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Abstract

A number of studies have indicated alterations of brain morphology in individuals

with autism spectrum disorder (ASD); however, how ASD influences the topological

organization of the brain cortex at different developmental stages is not yet well

characterized. In this study, we used structural images of 492 high-functioning partic-

ipants in the Autism Brain Imaging Data Exchange database acquired from 17 interna-

tional imaging centers, including 75 autistic children (age 7–11 years), 91 adolescents

with ASD (age 12–17 years), and 80 young adults with ASD (age 18–29 years), and

246 typically developing controls (TDCs) that were age, gender, handedness, and full-

scale IQ matched. Cortical thickness (CT) and surface area (SA) were extracted and

the covariance between cortical regions across participants were treated as a net-

work to examine developmental patterns of the cortical topological organization at

different stages. A center-paired resampling strategy was developed to control the

center bias during the permutation test. Compared with the TDCs, network of SA

(but not CT) of individuals with ASD showed reduced small-worldness in childhood,

and the network hubs were reorganized in the adulthood such that hubs inclined to

connect with nonhub nodes and demonstrated more dispersed spatial distribution.

Furthermore, the SA network of the ASD cohort exhibited increased segregation of

the inferior parietal lobule and prefrontal cortex, and insular-opercular cortex in all

three age groups, resulting in the emergence of two unique modules in the autistic

brain. Our findings suggested that individuals with ASD may undergo remarkable

remodeling of the cortical topology from childhood to adulthood, which may be asso-

ciated with the altered social and cognitive functions in ASD.
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1 | INTRODUCTION

Autism spectrum disorder (ASD) is a pervasive neurodevelopmental

disorder characterized by impaired social–emotional functioning and

related behavior throughout the lifespan, including deficits in social

communication, restricted interest, and repetitive and stereotyped

behaviors (Association, 2013; Baron-Cohen, 2000). Studies have indi-

cated an abnormal cerebral overgrowth in young children with ASD

(age of 2–4 years) relative to typically developing children (Carper &

Courchesne, 2005; Courchesne, 2002; Courchesne et al., 2001;

Courchesne, Carper, & Akshoomoff, 2003; Hazlett et al., 2005), which

was probably driven by the expansion of cortical surface area

(SA) (Hazlett et al., 2011). Moreover, SA of 6-12-month old infants

were able to predict the diagnosis of autism at 24 months (Hazlett

et al., 2017). These findings suggested that the early structural

changes in the brain cortex may be early signs of autistic symptoms.

Towards later developmental stages, reduced anatomical abnormali-

ties were reported in some studies (Courchesne et al., 2001;

Courchesne, Campbell, & Solso, 2011; Lange et al., 2015; Redcay &

Courchesne, 2005), though adolescents and adults with ASD

maintained autistic symptoms. However, other studies showed that

the gray matter (GM) may still undergo evident changes in the adults

with ASD, especially in the amygdala and frontal brain regions

(Courchesne et al., 2011; Ecker, Ginestet, et al., 2013; Eilam-Stock,

Wu, Spagna, Egan, & Fan, 2016; Freitag et al., 2009; Hazlett, Poe,

Gerig, Smith, & Piven, 2006). These findings primarily concerned

about the changes in GM morphology but did not address how the

brain morphological networks were altered in terms of connectivity,

hub topology (the spatial distribution of important brain regions and

their connective pattern), and modularity (measures the decompos-

ability of a network into several sparsely interconnected communities)

at different stages of development.

The alterations in autistic brain have recently been investigated in

a series of studies focusing on brain connectivity established via func-

tional and diffusion tensor imaging (Ameis et al., 2011; Cheng, Rolls,

Gu, Zhang, & Feng, 2015; Courchesne & Pierce, 2005; Di Martino

et al., 2011; Just, Cherkassky, Keller, Kana, & Minshew, 2007; Solso

et al., 2016; Sundaram et al., 2008; Supekar et al., 2013; Uddin, Sup-

ekar, & Menon, 2013; Yao et al., 2016). For example, children and

young adolescents with ASD showed abnormalities in both functional

and structural connectivity, manifested as, for example, over-

connectivity in local circuits (Courchesne & Pierce, 2005; Keown

et al., 2013; Solso et al., 2016), and underconnectivity between dis-

tant brain regions (Abrams et al., 2013; Barttfeld et al., 2011; Just

et al., 2007; Sundaram et al., 2008). Persistent alterations in functional

and WM connectivity were also observed in young adults with ASD

(Arnold Anteraper et al., 2018; Joshi et al., 2017; Mengotti &

Brambilla, 2014; Tyszka, Kennedy, Paul, & Adolphs, 2014), though

these changes may generally reduce with the maturation in individuals

with ASD (Uddin et al., 2013). In addition, by utilizing graph-theoretic

approaches, randomized network organization (Barttfeld et al., 2011;

Itahashi et al., 2014; Rudie et al., 2013) and altered hub topology

(Itahashi et al., 2014; Ray et al., 2014) were found in children and

adults with ASD. These findings suggested ASD was associated with

abnormal connectivity and network changes that can be used as

markers.

Compare with functional and tractography-based networks, the

network of anatomical covariance, constructed by measuring the cor-

relations of morphological features (volume, cortical thickness [CT],

SA, etc.) between pairs of brain regions (Evans, 2013), is able to char-

acterize the topological organization in a morphological perspective.

For example, the anatomical network-based “small-world” organiza-

tion measures the network organization relative to a matched ran-

domly wiring network (He, Chen, & Evans, 2007; He, Chen, & Evans,

2008; Zheng, Yao, Xie, Fan, & Hu, 2018), and modular architecture

measures the organization pattern of the sparsely interconnected

communities in the network (Chen, He, Rosa-Neto, Germann, &

Evans, 2008). The positive anatomical correlations were partially

(35–40%) mediated by fiber connection (Gong, He, Chen, & Evans,

2012), suggesting that the anatomical correlations contained unique

information and may partially reflect the connecting WM pathways. In

fact, previous studies have found that ASD affected the cortical GM

in terms of the modular organization in autistic children (Shi, Wang,

Peng, Wee, & Shen, 2013) and intrinsic connectivity in adults with

ASD (Ecker, Ronan, et al., 2013). Moreover, the cortico-cortical GM

connectivity between brain regions can be used to identify individuals

with ASD from typically developed persons (Wee, Wang, Shi, Yap, &

Shen, 2014; Zheng, Eilamstock, et al., 2018). Therefore, the network

features may provide unique information for ASD that may not be

characterized by individual morphological features alone. Though

changes in GM connectivity within a specific age range (e.g., children)

have been extensively studied, the alteration of large-scale GM net-

work with the development of autistic brains remains unclear.

In the present study, we aimed to investigate the developmental

patterns of cortical GM topology in individuals with ASD from child-

hood to adulthood. T1-weighted (T1w) images of magnetic resonance

imaging (MRI) of 17 acquisition centers from the Autism Brain Imaging

Data Exchange (ABIDE) database (http://fcon_1000.projects.nitrc.

org/indi/abide/) were used to construct networks based on both CT

and SA for individuals with ASD (246 subjects) and the typically devel-

oping controls (TDCs) (246 subjects). We characterized the topologi-

cal differences between them in three age ranges, including childhood

(7–11 years), adolescence (12–17 years), and adulthood (18–-

29 years). Graph-theoretic measures were calculated, including small-

worldness, hub nodes, and modular structure, to provide a compre-

hensive picture of the ASD-related alterations in structural network

organization at different developmental stages. In addition, we

brought up a center-paired permutation strategy that avoided possible

bias occurred during centers resampling to assess the group differ-

ences in network properties.

2 | MATERIALS AND METHODS

2.1 | Images

T1w images were obtained from the ABIDE I database (http://fcon_

1000.projects.nitrc.org/indi/abide/), which were acquired on 3 T
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scanners of 17 international imaging centers (13 from the United

States and 4 from Europe) at a resolution of 1 × 1 × 1 mm3. Detailed

acquisition parameters are available at the ABIDE website. Image

acquisition at each site was approved by its local institutional review

board. Participants in the ASD group were diagnosed by experienced

clinicians using Autism Diagnostic Interview-Revised (ADI-R), the

Autism Diagnostic Observation Schedule, and/or DSM-IV-TR. The

typical developing individuals had no reported personal or family his-

tory of ASD and were matched at the group level to ASD relative to

age. Participants were excluded if they had psychiatric or neurological

disorders. Details of diagnostic criteria at each center were shown in

Table S1. All images were checked before preprocessing to ensure

that all participants were free of brain injury.

We included individuals with ASD who were left-handed, youn-

ger than 30 years old at the scan, and in the high-functioning end of

the spectrum (full-scale IQ ≥80) for analysis. Subjects with low-quality

MRI scans were excluded (see Section 2.2). The qualified ASD sub-

jects were categorized into three cohorts based on the age at scan:

children (7–11 years), adolescents (12–17 years), and adults (18–

29 years) (Aboud et al., 2019; Knoppert et al., 2007). For each individ-

ual with ASD, we selected a TDC subject from the same acquisition

site with matched age, gender, handedness, and full-scale IQ. Specifi-

cally, we first selected the TDC subjects with the same gender and

handedness as the target individual with ASD; then we picked several

TDC subjects whose age were very close to the target subject; we

chose the final TDC subject with comparable FIQ (relative to the tar-

get ASD subject) from these age-matched TDCs. The absolute mean

between-group differences of age and FIQ of the selected child/ado-

lescent/adult subjects were 0.30/0.32/0.62 (SD = 0.33/0.37/0.74)

and 14.86/13.39/12.92 (SD = 11.27/10.55/11.11), respectively. The

ASD or TDC individuals who had no matched subjects in the other

group were excluded. Finally, a total of 246 subjects with ASD, includ-

ing 75 children, 91 adolescents, 80 adults, and 246 matched neuro-

typical controls were selected. The distribution of the diagnostic

categories, including autism, Asperger's disorder, and pervasive devel-

opmental disorder not-otherwise-specified, of the selected ASD indi-

viduals is illustrated in Figure S1. Basic information regarding the

demographics of the participants and the acquisition sites are given in

Tables 1 and 2, respectively. No significant difference was found in

age and full-scale IQ between ASD and matched TDC groups for each

age range (ps > .05).

2.2 | Image preprocessing

All image data were preprocessed using FreeSurfer v5.3.0 (http://

surfer.nmr.mgh.harvard.edu). Briefly, the preprocessing included

motion correction, exclusion of nonbrain tissue (Ségonne et al., 2004),

coordinate transformation, intensity normalization, segmentation, and

generation of GM–white matter boundary (Dale, Fischl, & Sereno,

1999; Fischl, Sereno, & Dale, 1999). Low-quality MRI scans that failed

the segmentation or showed segmentation inaccuracies between the

generated GM–white matter boundary were excluded (26 ASD sub-

jects and 3 TDCs in total). Surfaces were inflated and registered to a

priori template to calculate the morphological measurements of the

brain cortex. Here, two commonly used morphological measures,

including SA and CT, were extracted. The reasons for choosing SA

TABLE 1 Demographic information of participants

Age Gender Full-scale IQ

Group Mean SD Male Female Mean SD

Children (7–11 years)

ASD 9.81 1.25 66 9 107.85 15.91

TDC 9.88 1.30 66 9 113.53 11.25

Adolescents (12–17 years)

ASD 14.50 1.56 79 12 106.40 14.15

TDC 14.53 1.49 79 12 108.19 11.83

Adults (18–29 years)

ASD 22.84 3.36 71 9 110.04 13.62

TDC 22.90 3.31 71 9 114.63 11.42

Abbreviations: ASD, autism spectrum disorder; SD, standard deviation;

TDC, typically developing control.

TABLE 2 Information of acquisition centers of the selected data

Acquisition center

Children Adolescents Adults

ASD TDC ASD TDC ASD TDC

CALTECH 7 7

CMU 7 7

KKI 12 12

LEUVEN1 9 9

MAX_MUM 4 4 4 4

NYU 22 22 11 11 12 12

OHSU 6 6

OLIN 6 6 4 4

PITT 10 10 7 7

SBL 2 2

SDSU 8 8

STANFORD 8 8

TRINITY 13 13 8 8

UCLA1 7 7 17 17

UCLA2 2 2 3 3

UM1 8 8 8 8

UM2 8 8

USM 20 20

Yale 6 6 7 7

Abbreviations: ASD, autism spectrum disorder; CALTECH, California

Institute of Technology; CMU, Carnegie Mellon University; KKI, Kennedy

Krieger Institute; LEUVEN, University of Leuven; MAX_MUM, Ludwig

Maximilians University Munich; NYU, New York University Langone

Medical Center; OHSU, Oregon Health and Science University; OLIN, Olin

Center, Institute of Living at Hartford Hospital; PITT, University of

Pittsburgh; SBL, Social Brain Lab, BCN Neuroimaging Center, University

Medical Center Groningen; SDSU, San Diego State University;

STANFORD, Stanford University; TRINITY, Trinity Center for Health

Sciences; UCLA, University of California, Los Angeles; UM, University of

Michigan; USM, University of Utah; Yale, Yale Child Study Center.
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and CT were because these two measures were key features for char-

acterizing cortical thinning and surface shrinking that have been

widely reported in individuals with ASD (Ecker, Ginestet, et al., 2013;

Hyde, Samson, Evans, & Mottron, 2010; Libero, DeRamus,

Deshpande, & Kana, 2014; Mak-Fan, Taylor, Roberts, & Lerch, 2012;

Wallace, Dankner, Kenworthy, Giedd, & Martin, 2010), and they rep-

resented different information of cortical morphology compared to

other features (e.g., vertical volume) (Panizzon et al., 2009; Sanabria-

Diaz et al., 2010). Thus, these two measures were chosen to reveal

the ASD-related changes in morphological topology from distinct

domains. The SA at each vertex was the average of all triangular faces

surrounding the vertex (Winkler et al., 2012); and the CT was mea-

sured as the closest distance between the WM and GM surface at

each vertex (Fischl & Dale, 2000). Each cortical surface was

parcellated into 148 regions according to the Destrieux atlas (2009)

(Destrieux, Fischl, Dale, & Halgren, 2010) in FreeSurfer. Regional SA,

which represented as the 2D flattened surface of the brain region,

and regional average CT were then computed.

2.3 | Construction of networks of anatomical
covariance

To reduce the differences in feature scaling between different sites,

we rescaled the surface measures of each selected subject using the

median absolute deviation (MAD) of all preprocessed data from the

same acquisition site after quality control (but before the selection of

age, sex, and FIQ matched individuals) (Wulff & Mitchell, 2018; Zheng,

Woo, et al., 2019). For each site, we calculated the MAD of regional

properties (CT or SA) of each brain region across participants, and the

regional properties of each participant were then rescaled by dividing

the MAD of this region, resulting in a ratio of MAD. Linear regression

was performed on the regional measures to control for the effects of

age, gender, and global average SA/CT in each age group (i.e., child,

adolescent, and adult), separately (He et al., 2007; Yao et al., 2010;

Yao et al., 2015). The residuals of the linear regressions were used to

construct the cortical structural network. Here, each brain region rep-

resented a node of the network, and the edge between every pair of

nodes was defined as the Pearson correlation coefficient between the

structural measures (i.e., SA and CT) of the two regions across sub-

jects (He et al., 2007; He et al., 2008). For each group, a 148 × 148

symmetric association matrix (10,878 total connections) was obtained.

The pipeline for network construction and analysis is shown in

Figure 1.

2.4 | Network analysis

2.4.1 | Network metrics

Network metrics were calculated based on the binary association

matrix, where the edges were set to 1 if they exceeded a pre-

determined threshold and 0 if they below the threshold. To

characterize the robustness of our analyses as a function of link den-

sity, we performed analyses by varying the network sparsity, from

8 to 35% in 1% increments by increasing the threshold. This range

was chosen because the networks were fully connected at 8% spar-

sity and became randomly organized when the density was above

35% (see Figure S2). All self-connections and negative connections

were excluded from analyses. Network analyses were performed

using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010), and

the results were visualized via BrainNet Viewer (Xia, Wang, &

He, 2013).

2.4.2 | Global network properties

To compare the overall organization of networks between ASD and

TDC for each age range, graph theoretical analysis was utilized to

extract four common properties from the graph for both ASD and

TDC cohorts at each link density, including clustering coefficient,

global efficiency, small-worldness, and modularity. The clustering

coefficient of a node is defined as the number of suprathreshold

edges between the node's neighbors divided by all possible edges

between its neighbors. The characteristic path length (L) is the

smallest number of connections between pairs of nodes, averaged

across all pairs. Because a longer route, on average, from node to

node leads to lower efficiency of information transfer, the measure of

global efficiency of a graph is defined as the inverse of L. A small-

world network typically shows higher clustering and comparable

L relative to a random graph (Watts & Strogatz, 1998). The modularity

measures the extent to which a graph can be segmented into non-

overlapping communities with maximization of intra-module edges

and minimization of intermodule edges (Newman, 2006).

2.4.3 | Hub analysis

Eigenvector centrality was used to measure the importance of nodes

in the network. The principle of eigenvector centrality is that links

connecting to important nodes are worth more than connecting to

others, which does not only take into account the connectedness of a

node itself (i.e., its degree) but also sensitive to more complicated situ-

ations, for example, a high degree node connecting to a number of

low degree nodes or a low degree node connecting to a number of

high degree nodes (Bonacich, 2007). Thus, eigenvector centrality pro-

vides a more comprehensive assessment when the centrality of a net-

work is driven by differences in degree (Bonacich, 2007; Solá et al.,

2013). To obtain a unified hub topology for each group across multi-

ple link densities, we averaged the eigenvector centrality of each node

over different link densities (from the strongest 5 to 35% of links in

5% increments) and defined the hub regions as nodes with z-scored

average eigenvector centrality >1.5 (Cohen & D'Esposito, 2016; Lynall

et al., 2010; Zheng, Woo, et al., 2019). To explore whether the struc-

tural changes of a brain region could affect the nodal function in the

cortical network, we calculated the Pearson correlation between
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regional structures and eigenvector centralities of ASD and TDC

cohorts at each age range.

2.4.4 | Network assortativity

We further calculated the assortativity coefficient to investigate

whether ASD influenced the assortative mixing of the cortical net-

work. The assortativity measures the relationship between the

strength of linked nodes (eigenvector centrality) on each side of the

connectivity (Newman, 2002). In other words, nodes in an assortative

network are inclined to connect with other nodes with similar

strength, for example, hub nodes are more strongly clustered with

other hub nodes, making the network robust against disruption

(Bassett et al., 2008; Newman, 2002). Mathematically, assortativity is

defined as:

r =
1
M

P
i jiki−

1
M

P
i
1
2 ji + kið Þ� �2

1
M

P
i
1
2 ji

2 + k2i

� �
− 1

M

P
i
1
2 ji + kið Þ� �2

where ji and ki are the eigenvector centralities of the nodes at the

ends of the ith edge and M is the number of edges in the network.

Here, the averaged eigenvector centralities over link densities were

used as nodal strength for calculation.

2.4.5 | Community detection

To avoid the effect of network sparsity on modular partitions, we per-

formed the community detection algorithm on the weighted network

following the pipeline described in (Cohen & D'Esposito, 2016)

(Figure 1). Briefly, the Louvain community detection algorithm was

F IGURE 1 The pipeline of network analysis. All preprocessed T1-weighted images were registered to a prior template including 148 brain
regions, and the regional average morphological measures (i.e., cortical thickness [CT] and surface area [SA]) were extracted, yielding an N-
participants × 148 data matrix. Before network construction, regional data of each acquisition center were rescaled, and the effects of age,
gender, and global CT/SA were regressed out from the rescaled regional measures. The structural connectivity between pairs of brain regions was
estimated by calculating Pearson correlations across individuals, separately for autism spectrum disorder (ASD) and TDC cohorts, and separately
for different age bands. The optimal module partitions were determined based on the weighted correlation matrix after removing all negative
connections. The correlation matrix was then binarized by retaining the strongest 8–35% of connections in 1% increments. Network properties

were calculated at each link density
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utilized to estimate the optimal partition of nodes in the network that

had only positive weighted edges (Blondel, Guillaume, Lambiotte, &

Lefebvre, 2008). Because the partitions may vary from run to run, the

algorithm was repeated 150 times to yield a consensus matrix (D),

where Dij indicated the probability that node i and node j were

assigned to the same community. The agreement value was set

to zero if the probability that a pair of nodes were assigned to

the same community was lower than 50%. We then ran the Louvain

algorithm 100 times on the consensus matrix (D) to compute one con-

sensus modular partition. This step was repeated until the single

consensus partition was obtained. This method was shown to be

more reliable than other commonly used algorithms (Lancichinetti &

Fortunato, 2012).

2.4.6 | Modular segregation

We applied the segregation index (SI) to measure the degree of segre-

gation of each module (Chan et al., 2018), defined as:

SI=
�Zw−�Zb

�Zw

where �Zw is the average of Fisher's z-transformed connections within

a specific module, and �Zb is the average z value of connections

between this module and all the other modules. To compare the SI of

each module of ASD cohort with the TDCs, we extracted the SI of

TDC cohort by applying the modular partition of ASD to the TDCs,

with the null hypothesis that the segregation of this module in ASD

cohort was at the same level as in the TDCs.

2.5 | Statistical analysis

The statistical differences of network properties between individuals

with ASD and the TDCs within each age range were tested using non-

parametric permutation tests with 5,000 permutations. In each per-

mutation, we randomly reallocated subjects to ASD or TDC group and

built the association matrices for the randomized groups (He et al.,

2008; Yao et al., 2010). Because the dataset of each age range

included samples from over nine acquisition centers, to reduce the

site bias that may occur during permutation (e.g., all samples from one

acquisition center may have the chance to be reassigned to one

group), we performed a center-paired permutation test by permuting

samples within each of the acquisition centers and the outcomes of all

the centers were put together to form a final pair of randomized

groups. Then, the network properties of the randomized groups were

computed, and the between-group differences of these properties

were calculated. This procedure was repeated 5,000 times to generate

the confidence interval (CI) for each network property at every den-

sity, and two-tailed, uncorrected p values were calculated from the

CI. This paired permutation strategy was compared with the regular

permutation regardless of the site difference. To investigate whether

the center bias was well controlled, one-sample t test was used to

compare the corrected data of each acquisition center with the mean

value of all the centers. This step was performed for each group

within different age ranges. Multiple comparisons and correlations

were corrected by false discovery rate (FDR) corrections at the level

of q = 0.05.

3 | RESULTS

3.1 | Differences in the overall network topology
between ASD and the TDC groups

We first tested whether the SA or CT in individual parcels

(e.g., average SA/CT of the parcels) or vertex were different between

ASD and TDC groups, and did not find significant between-group dif-

ferences in any of the three age ranges (qs > 0.05, FDR corrected),

suggesting the group differences were relatively mild and could not

be detected with parcel-based analysis.

We then checked the global network properties. Networks of

both SA and CT covariation were “small-world,” and the small-

worldness (σ) of the CT network was slightly higher than the SA net-

work in all three age groups (Figure S2). Results from the permutation

test showed that the small-worldness of the SA network was signifi-

cantly reduced in children with ASD at 16–17% link density when

compared to the matched TDCs (p < .05, FDR corrected, Figure 2).

However, the small-worldness did not show a significant change in

either adolescents or adults with ASD. Clustering coefficient, global

efficiency, and modularity of the SA network in the ASD cohort did

not significantly differ from those in the neurotypical cohort in any of

the age groups. In addition, the properties of the CT network did not

exhibit evident alteration in individuals with ASD (Figure S3),

suggesting that ASD may have less effect on the topologic organiza-

tion of CT than that on SA. Therefore, further analyzes only focused

on the network of SA covariation.

We also applied linear regression to control site information

(Haar, Berman, Behrmann, & Dinstein, 2014) and compared the

results with the aforementioned analysis using MAD rescaling. Both

approaches performed well in controlling site bias of SA (one-sample

t test, qs > 0.05, FDR corrected), and MAD rescaling achieved lower

variance at all acquisition centers (Figure S4), suggesting the results

derived from SA were not significantly biased among the sites. How-

ever, the site bias of CT cannot be completely corrected by either

approach, as we found the corrected CT in 7 out of 17 sites were sig-

nificantly differed from the average of all the sites in different age

ranges (one-sample t test, qs < 0.05, FDR corrected). This may due to

the large variance between the original CT distributions across acqui-

sition sites and was consistent with a recent study showing CT was

less reliable than SA and volume (Carmon et al., 2020). Though this

may not affect the main results of this study, the site difference

remained a concerning factor as in many other multicenter studies

(Grech-Sollars et al., 2015; Haar et al., 2014; Teipel et al., 2017;

Zheng, Eilamstock, et al., 2018), and should be carefully examined.
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In addition, we compared the center-paired permutation strategy and

the regular permutation strategy (permute all samples regardless of

centers). Figures S5 and S6 showed the paired permutation strategy

performed better in controlling possible center bias during the permu-

tation process and did not increase the false-positive rate.

3.2 | Changes of hub topology in ASD and TDC
cohorts

The hub regions (z-scored eigenvector centrality >1.5) in the ASD and

TDC cohorts at each age basket are visualized in Figure 3a. No signifi-

cant between-group differences in eigenvector centrality were found

(qs > 0.05, FDR corrected). To provide a clearer visualization of the

alteration pattern in nodal centrality of the ASD cohort, we plotted

the ratio changes of eigenvector centrality of all nodes relative to the

TDCs (Figure S7). Similar hub topology was found in both children

with ASD and the neurotypical children, except the orbitofrontal cor-

tex where more hubs were identified in the ASD cohort (e.g., bilateral

H-shaped orbital sulcus and olfactory cortex). For the adolescent

group, nodes with relative lower centrality were mainly placed in the

parietal cortex, and most of the hubs were located within frontal and

occipital cortices for both the ASD and TDC subjects. For the adult

group, hub regions of both ASD and TDC cohorts were localized in

the anterior and middle brain, including the prefrontal cortex (PFC),

anterior-to-middle cingulate gyri, and insula-opercular cortex; further-

more, some nodes within the left operculum and parieto-occipital cor-

tex (e.g., cuneus and occipital pole) were identified as hubs in ASD

group.

Interestingly, the eigenvector centrality significantly negatively

correlated with regional SA in children with ASD (r = −.2826, q < 0.05,

FDR corrected, Figure 3), suggesting that the alteration of SA of a

brain region may influence the role of that region played in the whole

network. However, the correlations were nonsignificant in either ado-

lescents and adults with ASD or the three TDC groups (qs > 0.05,

FDR corrected). We also found that there was a significant reduction

in network assortativity in adults with ASD compared to the matched

controls (q < 0.05, permutation test, FDR corrected, Figure 4),

suggesting hub nodes tended to cluster more with nonhub nodes and

cluster less with other hubs in adults with ASD.

3.3 | Different modular organizations of the
cortical SA network in ASD and TDC cohorts

In the TDC groups, we identified four modules in children and adults,

and three modules in adolescents (Figure 5a). Module I (in red)

included PFC, insular-opercular cortex, ACC and posterior cingulate

cortex, angular gyri (ANG), precuneus, and parts of superior temporal

gyri (STG), which was in good accordance with the distribution of the

(DMN) and the “cognitive control network” (Allen et al., 2014; Park,

Kim, & Park, 2014; Yeo et al., 2011) and showed high consistency in

the three age ranges. Module II (in green) mainly included postcentral

gyri, ventral frontal cortex, and parts of the occipital cortex. Module III

(in yellow), which consisted of the ventral and orbital frontal cortex

and parts of the inferior temporal cortex, were clearly observed in

child and adult TDCs. Module III in the adolescents was merged with

Module IV (in blue), which mostly located in the temporal and occipital

cortices.

In the ASD group, two additional modules (Modules V and VI)

that were not observed in the TDCs were identified in all the three

age groups (Figure 5a). Specifically, Module V (in pink) mainly included

PFC, precuneus, ANG, and several superior and inferior temporal

regions; and Module VI (in black) covered the anterior-to-posterior

cingulate gyri, insular-opercular cortex, and posterior STG. The SI of

Modules V and VI consistently increased in individuals with ASD in all

three age ranges (qs < 0.05, permutation test, FDR corrected,

Figure 5b). These results indicated an evident reorganization of modu-

lar structure in the SA covariation network of individuals with ASD,

despite the nonsignificant between-group differences in modularity

magnitude.

4 | DISCUSSION

The structural development of the autistic brain across the human

lifespan has long been an open question. Although studies have

reported significant changes of cortical morphology in individuals with

ASD, for example, brain overgrowth in early childhood (Courchesne

et al., 2003; Courchesne et al., 2007; Heather Cody Hazlett et al.,

2017; Zwaigenbaum et al., 2014) and accelerated cortical thinning in

adulthood (Braden & Riecken, 2019; van Rooij et al., 2018), and varia-

tions in cortical SA (Ecker et al., 2014; Ecker, Ginestet, et al., 2013;

Hazlett et al., 2011; Libero et al., 2014; Mak-Fan et al., 2012) and GM

volume (Eilam-Stock et al., 2016; Hyde et al., 2010; Libero et al.,

2014; Riddle, Cascio, & Woodward, 2017), these findings remain

largely inconsistent (Ecker, Bookheimer, & Murphy, 2015; Haar et al.,

2014; Nickl-Jockschat et al., 2012). By utilizing machine learning tech-

nology, studies have reported limited utility of morphological mea-

sures for ASD diagnosis on a large sample set (Haar et al., 2014). On

the other hand, atypical cortico-cortical GM connectivity that was

reported in both children and adults with ASD (Ecker, Ronan, et al.,

2013; Shi et al., 2013) can significantly enhance the diagnostic perfor-

mance (Wee et al., 2014; Zheng, Eilamstock, et al., 2018), which would

also help to understand the developmental pattern of the autistic

brain.

The current study extended previous works by showing ASD-

related changes in cortico-cortical structural covariation in childhood,

adolescence, and adulthood. Our results suggested that ASD

(a) resulted in substantial changes in cortical structural organization in

the childhood, including reduced small-worldness, centralized hubs in

the orbitofrontal cortex, and reduced network assortativity in the

adulthood; and (b) caused disordered module organization that

formed a specific module including brain regions associated with

socio-emotional processing and cognitive functions (e.g., insular-

opercular cortex, ACC, and STG). These changes implied that although
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the individual morphological features (e.g., SA and CT) may have less

abnormal changes in individuals with ASD, the organization of cortical

topology remained largely abnormal, which may explain the structural

basis for the impaired behavioral and social–emotional functions in

ASD cohort.

Though connectivity changes are originated from anatomical

alterations that may result from various latent processes

(e.g., maturation, aging, and disease), they reflect unique information

that may not be captured by using anatomical features alone, because

they better characterize the distributed influence of disease in the

brain (Evans, 2013). The true advantage of structural network analysis

lies in the quantitative descriptions of structural changes in both

cortico-cortical associations and high-level topological structures,

which may complement the understanding of the ASD mechanism

from an anatomical perspective. Furthermore, the effects of ASD on

the cortical topological organization during childhood, adolescence,

and adulthood are largely uncharted territory, which is important for

the etiology of ASD. Thus, the main contribution of this study was to

demonstrate the alteration pattern of cortical topological in individ-

uals with ASD at different age ranges, which revealed a more compre-

hensive description than using the morphological features alone.

4.1 | Network of SA covariations revealed the
alteration of cortical organization in autistic children
rather than surface morphology

The pathological process that underpins the early enlargement of the

cortex remains unclear. Interestingly, we showed ASD significantly

influenced the organization of the network of SA, but not CT,

F IGURE 5 Modular organization of the network of surface area (SA) covariance. (a) Visualization of modules of autism spectrum disorder
(ASD) and TDC groups in the three age ranges. Colors indicate different modules. (b) The between-group difference in the segregation index
(SI) of Modules V and VI in three age groups. Increased SI of Module V and Module VI in individuals with ASD of all three age groups were found,
relative to the matched TDCs (qs < 0.05, permutation test, false discovery rate [FDR] corrected). Redline and dotted black lines are the mean and
95% confidence interval of SI difference, respectively, obtained from 5,000 permutations. Red diamonds indicate the observed statistic

F IGURE 4 The difference in network assortativity between
individuals with autism spectrum disorder (ASD) and the TDCs. The
assortativity of adults with ASD significantly decreased relative to the
TDCs (q < 0.05, permutation test, false discovery rate [FDR]
corrected). Blackline and dotted red lines are the mean and 95%
confidence interval of the group difference, respectively, obtained
from 5,000 permutations. Red diamonds indicate the observed
statistic
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covariation in childhood. This was consistent with the findings that

early enlargement of brain volume in ASD was driven by an expansion

of SA (but not CT) (Hazlett et al., 2011). Actually, the covariation

matrix of CT and SA may reflect distinct aspects of the interaction

between brain structures (Sanabria-Diaz et al., 2010) that may be cau-

sed by multiple factors (e.g., genetic (Panizzon et al., 2009) and micro-

structure (Pontious, Kowalczyk, Englund, & Hevner, 2008)). Our

results suggested the network of SA covariance in children with ASD

showed a more randomized organization than that in typically devel-

oping children. Because small-world topology reflects an optimal bal-

ance between global integration and local segregation (Liao,

Vasilakos, & He, 2017; Sporns & Zwi, 2004), the reduction of small-

worldness may indicate a disturbance of this balance. Similar result

has been reported in functional MRI study in a similar age range

(Rudie et al., 2013). However, the small-worldness tended to be nor-

malized in adolescents and adults with ASD. This may result from the

arrested growth or decrease in brain volume in older age (Courchesne

et al., 2011). Although the atypical growth was reported mostly at the

age before 4 years and disappear at age of 6–8 years (Courchesne

et al., 2001), we speculated that the reduced morphological changes

may still have long-lasting influences on topological structure, as we

found reduced small-worldness in children with ASD at the older age

(age of 7–11 years), although their CT and SA did not significantly dif-

fer from healthy controls.

4.2 | Altered hub topology of adults with ASD
suggested the persistent effects of ASD on adult brain
morphology

Compared to the neurotypical adults, regions within the occipital cor-

tex played more important roles in adults with ASD, who also demon-

strated decreased network assortativity, though the regional CT and

SA measurements in adult ASD subjects returned to normal levels.

These results were partially consistent with a previous functional MRI

study showing that compared to TDCs, adults with ASD were accom-

panied by decreased centrality in right PFC and increased centrality in

parieto-occipital and posterior occipital cortices (Itahashi et al., 2014).

In contrast, hubs of the SA network of the TDCs showed localized dis-

tribution in adulthood, mainly within medial prefrontal and lateral

frontoparietal cortices (e.g., frontal and cingulate cortices, and pars

opercularis). This pattern differed from the hub distribution reported

in networks of CT covariance (Bernhardt, Chen, He, Evans, &

Bernasconi, 2011; He et al., 2007), but was in line with previous volu-

metric network studies showing increased hubs in anterior, medial,

and lateral prefrontal cortices in young and middle-aged adults

(Palaniyappan et al., 2019; Palaniyappan, Park, Balain, Dangi, & Liddle,

2015) and localized hub topology in the adulthood (Li et al., 2013).

Possible interpretations for this phenomenon were that SA explained

most of the changes in cortical volume in adults with ASD (Ecker,

Ginestet, et al., 2013) and showed different attributes in structural

brain networks relative to CT (Sanabria-Diaz et al., 2010). The diffu-

sive distribution of hub nodes (relative to the matched TDCs) and

reduced network assortativity implied that the adult brains may expe-

rience broad influence from ASD and the hub regions were more

inclined to connect with nonhub regions, making the network vulnera-

ble to disruptions in adulthood (Bassett et al., 2008; Newman, 2002).

Interestingly, we found that regional SA was able to predict the

importance of brain regions in the network in children with ASD, with

larger SA accompanied with lower eigenvector centrality; however,

this relationship was not statistically significant in other age groups of

ASD, nor the TDCs. This phenomenon, we speculated, may be associ-

ated with the overdevelopment of the autistic brain in early childhood

that altered the hub topology, and children with ASD (aged 7–11) may

still experiencing the sequelae of the atypical development, making

the less affected areas took more important position in the cortical

network (e.g., the orbital cortex has been indicated with less changes

in children with ASD (Carper & Courchesne, 2005)).

4.3 | Modular reorganization impeded the
integration of cognitive functions in the autistic brain

Another interesting finding was that individuals with ASD showed dis-

tinct modular partitions compared with the TDCs. In general, the

alteration of modular structure in the anatomical network may result

from common latent processes, such as growth. However, the reorga-

nization occurred in the ASD group in all the three age bands, but not

in the neurotypical controls who had matched age, sex, handedness,

and IQ, providing strong evidence for ASD-induced changes in net-

work organization. Regions that belonged to the same module in the

controls (Module I) reorganized into two segregated modules

(i.e., Modules V and VI) in individuals with ASD, with significant SI

increases in both of the two modules at different ages, suggesting

increased coherence in SA changes within the reorganized modules

but decreased coherence with regions outside the modules. These

changes may result from the distinct development trajectory in the

autistic brain. In addition, the detected modules were highly consis-

tent with a previous study showing segregation between the PFC and

insula/STG in children with ASD (Shi et al., 2013), but differed from

the finding of another study (Bethlehem, Romero-Garcia, Mak,

Bullmore, & Baron-Cohen, 2017) which showed high modular over-

lapping between autistic and neurotypical children. The inconsistency

may due to the differences in the features under examination, sample

size, and module detection algorithms (Carmon et al., 2020; Taya, de

Souza, Thakor, & Bezerianos, 2016).

More broadly, the modular reorganization may be associated with

the deficits of individuals with ASD in multiple cognitive functions

(e.g., sensory processing, emotional and cognitive functions, and social

cognition) (Allen & Courchesne, 2003; Baron-Cohen, 2000; Eyler,

Pierce, & Courchesne, 2012; Fan, 2012; Mackie & Fan, 2017; Perry,

Minassian, Lopez, Maron, & Lincoln, 2007). The brain regions within

Module VI (e.g., insula-opercular cortex and STG) were primarily asso-

ciated with emotional processing (Evrard, 2019; Gu, Hof, Friston, &

Fan, 2013; Suzuki, 2012; Uddin, Nomi, Hébert-Seropian, Ghaziri, &

Boucher, 2017), language (Hickok & Poeppel, 2000, 2004; Scott,
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Blank, Rosen, & Wise, 2000; Scott & Wise, 2004), and social cognition

(Fan, Chen, Chen, Decety, & Cheng, 2013; Lamm & Singer, 2010;

Odriozola et al., 2015; Spagna et al., 2018; Uddin et al., 2017;

Yamasaki et al., 2010; Zilbovicius et al., 2006). The isolation of this

module (from Module I) implied disrupted integration in network

architecture (e.g., impaired integration between attention, cognitive

control, and socio-emotional networks) (Müller, 2007) and reduced

efficiency in information processing in autistic brains (Mackie & Fan,

2016; Rudie et al., 2013), which might be one of the factors contribut-

ing to the symptomatology of autism in social behavior (Kasari, Locke,

Gulsrud, & Rotheram-Fuller, 2011; White, Keonig, & Scahill, 2007),

emotional processing (Ameis et al., 2011; Wicker et al., 2008), and lan-

guage and communication (Tager-Flusberg, 2003; Tager-Flusberg,

Paul, & Lord, 2005).

4.4 | Limitations

There were several limitations in the current study. First, the data we

used were acquired from multiple acquisition centers. This was a

strength in the sense that it promoted the generalizability of our find-

ings across observations. However, it may also bring unknown effects

in the analysis, though we have strictly controlled the influence of this

issue (e.g., the age, sex, handedness, and IQ were strictly matched

between ASD and TDC groups, and data rescaling and center-paired

permutation strategy were adopted to mitigate the between-site dif-

ference), the variabilities of diagnostic strategies and the experience

of clinicians across centers may have potential influences and require

attention in multicenter studies. In addition, the inconsistency

between acquisition centers in different age baskets (e.g., the CMU

center only has adult samples) also limited us to directly compare the

network changes across age. Therefore, the developmental changes

of the network properties across age groups in the present study were

only qualitative and speculative and needed to be examined in future

work. Second, the subcortical regions were excluded from our analy-

sis, because of the definition of CT and SA was not appropriate for

subcortical structures. Since some subcortical regions (e.g., amygdala

(Baron-Cohen et al., 2000) and thalamus (Nair, Treiber, Shukla, Shih, &

Müller, 2013)) also play crucial roles in autism research, comparison of

SA networks that include these regions would be important, but it

remains as a challenge. Third, our results reflected the network

changes at the group level, but network properties may vary across

individuals in ways that cannot be captured by the current study.

Recent studies have made it possible to build GM networks on

individual-person level (Tijms, Series, Willshaw, & Lawrie, 2012; Wee

et al., 2014; Zheng et al., 2015; Zheng, Yao, et al., 2018; Zheng, Yao,

et al., 2019), and these approaches can be utilized to characterize the

alterations in cortical topology for the individual with ASD.

5 | CONCLUSION

In conclusion, we found that ASD altered the topological architecture

of SA but not CT, and caused a modular reorganization of the

structural network during brain development from childhood to adult-

hood. We also found a significant reduction of small-worldness in chil-

dren with ASD, and this abnormality disappeared in older ages.

Furthermore, hub regions of adults with ASD became dispersedly dis-

tributed across the brain and tended to connect with nonhub regions

compared to the matched TDCs. These changes may reduce the

robustness of the network and impede the integration of multiple

cognitive functions, leading to the dysfunction in the autistic brain

across the lifespan.
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