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To begin with, in this paper, single immunotherapy, single chemotherapy, and mixed treatment are discussed, and sufficient
conditions under which tumor cells will be eliminated ultimately are obtained. We analyze the impacts of the least effective
concentration and the half-life of the drug on therapeutic results and then find that increasing the least effective concentration
or extending the half-life of the drug can achieve better therapeutic effects. In addition, since most types of tumors are resistant to
common chemotherapy drugs, we consider the impact of drug resistance on therapeutic results and propose a new mathematical
model to explain the cause of the chemotherapeutic failure using single drug. Based on this, in the end, we explore the
therapeutic effects of two-drug combination chemotherapy, as well as mixed immunotherapy with combination chemotherapy.
Numerical simulations indicate that combination chemotherapy is very effective in controlling tumor growth. In comparison,mixed
immunotherapy with combination chemotherapy can achieve a better treatment effect.

1. Introduction

Immunotherapies are becoming a crucial component in
the multipronged approaches which are developed to treat
certain cancer [1]. By strengthening the antitumor function
of the immune system, immunotherapy can enhance the
body’s own natural ability to combat cancer. In past decades,
advances in cancer immunology have been increasingly
translated into clinical testing of immune-based approaches
to cancer treatment, including monoclonal antibody treat-
ment and adoptive transfer of the cytotoxic T lymphocytes
(ACT) [2, 3]. In detail, this technique [4] need identify autol-
ogous or allogeneic lymphocytes with antitumor activity,
which are then infused into cancer patients, often along with
appropriate growth factors (such as IL-2) to stimulate their
survival. It is indispensable to identify only a small number
of antitumor cells with the appropriate properties which can
then be expanded to large numbers ex vivo for treatment [5].
In vitro tests can identify the exact populations and effector
functions required for cancer regression, which can then be
selected for expansion [6]. The cells that are activated in the
laboratory can wipe off endogenous inhibitory factors and

thus can be induced to exhibit the required antitumor effector
functions.

Recently, clinical data have indicated that there is a
potential benefit in making use of the power of the immune
system in conjunction with traditional chemotherapy [7]. As
a conventional treatment, chemotherapy has become a part of
treatment plan of most cancer patients. Chemotherapy aims
at shrinking primary tumors, slowing the tumor growth, and
killing cancer cells that may have spread (metastasized) to
other parts of the body from the original, primary tumor.
Currently, more than 50 kinds of chemotherapy drugs are
available to treat cancer and many more are being tested for
their ability to destroy cancer cells [8]. Although chemother-
apy is one of the principal modes of treatment for cancer
patients, one of the limitations of chemotherapy is that it also
kills the normal fast dividing cells, which causes serious side
effects in patients.

The immune response to a tumor is usually cell mediated
with cytotoxic T lymphocytes (CTL) cells and natural killer
(NK) cells playing a dominant role. Mathematical modelling
has become an important and useful tool in studying the
interactions between the immune system and a growing
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tumor (Bianca et al. [9, 10], Pappalardo et al. [11–13]). Bell
(1973) [14] proposed a model consisting of a system of two
equations based on the classic predator-prey interaction.
Kuznetsov et al., in 1992 [15] and 1994 [16], presented a
mathematical model of CTL cells response to the growth of
immunogenic tumor, which exhibits a number of phenomena
that are observed in vivo, including immunostimulation,
“sneaking through,” and “dormant state” of the tumor.
Moreover, the parameters of the target model were estimated
by using the experimental data of chimeric mice. de Pillis,
in [1, 17–19], analyzed the interactions among tumor cells
and various immune effector cells and applied the numerical
calculations to discuss the treatment effects of different thera-
peutic regimens. Due to considering the treatment processes
that are subject to short-term perturbations, the model with
impulsive treatments conforms better to the practice than the
continuous models mentioned above. Hence, Borges et al.
(2014) [20] introduced continuous and pulsed chemotherapy
to investigate the treatment effect of tumor with the help of
numerical calculations.

In this paper, our purpose is to provide a useful ref-
erence and guidance for experimental workers and sci-
entists of human cancer research by designing treatment
protocols of chimeric mice with pulsed chemotherapy and
immunotherapy. Hence, we introduce pulsed immunother-
apy and chemotherapy into the mathematical model pro-
posed by Kuznetsov, and the model reads
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(1)

where 𝑥 denotes the concentration of CTL cells with antitu-
mor activity in the tumor site, 𝑦 represents the number of
tumor cells, and 𝑧 is the blood drug concentration. 𝜏 is the
therapeutic period, 𝜇

1
is the infusion dose of CTL cells with

antitumor activity every time, and 𝜇
2
denotes an increment

of the blood drug concentration due to delivering drug at
time 𝑡 = 𝑛𝜏. 𝑥(𝑡+), 𝑦(𝑡+), and 𝑧(𝑡+) denote the right limits
of 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) at time 𝑡, respectively. The descriptions
and estimated values of all remaining parameters (whichwere
estimated by using the experimental data of chimeric mice
[16]) are listed in Table 1. For convenience, we suppose that
immunotherapy and chemotherapy are executed at almost
the same time and use TR

𝑖
= (𝜇
1𝑖
, 𝜇
2𝑖
, 𝜏
𝑖
) to denote the

𝑖th therapeutic regimen, where 𝜇
1𝑖
, 𝜇
2𝑖
, and 𝜏

𝑖
represent

the dosage of immunotherapy, an increment of the blood

drug concentration caused by chemotherapy and therapeutic
period, respectively.

Although drug targeted therapy is yielding promising
results in the treatment of some specific cancers, drug
resistance caused mainly by mutation plays a critical role
of the chemotherapy failure [21]. Hence, incorporating drug
resistance into our model can help us to find ways to
eliminate the problem. The paper is organized in the fol-
lowing manner. In Section 2, we will investigate therapeutic
effects of immunotherapy, chemotherapy, and mixed treat-
ment and design the corresponding therapeutical schedules.
In Section 3, the efficacy of cancer chemotherapy often
becomes severely limited as cancer cells become resistant
to chemotherapy drugs. Hence, we will introduce the drug
resistance into system (1) to account for the failure of
chemotherapy and develop some new therapeutic regimens
so as to achieve the goal of clinical cure.This paper ends with
a brief conclusion and discussion in Section 4.

2. Investigation of Therapeutic Regimens

In this section, we discuss the effects of single immunother-
apy, single chemotherapy, and mixed immunotherapy with
chemotherapy and provide the corresponding therapeutic
regimens. First of all, we discuss the single immunotherapy.

2.1. Single Immunotherapy. Suppose that system (1) only
involves immunotherapy (i.e., 𝑧(0) = 0 and 𝜇

2
= 0), which

is equivalent to the following system:
𝑑𝑥

𝑑𝑡
= 𝑠 +

𝜌𝑥𝑦

𝛼 + 𝑦
− 𝑐
1
𝑥𝑦 − 𝑑

1
𝑥, 𝑡 ̸= 𝑛𝜏,

𝑑𝑦

𝑑𝑡
= 𝑟𝑦 (1 − 𝑏𝑦) − 𝑐

2
𝑥𝑦, 𝑡 ̸= 𝑛𝜏,

𝑥 (𝑡
+
) = 𝑥 (𝑡) + 𝜇

1
, 𝑡 = 𝑛𝜏,

𝑦 (𝑡
+
) = 𝑦 (𝑡) , 𝑡 = 𝑛𝜏.

(2)

Firstly, we give some basic properties about the following
subsystem of (2):
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is a positive periodic solution of system (3), where

𝑥
∗
(0
+
) =

𝑠

𝑑
1

+
𝜇
1

1 − exp (−𝑑
1
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Since the solution of system (3) with any initial value 𝑥(0+) is
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∗
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+
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∗
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we have the following lemma.
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Table 1: Estimated parameter values.

Parameter Description Estimated value Source
𝑠 Normal rate of flow of immune cells into the tumor site 1.300 × 10

4 Kuznetsov et al. 1994 [16]
𝜌 Maximum immune cells recruitment rate 1.254 × 10

−1 Kuznetsov et al. 1994 [16]
𝛼 Steepness coefficient of immune cell recruitment 2.020 × 10

7 Kuznetsov et al. 1994 [16]
𝑐
1

Immune cells death rate due to interaction with tumor cells 3.420 × 10
−10 Kuznetsov et al. 1994 [16]

𝑑
1

Nature death rate of immune cells 4.120 × 10
−2 Kuznetsov et al. 1994 [16]

𝛼
1

Fractional immune cells kill by chemotherapy 3.400 × 10
−2 de Pillis et al. 2006 [1]

𝑟 Tumor cells growth rate 1.800 × 10
−1 Kuznetsov et al. 1994 [16]

𝑏 1/𝑏
1
is tumor cells carrying capacity 2.000 × 10

−9 Kuznetsov et al. 1994 [16]
𝑐
2

Fractional tumor cells kill by immune cells 1.100 × 10
−7 Kuznetsov et al. 1994 [16]

𝛼
2

Fractional tumor cells kill by chemotherapy 9.000 × 10
−1 de Pillis et al. 2006 [1]

𝑑
2

Rate of chemotherapy drug decay 3.466 × 10
−1 Estimated

Lemma 1. System (3) has a positive periodic solution 𝑥∗(𝑡).
And, for every solution𝑥(𝑡) of (3), it follows that lim

𝑡→∞
𝑥(𝑡) =

𝑥
∗
(𝑡). Furtherly, system (2) has a tumor-free periodic solution

(𝑥
∗
(𝑡), 0).

Next, we discuss the local stability of the tumor-free
periodic solution (𝑥∗(𝑡), 0).

Theorem 2. Let (𝑥(𝑡), 𝑦(𝑡)) be any solution of system (2); then
(𝑥
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Proof. The local stability of the periodic solution (𝑥∗(𝑡), 0)
can be determined by the small amplitude perturbations of
the solution. Define
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where V
𝑖
(𝑡) (𝑖 = 1, 2) are small perturbations. The linearized

equations of system (2) are given by
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and the exact form of Δ is not required in this analysis.
When 𝑡 = 𝑛𝜏, the linearization of the resetting impulsive

conditions of (2) becomes
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Thus, the monodromy matrix of (2) is

𝑄 = [
1 0

0 1
]Φ (𝜏) = [

exp (−𝑑
1
𝜏) Δ

0 exp (𝐺)
] . (14)

Let 𝜆
1
and 𝜆

2
be eigenvalues of matrix 𝑄, and then

𝜆
1
= exp (−𝑑

1
𝜏) < 1,

𝜆
2
= exp (𝐺) .

(15)

Therefore, all eigenvalues of𝑄, namely, 𝜆
1
and 𝜆

2
, have abso-

lute values less than one if and only if (7) holds. According to
Floquet theory of impulsive differential equations, the tumor-
free periodic solution (𝑥

∗
(𝑡), 0) is locally asymptotically

stable.

Remark 3. The tumor-free periodic solution is unstable if
𝜇
1
< 𝜇
1𝑐
.

Theorem 4. A supercritical bifurcation occurs at 𝜇
1
= 𝜇
1𝑐
in

the sense that there is 𝜀 > 0 such that for all 0 < 𝜀
1
< 𝜀 there is

a stable positive nontrivial periodic solution of (2) with period
𝜏 + 𝜀
1
.

Detailed proof is similar to Theorem 1 in [22].
From (7), we know that when the infusion dose of CTL

cells with antitumor activity every time is not less than
the threshold value 𝜇

1𝑐
, then the tumor will be eliminated

eventually; otherwise the number of tumor cells will present
periodic oscillation. Hence, we consider a tumor with size
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Figure 1: (a) shows the variation of the number of tumor cells with time when 𝜇
1
= 1.1488 × 10

6. (b) presents the change of the number of
tumor cells with time when 𝜇

1
= 1.1418 × 10

6. (c) exhibits the changes of the number of tumor cells with time when 𝜇
1
= 1.4000 × 10

6. The
curve of dosage versus period is plotted in (d).

5.00 × 10
6 and take therapeutic period 𝜏 = 21 days. From

(7) and Table 1, we calculate and achieve a critical value 𝜇
1𝑐
=

1.1468×10
6 CTL cells. Here, we take 𝜇

1
= 1.1488×10

6 (more
than 𝜇

1𝑐
) and 𝜇

1
= 1.1418 × 10

6 (less than 𝜇
1𝑐
), respectively.

The variations of the number of tumor cells with time are
depicted in Figures 1(a) and 1(b). Figure 1(b) indicates that
since 1.1418 × 106 < 𝜇

1𝑐
, the number of tumor cells exhibits

periodic oscillation. However, from Figure 1(a), we can see
that although the tumor cells are wiped out eventually, this
process takes too long time of about 37 years (13000 days). In
order to shorten the time of curing a tumor, we increase the
infusion dosage of CTL cells. Supposing the time of curing a
cancer is a year, by numerical calculations, we achieve a new
threshold value 𝜇

1𝑐1
= 1.4000 × 10

6 CTL cells. Hence, we
obtain a single immunotherapy regimen:

TR
𝐼1
= (1.4000 × 10

6 CTL cells, 0, 21 days) . (16)

The corresponding change of the number of tumor cells is
shown in Figure 1(c) when TR

𝐼1
is carried out.

Furthermore, byTheorem 2, we derive a condition which
is given by

𝜇
1
>
(𝑟𝑑
1
− 𝑐
2
𝑠) 𝜏

𝑐
2

≜ 𝐿 (𝜏) , (17)

where straight line 𝐿(𝜏) is defined as “critical boundary of
treatment regimens.” The region which lies above 𝐿(𝜏) is

named as “acceptable region” (i.e., the region of successful
treatment), and the regionwhich sits below𝐿(𝜏) is intituled as
“rejected region” (i.e., the region of failed treatment), which
is shown in Figure 1(d).

2.2. Single Chemotherapy. We consider the case of single
chemotherapy (i.e., 𝜇

1
= 0 for system (1)). Since the third

equation in system (1) is independent of the variables 𝑥 and
𝑦, we consider the following subsystem:

𝑑𝑧

𝑑𝑡
= −𝑑
2
𝑧, 𝑡 ̸= 𝑛𝜏,

𝑧 (𝑡
+
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2
, 𝑡 = 𝑛𝜏.

(18)

Clearly, system (18) has a positive periodic solution:

𝑧
∗
(𝑡) =

𝜇
2
exp (−𝑑

2
(𝑡 − 𝑛𝜏))

1 − exp (−𝑑
2
𝜏)

, 𝑡 ∈ (𝑛𝜏, (𝑛 + 1) 𝜏] ,

𝑧
∗
(0
+
) =

𝜇
2

1 − exp (−𝑑
2
𝜏)
.

(19)

Since the solution of (18) with initial value 𝑧(0+) is

𝑧 (𝑡) = (𝑧 (0
+
) − 𝑧
∗
(0
+
)) exp (−𝑑

2
𝑡) + 𝑧

∗
(𝑡) ,

𝑡 ∈ (𝑛𝜏, (𝑛 + 1) 𝜏] ,
(20)

we have lim
𝑡→∞

𝑧(𝑡) ≤ 𝜇
2
/(1 − exp(−𝑑

2
𝜏)).
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Table 2: Different values of 𝑐∗min and corresponding chemotherapy regimes.

𝑐
∗

min 𝜇
∗

2
𝜏
∗ Chemotherapy regimens

0.002514mg/L 1.3985mg/L 18.24 days TR
1
= (0, 1.3985mg/L, 18.24 days)

0.002611mg/L 1.3984mg/L 18.13 days TR
2
= (0, 1.3984mg/L, 18.13 days)

0.002735mg/L 1.3982mg/L 18.00 days TR
3
= (0, 1.3982mg/L, 18.00 days)

0.008000mg/L 1.3930mg/L 14.90 days TR
4
= (0, 1.3930mg/L, 14.90 days)

Furthermore, from (19), we have

𝑧max = max
𝑡∈𝑅

{𝑧 (𝑡)} =
𝜇
2

1 − exp (−𝑑
2
𝜏)
,

𝑧min = min
𝑡∈𝑅

{𝑧 (𝑡)} =
𝜇
2
exp (−𝑑

2
𝜏)

1 − exp (−𝑑
2
𝜏)
.

(21)

The dose-delivery schedule of chemotherapy drugs
can determinate their efficacy in killing cancer cells and
degree of toxicity to the patients [23]. Besides, conventional
chemotherapy drugs often have a therapeutic window which
is defined as a range of a drug’s serum concentration at which
a desired effect occurs, below which there is little effect,
and above which toxicity occurs [24]. Hence, we denote the
least effective concentration (LEC) as 𝑐min and the maximum
tolerated concentration (MTC) as 𝑐max, respectively.Thus, we
have 𝑐min ≤ 𝑧min < 𝑧max ≤ 𝑐max. Without loss of generality, we
suppose 𝑐min = 𝑧min and 𝑐max = 𝑧max. Hence, we can get

𝑐max =
𝜇
2

1 − exp (−𝑑
2
𝜏)
,

𝑐min =
𝜇
2
exp (−𝑑

2
𝜏)

1 − exp (−𝑑
2
𝜏)
,

(22)

which is equivalent to

𝜇
2
= 𝑐max − 𝑐min,

𝜏 =
1

𝑑
2

ln
𝑐max
𝑐min

.

(23)

Furthermore, we know that Adriamycin is a drug used in
cancer chemotherapy and is commonly used in the treatment
of a wide range of cancers, including hematological malig-
nancies (blood cancers, like leukaemia and lymphoma),many
types of carcinoma (solid tumors), and soft tissue sarcomas.
In our research, we select Adriamycin as a chemotherapy
drug and follow the dosage suggested by the manufactures of
the Adriamycin drug [19]. The suggested procedure entails a
single dose of 60–75mg/m2 once every 21 days [25]. Further,
we approximatemice to have surface area of 0.01m2 and have
body volume of 0.5357 L and use the dosing as 0.75mg every
21 days. Supposing that Adriamycin is distributed uniformly
in every tissues, we have

𝜇
2
=

0.75

0.5357
= 1.400mg/L,

𝜏 = 21 days.
(24)

Since Adriamycin has a half-life of about 48 hours, from the
first equation of (18), we get

𝑧 (𝑡) = 𝑧 (0) exp (−𝑑
2
𝑡) 󳨐⇒

𝑑
2
=
1

𝑡
ln 𝑧 (0)
𝑧 (𝑡)

(25)

and then have

𝑑
2
=

ln 2
48/24

=
ln 2
2
= 0.3466/day. (26)

Further, from (23), we can obtain

𝑐min =
𝜇
2

exp (𝑑
2
𝜏) − 1

=
1.4

exp (0.3466 ∗ 21) − 1

= 9.6688 × 10
−4mg/L,

𝑐max = 𝑐min exp (𝑑2𝜏)

= 9.6688 × 10
−4
× exp (0.3466 ∗ 21)

= 1.40096688mg/L.

(27)

According to dosage suggested by the manufactures of
the Adriamycin drug, we can get a single chemotherapeutic
regimen:

TR
𝐶1
= (0, 1.400mg/L, 21 days) . (28)

Taking TR
𝐶1

as a chemotherapy regimen, the dynamic
behavior of tumor cells is depicted in Figure 2(a) which
indicates that the number of tumor cells exhibits periodic
oscillation. In other words, single chemotherapeutic regimen
TR
𝐶1

is not adequate to wipe out a tumor eventually. Since
high concentration of chemotherapy drug can kill more
tumor cells, we can try to elevate the average blood drug
concentration of Adriamycin by increasing the least effective
concentration of therapeutic window so that chemotherapy
can obtain a better treatment result. In order to facilitate
the following discussion, we denote new least effective con-
centration, new infusion dosage of Adriamycin, and new
chemotherapy period by 𝑐∗min, 𝜇

∗

2
, and 𝜏∗, respectively. From

(23), we have

𝜇
∗

2
= 𝑐max − 𝑐

∗

min,

𝜏
∗
=
1

𝑑
2

ln
𝑐max
𝑐∗min

.

(29)

For different values of 𝑐∗min, from (29), we achieve different
chemotherapy regimens which are listed in Table 2.
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Figure 2: (a) presents the change of the number of tumor cells with time when treatment regimen is taken as TR
𝐶1
; the variations of the

number of tumor cells with time are shown in (b) when treatment regimes are TR
2
, TR
3
, and TR

4
.
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Figure 3: (a) presents the variations of the number of tumor cells with time when half-life of drugs is 48 h, 60 h, and 96 h, respectively; the
changes of the drug concentrations with time are depicted in (b) when half times are 48 h and 96 h, respectively.

FromTable 2, we clearly see that higher least effective con-
centration requires smaller infusion dosage of chemotherapy
drug and shorter therapeutic period. By numeric calcu-
lations, we obtain a critical value of the least effective
concentration 𝑐min𝑐 = 0.002735mg/L, which implies that if
𝑐min > 𝑐min𝑐, then the corresponding chemotherapy regimen
is successful; otherwise chemotherapy regime is failing. Since
0.002735mg/L and 0.004834mg/L are more than 𝑐min𝑐 and
0.002514mg/L and 0.002611mg/L are smaller than 𝑐min𝑐,
performing treatment regimens TR

3
and TR

4
can effectively

control tumor growth, but executing therapeutic regimes TR
1

and TR
2
makes the number of tumor cells present periodical

oscillation (see Figure 2(b)).
Supposing that the time of curing a cancer is still a year, we

can obtain that the least effective concentration is not lower
than 𝑐min = 0.0080mg/L. Hence, a single chemotherapy
treatment regimen is given by (see Figure 2(b))

TR
𝑐2
= TR
4
= (0, 1.3930mg/L, 14.90 days) . (30)

Further, we consider that the half-life of chemotherapy
drug impacts on therapeutic result. Equation (25) indicates
that extending the half-life of drug makes decay rate of

chemotherapy drug reduce so that the average concentra-
tion of drug goes up. Thus, supposing that the half-life of
Adriamycin is 48 h, 60 h, and 96 h, from (25), we obtain
that the decay rates of it (𝑑

2
) are 0.3466/day, 0.2773/day,

and 0.1733/day, respectively. In addition, we still take
TR
𝐶1
= (0, 1.400mg/L, 21 days) (i.e., recommended dosage

suggested by the manufactures of the Adriamycin drug) as
chemotherapy regimen. The variations of the number of
tumor cells with time are depicted in Figure 3(a) when the
half-lives of Adriamcin are 48 h, 60 h, and 96 h, respectively.
The changes of the concentration of drugs with time are
shown in Figure 3(b) when the half-lives of them are 48 h and
90 h, respectively. Figures 3(a) and 3(b) show that the half-
life of drug is longer and the average concentration of drug is
higher so that the effect of chemotherapy is better.

2.3.Mixed ImmunotherapywithChemotherapy. According to
recommended dosage suggested by the manufactures of the
Adriamycin drug, we know that the treatment regimen TR

𝐶1

is not sufficient to wipe out a tumor with size 5 × 106 alone.
In addition, increasing the dosage of Adriamycin may cause
grievous damage to cancer patients. However, in contrast
with chemotherapy, the immunotherapy can differentiate
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Figure 4: (a) shows the change of the number of tumor cells for treatment regimen TR
𝑀1

; (b) presents the variation of the number of tumor
cells of therapeutic regimen TR

𝑀2
.

between normal and malignant cells and, thus, decrease the
damage to normal cells or tissues due to chemotherapy.
Hence, we consider mixed immunotherapy with chemother-
apy and aim at designing a mixed treatment schedule which
can prevent the tumor growth more effectively. In detail, we
still take suggested dosage of the Adriamycin drug and try
to seek out a critical dosage of CTL cells 𝜇

1𝑀𝑐1
, so that the

tumor will die out eventually when 𝜇
1
> 𝜇
1𝑀𝑐1

. With the help
of computer, we get 𝜇

1𝑀𝑐1
= 136686CTL cells. As a result, we

achieve a mixed treatment regimen:

TR
𝑀1
= (136688 CTL cells, 1.4mg/L, 21 days) . (31)

The dynamic behavior of tumor cells is shown in Fig-
ure 4(a) for therapeutic regimenTR

𝑀1
. Figure 4(a) shows that

although taking treatment regimen TR
𝑀1

can eliminate the
tumor eventually, this process also takes too long time (up to
100 years). Obviously, TR

𝑀1
is not a good treatment means

to eliminate a tumor with size 5 × 106. In order to shorten
the time of curing a cancer to a year, we need add infusion
dosage of CTL cells. By numerical simulations, we achieve a
new critical value 𝜇

1𝑀𝑐2
= 566666 CTL cells. In other words,

as long as infusion dosage of CTL cells is not less than 𝜇
1𝑀𝑐2

,
then a tumor with size 5.00 × 106 can be cured within a year
(see Figure 4(b)). Thus, a new mixed treatment regimen is
given by

TR
𝑀2
= (566666 CTL cells, 1.400mg/L, 21 days) . (32)

Further, we also find that mixed immunotherapy and chem-
otherapy can make the number of tumor cells always in a
lower level, which indicates that mixed treatment is evidently
superior to single chemotherapy or single immunotherapy.

3. Considering the Cases of Drug Resistance

Although chemotherapies are effective treatment for me-
tastatic tumors, the ability of cancer cells to become resistant
to chemotherapy drugs remains a significant impediment to
successful chemotherapy [26]. Drug resistance results from a
variety of factors including individual variations in patients
and somatic cell genetic differences in tumors, even those

from the same tissue of origin. The most common reason for
acquisition of resistance to a broad range of anticancer drugs
is expression of one or more energy-dependent transporters
that detect and eject anticancer drugs from cells, but other
mechanisms of resistance including insensitivity to drug-
induced apoptosis and induction of drug-detoxifyingmecha-
nisms probably play an important role in acquired anticancer
drug resistance [27]. Hence, in this section, wewill investigate
the impact of drug resistance on therapeutic results and start
a discussion about chemotherapy with a single drug at first.

3.1. Chemotherapy with a Single Drug. We introduce drug
resistance into model (1) to explain the cause of chemother-
apy failure with single drug. New model is given by

𝑑𝑥

𝑑𝑡
= 𝑠 +

𝜌𝑥 (𝑦
1
+ 𝑦
2
)

𝛼 + (𝑦
1
+ 𝑦
2
)
− 𝑐
1
𝑥 (𝑦
1
+ 𝑦
2
) − 𝑑
1
𝑥

− 𝛼
1
(1 − 𝑒

−𝑧
) 𝑥, 𝑡 ̸= 𝑛𝜏,

𝑑𝑦
1

𝑑𝑡
= 𝑟𝑦
1
[1 − 𝑏 (𝑦

1
+ 𝑦
2
)] − 𝑐
2
𝑥𝑦
1
− 𝛼
3
𝑦
1

− 𝛼
2
(1 − 𝑒

−𝑧
) 𝑦
1
, 𝑡 ̸= 𝑛𝜏,

𝑑𝑦
2

𝑑𝑡
= 𝛼
3
𝑦
1
+ 𝑟𝑦
2
[1 − 𝑏 (𝑦

1
+ 𝑦
2
)] − 𝑐
2
𝑥𝑦
2
,

𝑡 ̸= 𝑛𝜏,

𝑑𝑧

𝑑𝑡
= −𝑑
2
𝑧, 𝑡 ̸= 𝑛𝜏,

𝑥 (𝑡
+
) = 𝑥 (𝑡) , 𝑡 = 𝑛𝜏,

𝑦 (𝑡
+
) = 𝑦 (𝑡) , 𝑡 = 𝑛𝜏,

𝑧 (𝑡
+
) = 𝑧 (𝑡) + 𝜇

2
, 𝑡 = 𝑛𝜏,

(33)

where 𝑦
1
denotes the number of tumor cells which are

sensitive to Adriamycin. 𝑦
2
presents the number of tumor

cells which are resistant to Adriamycin. 𝛼
3
is the conversion

rate of tumor cells from being sensitive to being resistant to
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Figure 5: (a) and (b) present the variations of the number of sensitive tumor cells and resistant tumor cells with time for treatment regime
TR
𝐶2
, respectively.

Adriamycin. Usually 𝛼
3
is very small since cancer cellsmutate

at a rate of about 1 in every 106 cells; that is, 𝛼
3
= 10
−6 [28].

As mentioned before, taking single chemotherapy reg-
imen TR

𝐶2
can wipe out a tumor with size 5.0 × 10

6

within a year without consideration of drug resistance. Now,
we still take TR

𝐶2
as a treatment regimen. By numerical

simulations, the variations of the numbers of sensitive tumor
cells and resistant tumor cells are shown in Figures 5(a)
and 5(b), respectively. From Figure 5(a), we know that the
number of sensitive tumor cells to Adriamycin reaches 0
quickly. However, Figure 5(b) indicates that the number of
resistant tumor cells to Adriamycin is stable at a fixed value
(about 1.60 × 106). All these findings show that the sensitive
tumor cells will completely convert into resistant tumor cells
as chemotherapy is executed, which implies that the drug
resistance is the main cause of chemotherapy failure. In
order to solve the problem of drug resistance, next, we will
investigate the treatment effect of combination chemotherapy
with two drugs.

3.2. Combination Chemotherapy with Two Drugs. As ana-
lyzed above, we know that the designs of cancer chemothera-
peutic regimens have become increasingly sophisticated, and
a single chemotherapy drug is very difficult to cure a tumor.
The use of multiple therapeutic agents in combination has
become the primary strategy to treat drug resistant cancers.
This approach is called combination chemotherapy which
provides a higher chance of destroying cancer cells. As a con-
sequence, chemotherapy with two or more cytotoxic drugs
that kill tumor cells by one or more mechanisms will be con-
sidered. To make the discussion easier, we assume that two
drugs are administered to treat a tumor with drug resistance.

For convenience, we denote two chemotherapy drugs by
𝐷𝐴 and 𝐷𝐵 which are not toxic for the same normal organ.
The concentrations of them are denoted by 𝑧

1
and 𝑧
2
. 𝑑
2
and

𝑑
3
are the decay rates of them, respectively. The tumor cells

population is divided into three subpopulations which are
sensitive to drug 𝐷𝐴 and drug 𝐷𝐵, sensitive to drug 𝐷𝐴 but
resistant to drug 𝐷𝐵, and sensitive to drug 𝐷𝐵 but resistant
to drug 𝐷𝐴, respectively. The numbers of them are denoted

by 𝑦
1
, 𝑦
2
, and 𝑦

3
. Model (33) can bemodified in the following

way to account for combination chemotherapy:

𝑑𝑥

𝑑𝑡
= 𝑠 +

𝜌𝑥 (𝑦
1
+ 𝑦
2
+ 𝑦
3
)

𝛼 + (𝑦
1
+ 𝑦
2
+ 𝑦
3
)
− 𝑐
1
𝑥 (𝑦
1
+ 𝑦
2
+ 𝑦
3
)

− 𝑑
1
𝑥 − 𝛼
1
(1 − 𝑒

−𝑧
1) 𝑥

− 𝛼
5
(1 − 𝑒

−𝑧
2) 𝑥, 𝑡 ̸= 𝑛𝜏,

𝑑𝑦
1

𝑑𝑡
= 𝑟𝑦
1
[1 − 𝑏 (𝑦

1
+ 𝑦
2
+ 𝑦
3
)] − 𝑐
2
𝑥𝑦
1

− (𝛼
3
+ 𝛼
4
) 𝑦
1
− 𝛼
2
(1 − 𝑒

−𝑧
1) 𝑦
1

− 𝛼
6
(1 − 𝑒

−𝑧
2) 𝑦
1
, 𝑡 ̸= 𝑛𝜏,

𝑑𝑦
2

𝑑𝑡
= 𝛼
3
𝑦
1
+ 𝑟𝑦
2
[1 − 𝑏 (𝑦

1
+ 𝑦
2
+ 𝑦
3
)] − 𝑐
2
𝑥𝑦
2

− 𝛼
6
(1 − 𝑒

−𝑧
2) 𝑦
2
, 𝑡 ̸= 𝑛𝜏,

𝑑𝑦
3

𝑑𝑡
= 𝛼
4
𝑦
1
+ 𝑟𝑦
3
[1 − 𝑏 (𝑦

1
+ 𝑦
2
+ 𝑦
3
)] − 𝑐
2
𝑥𝑦
3

− 𝛼
2
(1 − 𝑒

−𝑧
1) 𝑦
3
, 𝑡 ̸= 𝑛𝜏,

𝑑𝑧
1

𝑑𝑡
= −𝑑
2
𝑧
1
, 𝑡 ̸= 𝑛𝜏,

𝑑𝑧
2

𝑑𝑡
= −𝑑
3
𝑧
2
, 𝑡 ̸= 𝑛𝜏,

𝑥 (𝑡
+
) = 𝑥 (𝑡) , 𝑡 = 𝑛𝜏,

𝑦
1
(𝑡
+
) = 𝑦
1
(𝑡) ,

𝑦
2
(𝑡
+
) = 𝑦
2
(𝑡) ,

𝑦
3
(𝑡
+
) = 𝑦
3
(𝑡) ,

𝑡 = 𝑛𝜏,
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Figure 6: (a) and (b) describe the variances of the number of tumor cells when taking the combination chemotherapy regimens TR
𝑅1

and
TR
𝑅2
, respectively.

𝑧
1
(𝑡
+
) = 𝑧
1
(𝑡) + 𝜇

2
,

𝑧
2
(𝑡
+
) = 𝑧
2
(𝑡) + 𝜇

3
,

𝑡 = 𝑛𝜏,

(34)

where 𝛼
1
and 𝛼

5
are the fractional immune cells killed by

drugs 𝐷𝐴 and 𝐷𝐵. 𝛼
2
and 𝛼

6
are the fractional tumor cells

killed by drugs 𝐷𝐴 and 𝐷𝐵. 𝛼
3
and 𝛼

4
are the conversion

rates of tumor cells from being sensitive to being resistant
to drugs 𝐷𝐴 and 𝐷𝐵. As mentioned above, 𝜇

2
and 𝜇

3
rep-

resent increments of the blood drug concentrations caused
by combination chemotherapy every time. Analogously, we
use TR

𝑅𝑖
= (𝜇

2𝑖
, 𝜇
3𝑖
, 𝜏
𝑖
) to denote the 𝑖th combination

chemotherapy regimen.
To facilitate discussion, we suppose that dynamical fea-

tures and therapeutic effects of drugs 𝐷𝐴 and 𝐷𝐵 are the
same as Adriamycin chemotherapy drug. Hence, we have
𝛼
1
= 𝛼
5
= 3.40 × 10

−2, 𝛼
2
= 𝛼
6
= 0.90 × 10

−1, and
𝑑
2
= 𝑑
3
= 3.466 × 10

−1. The conversion rates of tumor cells
frombeing sensitive to being resistant𝛼

3
and𝛼
4
are still taken

as the values 𝛼
3
= 𝛼
4
= 10
−6. The meanings and estimated

values of all remaining parameters are the same as model
(1). Next, in order to investigate the impact of the difference
of two-drug dosages on therapeutic results, we consider two
different modes, one case is 𝜇

2
= 𝜇
3
, and the other is 𝜇

2
̸= 𝜇
3
.

Case 1 (𝜇
2
= 𝜇
3
). To make tumor cells die out completely

within a year and the concentrations of drugs be in a
therapeutic window simultaneously, by calculating numer-
ically, we achieve a new critical value of the least effective
concentration, 𝑐min𝑐 = 0.002901. That is, the tumor cells will
be eliminated within a year if the least effective concentration
is not less than 𝑐min𝑐. Hence, by (23), we obtain a combination
chemotherapy regimen:

TR
𝑅0
= (1.3971mg/L, 1.3971mg/L, 16.9290 days) . (35)

Comparing the therapeutic regimen TR
𝑅0

with TR
𝐶2

(see
(30)), it is not difficult to find that curing a tumor with

drug resistance is required to administrate more dosage of
chemotherapy drug, which indicates that drug resistance is
one of the difficult questions of tumor treatment.

When shortening therapeutic period to 10 days and
requiring to cure a tumor within a year, by calculating, then
we get another combination chemotherapy regimen:

TR
𝑅1
= (0.8000mg/L, 0.8000mg/L, 10.0000 days) . (36)

Executing treatment regimen TR
𝑅1
, the variation of the

number of tumor cells with time is shown in Figure 6(a),
which shows that the number of tumor cells is always in a
lower level and reaches 0 eventually. In the following, we will
discuss another case.

Case 2 (𝜇
2
̸= 𝜇
3
). Here, we take delivering dosages of drugs

𝐷𝐴 and 𝐷𝐵 as 0.9000mg/L and 0.7000mg/L every 10 days,
respectively. Thus, we obtain another combination treatment
regimen:

TR
𝑅2
= (0.9000mg/L, 0.7000mg/L, 10.0000 days) . (37)

The dynamic behavior of tumor cells for treatment regimen
TR
𝑅2

is exhibited in Figure 6(b). However, Figure 6(b) shows
that the number of tumor cells is in a lower level at the early
stage but later increases gradually. In other words, taking the
therapeutic regimenTR

𝑅2
easily causes the tumor recurrence.

Cases 1 and 2 indicate that therapeutic effect of TR
𝑅1

is
obviously superior to that of TR

𝑅2
although the total amount

of delivering drug of TR
𝑅1

is the same as that of TR
𝑅2
.

Hence, a topic of how to determine the delivering dosage
of every chemotherapy drug deserves deep exploration. The
analysis result indicates that combination chemotherapy with
multidrugs is very effective in controlling tumor growth, but
larger dosage of chemotherapy drugs is destined to bring
greater harm to normal tissues. As a result, in order to dimin-
ish the damage of chemotherapy to normal tissues, we will
combine immunotherapy with combination chemotherapy.
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Figure 7: (a) and (b) present the variances of the number of tumor cells when taking the combination chemotherapy regimens TR
𝑀𝐶1

and
TR
𝑀𝐶2

, respectively.

3.3. Mixed Immunotherapy with Combination Chemotherapy.
We substitute the seventh equation of model (34) by 𝑥(𝑡+) =
𝑥(𝑡) + 𝜇

1
to analyze a new mixed immunotherapy with com-

bination chemotherapy model. For convenience, we denote
new therapeutic regimen as a quad TR

𝑀𝐶𝑖
= (𝜇
1𝑖
, 𝜇
2𝑖
, 𝜇
3𝑖
, 𝜏
𝑖
),

where the meanings of 𝜇
𝑗𝑖
, 𝑗 = 1, 2, 3, and 𝜏

𝑖
are the same

as above. Since two chemotherapy drugs 𝐷𝐴 and 𝐷𝐵 are all
toxic to normal cells, we assume delivering dosage is 80% of
recommend dosage of Adriamycin. Thus, we have 𝜇

2
= 𝜇
3
=

1.4000 × 0.8 = 1.1200mg/L. Hence, we obtain a combination
chemotherapy regimen:

TR
𝑀𝐶1

= (0, 1.1200mg/L, 1.1200mg/L, 21 days) . (38)

When treatment regimen TR
𝑀𝐶1

is performed, the variation
of the number of tumor cells with time is exhibited in
Figure 7(a) which shows that the number of tumor cells
presents periodical oscillation. In other words, executing
TR
𝑀𝐶1

can not cure a tumor successfully. Based on this, we
introduce immunotherapy into treatment regimen TR

𝑀𝐶1
.

By numerical calculation, we achieve a threshold value 𝜇
1𝑐3
=

559966CTL cells. In detail, tumor will be eliminated within a
year if infusion dosage of CTL cells is not less than 𝜇

1𝑐3
.Thus,

a mixed immunotherapy with combination chemotherapy
regimen is given by

TR
𝑀𝐶2

= (559966 CTL cells, 1.1200mg/L, 1.1200mg/L, 21 days) . (39)

The dynamic behavior of tumor cells is shown in Figure 7(b)
when the mixed treatment regimen TR

𝑀𝐶2
is carried out.

From Figure 7(b), we can obviously see that a tumor with size
5.00 × 10

6 can be eliminated very quickly.

4. Conclusion

In this paper, we investigate the therapeutic effects of single
immunotherapy, single chemotherapy, and mixed treatment
and provide corresponding therapeutic regimens. For single
immunotherapy, we derive a condition under which tumor
cells will be eliminated ultimately, but this process may take
too long time. Thus, we suppose that the time of curing a
tumor is a year and then achieve a single immunotherapy
regimen TR

𝐼1
. For single chemotherapy, we select Adri-

amycin as chemotherapy drug. By exploring the impacts of
the least effective concentration and the drug half-life on
therapeutic results, we draw a conclusion that increasing the
least effective concentration and extending the half-life of
the drug can make average drug concentration maintain a
higher level so that the effect of chemotherapy is better. Using

numerical calculations, we obtain a threshold value 𝑐min𝑐;
that is, single chemotherapy can eliminate a tumor within
a year if the least effective concentration is not lower than
𝑐min𝑐. As a result, we obtain an ideal single chemotherapeutic
regimen TR

𝐶2
. Further, in order to decrease the damage of

chemotherapy drug to normal tissues, we consider mixed
immunotherapy with chemotherapy. Taking recommended
dosage of Adriamycin and supposing the time of curing a
tumor with size 5.0× 106 as a year, by numerical calculations,
we achieve a mixed immunotherapy with immunotherapy
regimen TR

𝑀2
. In addition, we find that mixed treatment can

make the number of tumor cells be always in a lower level.
Since most tumors are resistant to chemotherapy drugs,

we consider influence of drug resistance on therapeutic
results and improve a newmathematical model. By analyzing
the target model, we explain the cause of chemotherapeu-
tic failure. Further, we consider the effect of combination
chemotherapy with two drugs and form a combination
chemotherapy regimen TR

𝑅0
which can get rid of a tumor

within a year. Finally, in order to cure a tumor more effec-
tively, we consider mixed immunotherapy with combination
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chemotherapy to treat a tumor and establish an ideal mixed
treatment regimen TR

𝑀𝐶2
which can make tumor cells be

always in a lower level and be also wiped out completely in
a year.

In a word, combination chemotherapy is very effective in
controlling tumor growth, and further mixed immunother-
apywith combination chemotherapy can obtain a better treat-
ment effect. But, with tumor cells becoming resistant tomany
structurally and mechanistically unrelated drugs, the efficacy
of chemotherapy of tumor often becomes severely limited.
Hence, the problem of how to combine reasonably those
treatment modes and design an optimal mixed therapeutic
regimen deserves deep research.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publishing of this paper.

Acknowledgments

This work is partially supported by the National Natural
Science Foundation of China (no. 11371164), NSFC-Talent
Training Fund of Henan (no. U1304104), and Key Scientific
Research Project of Higher Education Institutions of Henan
Province (16A110005).

References

[1] L. G. de Pillis, W. Gu, and A. E. Radunskaya, “Mixed
immunotherapy and chemotherapy of tumors:modeling, appli-
cations and biological interpretations,” Journal of Theoretical
Biology, vol. 238, no. 4, pp. 841–862, 2006.

[2] Y. Li, Q. Huang, Y. Zhong, A. Wang, J. Sun, and J. Zhou,
“Prospects in adoptive cell transfer therapy for cancer,” Journal
of Immunology and Clinical Research, vol. 1, article 1008, pp. 1–4,
2013.

[3] M. C. Ngo, C. M. Rooney, J. M. Howard, and H. E. Heslop,
“Ex vivo gene transfer for improved adoptive immunotherapy of
cancer,” Human Molecular Genetics, vol. 20, Article ID ddr102,
pp. R93–R99, 2011.

[4] S. A. Rosenberg, N. P. Restifo, J. C. Yang, R. A. Morgan, and
M. E. Dudley, “Adoptive cell transfer: a clinical path to effective
cancer immunotherapy,” Nature Reviews Cancer, vol. 8, no. 4,
pp. 299–308, 2008.

[5] N. P. Restifo, M. E. Dudley, and S. A. Rosenberg, “Adoptive
immunotherapy for cancer: harnessing the T cell response,”
Nature Reviews Immunology, vol. 12, no. 4, pp. 269–281, 2012.

[6] M. E. Dudley, J. R. Wunderlich, P. F. Robbins et al., “Cancer
regression and autoimmunity in patients after clonal repopu-
lation with antitumor lymphocytes,” Science, vol. 298, no. 5594,
pp. 850–854, 2002.

[7] C. J. Wheeler, A. Das, G. Liu, J. S. Yu, and K. L. Black, “Clinical
responsiveness of glioblastoma multiforme to chemotherapy
after vaccination,” Clinical Cancer Research, vol. 10, no. 16, pp.
5316–5326, 2004.

[8] Gale Encyclopedia of Cancer, Chemotherapy, 2002, http://www
.encyclopedia.com/topic/chemotherapy.aspx.

[9] C. Bianca, F. Chiacchio, F. Pappalardo, and M. Pennisi, “Math-
ematical modeling of the immune system recognition to

mammary carcinoma antigen,” BMC Bioinformatics, vol. 13,
supplement 17, article S21, 2012.

[10] C. Bianca and M. Delitala, “On the modelling of genetic
mutations and immune system competition,” Computers and
Mathematics with Applications, vol. 61, no. 9, pp. 2362–2375,
2011.

[11] F. Pappalardo, P.-L. Lollini, F. Castiglione, and S. Motta, “Mod-
eling and simulation of cancer immunoprevention vaccine,”
Bioinformatics, vol. 21, no. 12, pp. 2891–2897, 2005.

[12] F. Pappalardo, A. Palladini, M. Pennisi, F. Castiglione, and
S. Motta, “Mathematical and computational models in tumor
immunology,” Mathematical Modelling of Natural Phenomena,
vol. 7, no. 3, pp. 186–203, 2012.

[13] F. Pappalardo, F. Chiacchio, and S. Motta, “Cancer vaccines:
state of the art of the computational modeling approaches,”
BioMed Research International, vol. 2013, Article ID 106407, 6
pages, 2013.

[14] G. I. Bell, “Predator-prey equations simulating an immune
response,”Mathematical Biosciences, vol. 16, no. 3-4, pp. 291–314,
1973.

[15] V. A. Kuznetsov, V. P. Zhivoglyadov, and L. A. Stepanova,
“Kinetic approach and estimation of parameters of cellular
interaction between immunity system and a tumor,” Archivium
Immunologiae et Therapie Experimentalis, vol. 2, pp. 465–476,
1992.

[16] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, and A. S. Perel-
son, “Nonlinear dynamics of immunogenic tumors: parameter
estimation and global bifurcation analysis,” Bulletin of Mathe-
matical Biology, vol. 56, no. 2, pp. 295–321, 1994.

[17] L. G. de Pillis, A. E. Radunskaya, and C. L. Wiseman, “A vali-
dated mathematical model of cell-mediated immune response
to tumor growth,”Cancer Research, vol. 65, pp. 7950–7958, 2005.

[18] L. G. de Pillis and A. Radunskaya, “A mathematical tumor
model with immune 363 resistance and drug therapy: an
optimal control approach,” Journal of Theoretical Medicine, vol.
3, pp. 79–100, 2000.

[19] L. G. de Pillis, K. Renee Fister, W. Gu et al., “Mathematical
model creation for cancer chemo-immunotherapy,” Computa-
tional and Mathematical Methods in Medicine, vol. 10, no. 3, pp.
165–184, 2009.

[20] F. S. Borges, K. C. Iarosz, H. P. Ren et al., “Model for tumour
growth with treatment by continuous and pulsed chemother-
apy,” Biosystems, vol. 116, pp. 43–48, 2014.

[21] N. L. Komarova and D. Wodarz, “Drug resistance in cancer:
principles of emergence and prevention,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 102, no. 27, pp. 9714–9719, 2005.

[22] P. Georgescu, H. Zhang, and L. Chen, “Bifurcation of nontrivial
periodic solutions for an impulsively controlled pest manage-
ment model,” Applied Mathematics and Computation, vol. 202,
no. 2, pp. 675–687, 2008.

[23] R. Kaneno, G. V. Shurin, I. L. Tourkova, and M. R. Shurin,
“Chemomodulation of human dendritic cell function by anti-
neoplastic agents in low noncytotoxic concentrations,” Journal
of Translational Medicine, vol. 7, article 58, 2009.

[24] S. Tang and Y. Xiao, “One-compartment model with Michaelis-
Menten elimination kinetics and therapeutic window: an ana-
lytical approach,” Journal of Pharmacokinetics and Pharmacody-
namics, vol. 34, no. 6, pp. 807–827, 2007.

[25] RxList, “Adria (doxorubicin hydrochlorid) drug indications and
dosage,” January 2007, http://www.rxlist.com/cgi/generic/adri-
amycin ids.htm.



12 Computational and Mathematical Methods in Medicine

[26] X. Liang, C. Chen, Y. Zhao, and P.Wang, “Circumventing tumor
resistance to chemotherapy by nanotechnology,” inMulti-Drug
Resistance in Cancer, vol. 596 of Methods in Molecular Biology,
pp. 467–488, 2010.

[27] M. M. Gottesman, “Mechanisms of cancer drug resistance,”
Annual Review of Medicine, vol. 53, pp. 615–627, 2002.

[28] J. C. Panetta, “A mathematical model of periodically pulsed
chemotherapy: tumor recurrence and metastasis in a competi-
tive environment,” Bulletin of Mathematical Biology, vol. 58, no.
3, pp. 425–447, 1996.


