressor such as noise that is
largely affected by alterations of hormonal pathways that are
known to show significant differences between males and
females.
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