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Abstract

In this paper, we consider the Minimum Reaction Insertion (MRI) problem for finding the minimum number of additional
reactions from a reference metabolic network to a host metabolic network so that a target compound becomes producible
in the revised host metabolic network in a Boolean model. Although a similar problem for larger networks is solvable in a
flux balance analysis (FBA)-based model, the solution of the FBA-based model tends to include more reactions than that of
the Boolean model. However, solving MRI using the Boolean model is computationally more expensive than using the FBA-
based model since the Boolean model needs more integer variables. Therefore, in this study, to solve MRI for larger
networks in the Boolean model, we have developed an efficient Integer Programming formalization method in which the
number of integer variables is reduced by the notion of feedback vertex set and minimal valid assignment. As a result of
computer experiments conducted using the data of metabolic networks of E. coli and reference networks downloaded from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we have found that the developed method can
appropriately solve MRI in the Boolean model and is applicable to large scale-networks for which an exhaustive search does
not work. We have also compared the developed method with the existing connectivity-based methods and FBA-based
methods, and show the difference between the solutions of our method and the existing methods. A theoretical analysis of
MRI is also conducted, and the NP-completeness of MRI is proved in the Boolean model. Our developed software is available
at ‘‘http://sunflower.kuicr.kyoto-u.ac.jp/,rogi/minRect/minRect.html.’’
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Introduction

Metabolism is one of the most important biological processes in

organisms. Relations between reactions and chemicals in the

metabolism are often represented by metabolic networks [1]. Since

many of these metabolic processes can produce commodity and

specialty chemicals, the manipulation of metabolisms has been

extensively studied in the field of metabolic engineering. One of

the most successful applications of metabolic engineering is

production of industrially valuable products using a microbial

host with recombinant technologies [2–4]. Techniques for

production of desired chemicals using a microbial host are roughly

classified into the following three types [5]: (a)combinations of

existing pathways, (b)engineering of existing pathways, and (c) de

novo pathway design. In (a), partial pathways can be recruited from

independent organisms and co-localized in a single host. For

example, 1,3-propanediol is synthesized by Nakamura et al. in

which pathways from Saccharomyces cerevisiae and Klebsiella pneumonia

were assembled in E. coli [6] and another example is the

production of artemisinic acid, a precursor to the plant-based

anti-malarial drug artemisinin in yeast [7]. In (b), new non-natural

chemicals can be produced by engineering existing routes [8,9]. (c)

is realized by the combination of (a) and (b), that is, the

recruitment of partial pathways from different species and the

use of engineered enzymes for extensions of pathways. It is to be

noted that (a) focuses on the topology of the given metabolic

networks, while (b) and (c) utilize the information of the structures

of chemicals as well.

The ‘‘pathway prediction system’’ (PPS) of the University of

Minnesota Biocatalysis and Biodegradation Database (UM-BBD)

is designed to predict routes for the biodegradation of xenobiotic

compounds [10–12]. From a set of previously defined biotrans-

formation rules, the PPS guides the user through potential

pathways one step at a time, requiring the selection of a new

target metabolite at each step [5]. Biochemical Network Integrated

Computational Explorer (BNICE) is a computational framework

for generating every possible biochemical reaction from a given set

of enzyme reaction rules and source or target compounds [13,14].
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However, since the number of predicted novel pathways is huge in

many cases, some prioritization is necessary to choose the most

promiscuous ones [15]. For example, one measure of such

prioritization is to minimize the number of enzymatic steps [16].

In the type (a) problem, it seems that there are three major

models for judging the producibility of target compounds, that is,

connectivity model, flow model, and Boolean model. For each of them,

Minimum Reaction Insertion (MRI) problem can be defined for

finding the minimum number of additional reactions from a

reference metabolic network to a host metabolic network so that a

target compound becomes producible in the revised host

metabolic network. In the connectivity model such as [16], the

producibility of target compounds is judged by the connectivity

between the source and the target compounds. After the source

and the target compounds are connected by the additional

reactions, the producibility is often evaluated by such a flow model

as flux balance analysis (FBA) or an elementary mode [17], in

which the sum of incoming flows must be equal to the sum of

outgoing flows for each compound and the ratio of the amount of

substrates and products must satisfy the coefficients given in each

chemical reaction formula. In the Boolean model, each reaction

occurs if all its substrates are producible whereas each compound

is producible if one of its producing reactions occurs [18]. The

source compounds are called seeds and the producible compounds

are called the scope of the seed. In this model, a Boolean function of

‘‘AND’’ is attached to each reaction node and ‘‘OR’’ is attached to

each compound node in the metabolic networks.

For example, suppose that there is a chemical reaction

‘‘A+BRC+D’’, where A and B are called substrates whereas C

and D are called products. In the connectivity model, either A or B

is necessary to produce C and D, whereas both A and B are

necessary for the Boolean model. In the flow model including

FBA, in addition to the condition that both A and B must exist,

both C and D are necessary to be consumed by other reactions.

Thus, each model outputs a different solution for producing

desired compounds.

From the view point of computational complexity, although the

connectivity model is very simple and then applicable even to very

large networks, its logical analysis ability is not strong since it

cannot detect the lack of necessary substrates. The good point of

the flow model is its computational efficiency since problems in the

flow model can often be formalized by linear programming, for

which there exist polynomial time algorithms [19]. However, these

polynomial time algorithms are not applicable for MRI since

discrete variables are necessary for representing additional

reactions, although it is solvable by mixed integer programming

[20].

Although the computational time of the FBA-based method for

MRI is very small and scalable for genome-scale metabolic

reconstruction [20], Boolean methods also have attractive features

Figure 1. A problem of how to produce a target compound from the source nodes. In the Boolean model, either {R1, R4} or {R1, R2, R3} is
sufficient, whereas {R1, R2, R3, R4, R5} is necessary for the flow model including FBA.
doi:10.1371/journal.pone.0092637.g001
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and are expected to complement the FBA-based method. Indeed,

for the analysis of metabolic networks, many studies have been

conducted to develop Boolean models. For example, Lemke et al.

[21] studied the effect of deletion of each enzyme in the metabolic

network of a Boolean model, and Smart et al. [22] considered

almost the same problem from the viewpoint of the Boolean aspect

of the flux balance model. Li et al. [23] and Sridhar et al. [24] have

developed methods for finding a set of enzymes whose inhibition

stops the production of the target compounds with a minimum

elimination of the non-target compounds. Lee et al. [25] and

Takemoto et al. [26] estimated the distribution of the size of the

effect of the deletions of enzymes using a branching process.

As for the shortcoming of the FBA-based method for MRI, it

tends to be considerably affected by the redundancy of the given

metabolic network since each node is affected not only by the

incoming flows but also by the outgoing flows. For example,

suppose that a metabolic network of Fig. 1 (A) is given, where

circles and rectangles represent compounds and reactions respec-

tively. In order to produce the target compound from the source

compounds, {R1, R2, R3, R4} is necessary in the flow model

including FBA, whereas either {R1, R4} or {R1, R2, R3} is

sufficient for the Boolean model. Moreover, in the metabolic

network of Fig. 1 (B), {R1,R2,R3} is necessary for FBA whereas

{R2} is sufficient for the Boolean model.

Therefore, in this research, we study the problem of designing a

pathway for producing target compounds in metabolic networks of

the Boolean model since its logical analysis ability is more stable

than that of the FBA, particularly when the flexible parts of the

metabolic networks are large. Our approach is based on (a), that is,

the combination of existing pathways. In our problem setting, a

base metabolic network of a host organism, which we call the host

network, is given; it cannot produce the target compound in its

initial form. However, an integrated metabolic network of many

other organisms are given as the reference network from which we

should find the minimum number of additional reactions so that

the target compound becomes producible. We prove that this

problem is NP-complete.

Although both the FBA-based model and the Boolean model for

MRI are considered to be NP-complete, the former is likely to

have a faster exponential time algorithm than the latter since FBA

has fewer integer variables. Although the computational complex-

ity of the Boolean model is large, we develop an efficient method

based on integer programming (IP) [27,28], which is often used as

a formalization of NP-complete problems and there is an efficient

Figure 2. An example of MRI. vc1
and vc2

are the source nodes.
doi:10.1371/journal.pone.0092637.g002

Figure 3. The cycles are decomposed in the FVS-based method.
doi:10.1371/journal.pone.0092637.g003
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free solver for IP called CPLEX [29]. We also conducted four

computer experiments in which the metabolic network of E. coli is

used as the host network and the reference pathway of the KEGG

database [30] is used as the reference network, and propanol,

butanol, sedoheptulose 7-phosphate, and maleic acid are used as

the target compound in each experiment. The results of the

experiments show that (1) our IP-based method can appropriately

solve MRI in the Boolean model; (2) solutions of MRI in the

Boolean model are more suitable than those by connectivity based

methods; (3) our IP-based method is applicable to large-scale

networks where an exhaustive search does not work; and (4)

solutions of MRI in the Boolean model tend to be smaller than

those in the FBA-based model based on [31]. Our developed

software is available at ‘‘http://sunflower.kuicr.kyoto-u.ac.jp/

,rogi/minRect/minRect.html’’.

Materials and Methods

Problem Definition
In this section, the main problem Minimum Reaction

Insertion (MRI) in a Boolean model is first explained with an

example and then mathematical formalization is described.

Suppose that a metabolic network shown in Fig. 2 is given,

where each rectangle (resp., circle) corresponds to a reaction (resp.,

chemical compound). For example, vr4 is a reaction, its substrates

are vc3 and vc5 and its products are vc6 and vc7. Black circles vc1

and vc2 denote the source nodes and are assumed to be provided

by the external environment. On the other hand, a gray circle vc7

represents a target compound and the purpose of MRI is to make

the target compound producible. However, initially only the host

network, which is shown by the dotted rectangle, is available.

Since only vc1
,vc2

,vc3 and vr1 are included in the host network, the

target compound vc7 is not producible. Instead the entire network

is called the reference network and reactions not included in the

host network can be added later. In MRI, the minimum number

of additional reactions should be determined to make the target

compound producible. In this example, the addition of

fvr2,vr3,vr4g is the optimal solution. The difficult point of MRI

is how to deal with the effect of cycles. In the example of Fig. 2, the

addition of fvr4,vr5g looks like the optimal solution. However, this

solution is not appropriate since it relies on the cycle consisting of

fvc6,vr5,vc5,vr4g and vc7 is not producible unless the initial amount

of vc6 is sufficiently large.

MRI is mathematically defined as follows: A metabolic network can

be represented by a directed graph G~(V ,E). There are two

types of node sets Vc and Vr, where Vc denotes a set of compound

nodes and Vr represents a set of reaction nodes. V~Vc|Vr and

Vc\Vr~fg hold. The neighbors of compound nodes must

be reaction nodes, and the neighbors of reaction nodes must be

compound nodes. Let Vs(Vc be a set of source nodes and vt[Vc be

Figure 4. A special case where there is no cycle. (A) An example where a contradiction occurs if the notion of time is not used. (B)
Decomposition of a border node to avoid the contradiction.
doi:10.1371/journal.pone.0092637.g004

Minimum Reaction Insertion for Boolean Metabolic Networks

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e92637

http://sunflower.kuicr.kyoto-u.ac.jp/&sim;rogi/minRect/minRect.html
http://sunflower.kuicr.kyoto-u.ac.jp/&sim;rogi/minRect/minRect.html


a target node. Source nodes have no incoming edges and correspond

to the seed compounds of [18]. In this study, we assume that

source nodes are producible at any time.

Suppose that a host network G1~(V1,E1) and a reference network

G2~(V2,E2) are given where G1 and G2 are metabolic networks,

and G1 is a subgraph of G2 induced by V1. V 0c (resp., V 0r ) is a set of

compound nodes (resp., reaction nodes) in V2{V1 and is called

the set of additional compound nodes (resp., additional reaction nodes).

Let Va(V 0r be a set of additional reaction nodes. In the

Boolean model, each node is assigned either ‘‘0’’ or ‘‘1’’. For a

compound node, ‘‘1’’ means producible and ‘‘0’’ means not

producible. As for a reaction node, ‘‘1’’ means active and ‘‘0’’

means inactive. Let A be such an assignment (that is A is a

function from V to f0,1g). For each node v[V , we write v~0
(resp., v~1) if 0 (resp., 1) is assigned to v. A is called a valid

assignment if the following conditions are satisfied: (i) for each v[Vs,

v~1. (ii) for each v[Vc{Vs, v~1 if and only if there is u such that

(u,v)[E and u~1. (iii) for each v[Vr, v~1 if and only if v[Va|V1

and u~1 holds for all u such that (u,v)[E. This implies that each

reaction node corresponds to an ‘‘AND’’ node and each

compound node corresponds to an ‘‘OR’’ node.

If G2 has no directed cycles, a valid assignment is uniquely

determined for each Va. However, if G2 has a directed cycle,

multiple valid assignments may exist. Let us call vi[Vs and

vj[Vc{Vs source connected if there is a directed path from vi to vj ,

and the values of the nodes included in the path are all 1. There

exist valid assignments where the values of nodes in a directed

cycle are 1 even if these nodes are not source connected. In order

to avoid such a case, we use the notion of minimal valid assignment,

which is similar to the notion of maximal valid assignment defined

in [32]. A valid assignment A is called minimal if A is valid and

fvjv~1,v[Vg is minimal with respect to the inclusion relation-

ships for sets.

Now we define the Minimum Reaction Insertion as

follows:

N Input: A host metabolic network G1~(V1,E1), a reference

metabolic network G2~(V2,E2), and a target compound vt.

N Output: A minimum cardinality set of Va for which vt~1 is

satisfied in the minimal valid assignment of the induced

subgraph of G2 by V1|V 0c|Va.

As mentioned in the section of Theoretical Results, a minimal

valid assignment is uniquely determined if Va is given. However,

solving MRI is not easy since the number of candidate Va is 2jV
0
r j

and MRI is proved to be NP-complete. Since utilizing software

Figure 5. Propanol (C00479) becomes producible from glycolysis and gluconeogenesis by the addition of Va = {R01514, R01752,
R01036, R01048, R02577, R02376}.
doi:10.1371/journal.pone.0092637.g005

Minimum Reaction Insertion for Boolean Metabolic Networks

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e92637



Figure 6. When the target compound was C05382, MRI selected R01827 and R01830 from 66 candidates for the additional
reactions whereas the shortest path-based method (PathComp) selected only R01827.
doi:10.1371/journal.pone.0092637.g006

Figure 7. The comparison between the Boolean model and the FBA-based model [20]. More reactions are necessary for the FBA-based
model to produce the target compound than the Boolean-based model.
doi:10.1371/journal.pone.0092637.g007

Minimum Reaction Insertion for Boolean Metabolic Networks

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e92637



packages of Integer Programming (IP) is efficient for solving NP-

complete problems, we develop a method of IP formalization for

solving MRI. Since the computational time of the IP-based

method is considered to be exponential in terms of the number of

variables, it is important to develop an IP formalization of MRI

with a small number of variables. To do so, our previously

developed method for Minimum Reaction Cut (MRC) [32]

may be useful although many modifications are necessary.

MRC is a problem to find a minimum set of reactions that

interfere with the production of target compounds [32] and is

known to be NP-complete. Let m (resp., n) be the number of

compound (resp., reaction) nodes. If we use mzn time steps to

calculate the maximal valid assignment in MRC, the number of

variables in IP is O((mzn)2). The feedback vertex set (FVS) is a

node set whose removal makes a network cycle-free. In [32], we

succeeded in reducing the number of variables to O(f (f zmzn)),
where f is the size of the feedback vertex set and f is considerably

smaller than m or n. If use of O((mzn)2) variables is allowed in

MRI, almost the same method as in MRC can be used. However,

to reduce the number of variables in IP to O(f (f zmzn)), many

modifications are necessary since minimal valid assignment and

maximal valid assignment have different features.

Integer Programming-Based Method for Minimum
Reaction Insertion

Here, we show IP formalization methods for MRI in the

Boolean model. To apply IP, problems must be formalized to

maximize or minimize a given objective function which is a linear

function of integer variables and constraints must also be given as

linear equations or inequations of integer variables.

Figure 8. The polynomial time reduction from minimum vertex cover (MVC) problem to minimum reaction insertion (MRI) problem.
(A) An instance of MVC. (B) The corresponding instance of MRI.
doi:10.1371/journal.pone.0092637.g008
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Suppose that the host network and the reference network are

given as shown in Fig. 2. The simplest IP formalization IP-MRI-A
for solving Minimum Reaction Insertion is as follows where

the time step increases by 1 when the Boolean calculation is

synchronously conducted for every node:

IP-MRI-A

Minimize

TER2 0ð ÞzTER3 0ð ÞzTER4 0ð ÞzTER5 0ð Þ ð1Þ

Subject to

TC7 mznð Þ~1 ð2Þ

for all t~0, . . . ,mzn

TR1 tz1ð ÞzFC2 tð ÞzFC5 tð Þ§1,

FR1 tz1ð ÞzTC2 tð Þ§1,

FR1 tz1ð ÞzTC5 tð Þ§1

ð3Þ

TR2 tz1ð ÞzFC1 tð ÞzFER2 tð Þ§1,

FR2 tz1ð ÞzTC1 tð Þ§1, FR2 tz1ð ÞzTER2 tð Þ§1
ð4Þ

TR3 tz1ð ÞzFC4 tð ÞzFER3 tð Þ§1,

FR3 tz1ð ÞzTC4 tð Þ§1, FR3 tz1ð ÞzTER3 tð Þ§1
ð5Þ

TR4 tz1ð ÞzFC3 tð ÞzFC5 tð ÞzFER4 tð Þ§1,

FR4 tz1ð ÞzTC3 tð Þ§1,

FR4 tz1ð ÞzTC5 tð Þ§1, FR4 tz1ð ÞzTER4 tð Þ§1

ð6Þ

TR5 tz1ð ÞzFC6 tð ÞzFER5 tð Þ§1,

FR5 tz1ð ÞzTC6 tð Þ§1,FR5 tz1ð ÞzTER5 tð Þ§1
ð7Þ

TC3 tz1ð Þ~TR1 tð Þ ð8Þ

TC4 tz1ð Þ~TR2 tð Þ ð9Þ

FC5 tz1ð ÞzTR3 tð ÞzTR5 tð Þ§1,

TC5 tz1ð ÞzFR3 tð Þ§1,TC5 tz1ð ÞzFR5 tð Þ§1
ð10Þ

TC6 tz1ð Þ~TR4 tð Þ ð11Þ

TC7 tz1ð Þ~TR4 tð Þ ð12Þ

TER2 tz1ð Þ~TER2 tð Þ,

TER3 tz1ð Þ~TER3 tð Þ,

TER4 tz1ð Þ~TER4 tð Þ,

TER5 tz1ð Þ~TER5 tð Þ

ð13Þ

TC1 tð Þ~1,TC2 tð Þ~1 ð14Þ

TC3 0ð Þ~TC4 0ð Þ~TC5 0ð Þ~

TC6 0ð Þ~TC7 0ð Þ~0
ð15Þ

TR1 0ð Þ~TR2 0ð Þ~TR3 0ð Þ~

TR4 0ð Þ~TR5 0ð Þ~0
ð16Þ

���

���
Figure 9. The conversion of nodes with the indegree and the outdegree more than 2.
doi:10.1371/journal.pone.0092637.g009
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TXzFX~1 for any X ð17Þ

where every variable takes either 0 or 1. vri~1 (resp., vri~0) at

time step t is represented by TRi(t) = 1 (resp. FRi(t) = 1) and

TRi(t)+FRi(t) = 1 holds for any i and t. For example, TR2(1) = 0

means that vr2~0 at time step 1, and FR2(1) = 1 automatically

holds at the same time. In the implementation, FRi(t) is replaced

with 1-TRi(t) to reduce the number of variables. Similarly, the

values of compound nodes are represented by TCi(t) and FCi(t).
For example, FC4(3)~1 means that vc4~0 at time step 3.

(3) represents the Boolean relation vr1(tz1)~vc2(t) ^ vc5(t).
Since Boolean relations such as ‘‘^’’ or ‘‘_’’ cannot directly be

used in IP, it is necessary to convert them into linear equations

and/or inequations. Since x1~x2 ^ x3 ^ � � � ^ xk can be

represented by (x1 _ x2 _ x3 _ � � � _ xk) ^ (x1 _ x2) ^ (x1 _ x3)
^ � � � ^ (x1 _ xk)~1, vr1(tz1)~vc2(t) ^ vc5(t) can be converted

into (vr1(tz1) _ vc2(t) _ vc5(t)) ^ (vr1(tz1) _ vc2(t)) ^ (vr1(tz1)
_vc5(t))~1, and then (3) is obtained.

For a compound node with indegree 1, the value of the

predecessor node is just copied. For example, since vc3 has only

one predecessor vr1, vc3(tz1) is just copied from vr1(t) as shown in

(8). Similarly, vc4(tz1) is just copied from vr2(t) as shown in (9).

For a compound node with indegree more than 1, it is necessary

to convert the ‘‘_’’ relation into linear equations or equations. (10)

represents the Boolean relation vc5(tz1)~vr3(t) _ vr5(t):Since

x1~x2 _ x3 _ � � � _ xk is represented by (x1 _ x2 _ x3 _ � � � _ xk)
^(x1 _ x2) ^ (x1 _ x3) ^ � � � ^ (x1 _ xk)~1, vc5(tz1)~vr3(t)_
vr5(t) can be converted into (vc5(tz1) _ vr3(t) _ vr5(t))^
(vc5(tz1) _ vr3(t)) ^ (vc5(tz1) _ vr5(t))~1, and then (10) is

obtained.

As for the reaction nodes not included in the host network,

TERi(t) and FERi(t) are used to represent whether vri is

activated. We use a virtual node vei as one of the predecessors

of vri. Since vri is represented by an AND node, vei~0 keeps vri

inactive even if all other predecessors of vri are 1. For example, vr2

in Fig. 2 has only one predecessor vc1. However, since vr2 is not

included in the host network and vei~1 is necessary for vr2~1,

vr2(tz1)~vc1(t) ^ ve2(t) must hold, and then (4) is obtained.

Since we assume minimal valid assignment, at t~0, the source

compound nodes are assigned 1, but the other compound nodes

and reaction nodes are assigned 0.

mzn is the largest number of time steps necessary for the 0–1

assignment to converge. (1) means that the number of additional

reactions should be minimized. (2) means that the target

compound vc7 should become 1 after the 0–1 assignment

converges. (3)–(7) represent the constraints by vr1 to vr5

respectively. Note that ve1 does not exist since vr1 is included in

the host network and then vr1~1 holds for any Va. (8)–(12)

represent the constraints by vc3 to vc7 respectively. (13) represents

that Va does not change by time transition. (14) means that vc1 and

vc2 are source nodes. (15)–(16) represent that all nodes but source

nodes are assigned 0 in the initial state. (17) means that ‘‘T’’ and

‘‘F’’ represent ‘‘true (1)’’ and ‘‘false (0)’’ respectively, and

complement each other.

The above formalization can clearly solve MRI and obtain the

correct solution Va~fvr2,vr3,vr4g, however O((mzn)2) variables

are necessary. To reduce the number of variables, it is necessary to

reduce the number of time steps. If time is not taken into account

at all, the following inappropriate IP formalization IP-MRI-B is

obtained.

IP-MRI-B

Minimize

TER2zTER3zTER4zTER5 ð18Þ

Subject to
TC7~1 ð19Þ

TR1zFC2zFC5§1,

FR1zTC2§1,

FR1zTC5§1

ð20Þ

TR2zFC1zFER2§1,

FR2zTC1§1, FR2zTER2§1
ð21Þ

TR3zFC4zFER3§1,

FR3zTC4§1, FR3zTER3§1
ð22Þ

TR4zFC3zFC5zFER4§1,

FR4zTC3§1,

FR4zTC5§1, FR4zTER4§1

ð23Þ

TR5zFC6zFER5§1,

FR5zTC6§1, FR5zTER5§1
ð24Þ

TC3~TR1 ð25Þ

TC4~TR2 ð26Þ

FC5zTR3zTR5§1,

TC5zFR3§1,TC5zFR5§1
ð27Þ

TC6~TR4 ð28Þ

TC7~TR4 ð29Þ

TC1~1, TC2~1 ð30Þ

TXzFX~1 for any X ð31Þ

When compared to IP-MRI-A, (18),(19),(20)–(24), (25)–(29),

(30), and (31) correspond to (1),(2),(3)–(7), (8)–(12), (14), and (17)

respectively although the notion of time is not used in IP-MRI-B.

(13) in IP-MRI-A means that the value of vei does not change in

the time transition, but this constraint is not necessary for IP-MRI-

B since it does not have the notion of time. Moreover, neither (15)

nor (16) of IP-MRI-A is used in IP-MRI-B.

In IP-MRI-B, the solution of IP is Va~fvr4,vr5g since

(vr1, . . . ,vr5,vc1, . . . ,vc7)~(1,0,0,1,1, 1,1,1,0,1,1,1) is a valid

assignment and satisfies vc7~1. Note that vr2 and vr3 are forced

to be 0 since they are not included in either the host network or

Va. Although it satisfies all constraints and jVaj is minimum, this

assignment is not appropriate since fvr4,vc6,vr5,vc5g forms a cycle
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and all of them are assigned 1 without the influence of source

nodes. To avoid such an inappropriate assignment, it is necessary

to consider minimal valid assignment with respect to the number

of 1 s for each Va. As shown in the section of Theoretical Results,

the minimal valid assignment is uniquely determined for each Va.

Thus, IP-MRI-A can solve MRI, but mzn time steps are

necessary, while IP-MRI-B, which does not use the notion of time,

cannot solve MRI. The feedback vertex set (FVS) is a set of nodes

whose removal makes the network acyclic. Since IP-MRI-B can

solve MRI if there is no cycle, it is reasonable to apply IP-MRI-B

for the acyclic network obtained by the deletion of FVS and use

the notion of time as in IP-MRI-A to nodes included in F based on

the idea developed in [32].

In the improved method, IP-MRI-C, we firstly find an FVS F

consisting of reaction nodes and then decompose each vri[F into

two nodes vri and vsi so that vri has only in-edges and vsi has only

out-edges. For example, in the network of Fig. 2, since F~fvr4g is

a feedback vertex set, vr4 is decomposed into vr4 and vs4 as shown

in Fig. 3. Furthermore, we put an additional constraint that

vsi(tz1)~vri(t). The number of time steps of IP-MRI-C is f z1
while that of IP-MRI-A is mznz1, where f ~jF j. Therefore, the

numbers of variables in IP-MRI-C and IP-MRI-A are

O(f (mznzf )) and O((mzn)2) respectively. Since f is consid-

erably smaller than mzn in most metabolic networks and the

computational time of IP exponentially increases with the number

of variables, we can expect a significant improvement from the

view point of the computational time.

Although finding the minimum FVS is known to be NP-

complete, it is not necessary to use the minimum FVS in our

problem setting. We use a simple greedy algorithm to choose FVS

as follows:

Procedure GreedyFVS(G~(V ,E)), where V~fv1, . . . ,vng and

E~fe1, . . . ,emg
for i~1 to n do

v½i�~0;

for i~1 to m do

e½i�~0;

i/1;

while there exists ek[E such that e½k�~0

v½i�~1;
if there exists ek~(vi,vj) such that e½k�~0 and

v½j�~1 then

E0/E{fekg;

V 0/V|fv0jg;
for all (vj ,vq)[E0 do

E0/(E0{f(vj ,vq))|f(v0j ,vq)gg;

GreedyFVS(G0~(V 0,E0));
else if there exists ek~(vi,vj) [ E such that

e½k�~0 and v½j�~0 do

e½k�/1;

i/j;

else if there exists vj[V such that v½ j �~0 do

i/j for the minimum j;
return G~(V ,E);

Since the reaction nodes for FVS are chosen by a greedy

algorithm, the size of FVS is not always optimal. However, it is

important to note that even if the size of FVS is not optimal, the

solution of MRI calculated by IP-MRI-C is always optimal. If

there are multiple optimal solutions in MRI, there is a possibility

that the solutions are different since IP outputs only one solution.

However, it may be possible to enumerate all optimal solutions of

MRI by iteratively solving IP with a constraint to avoid the already

chosen solutions.

For example, IP-MRI-C for Fig. 2 is as follows, where vr4 is

decomposed into vr4 and vs4, and time step increases by 1 only

when the value of vr4 is copied to vs4.

IP-MRI-C

Minimize

TER2 0ð ÞzTER3 0ð ÞzTER4 0ð ÞzTER5 0ð Þ ð32Þ

Subject to

TC7 1ð Þ~1 ð33Þ

for all t~0,1

TR1 tð ÞzFC2 tð ÞzFC5 tð Þ§1,

FR1 tð ÞzTC2 tð Þ§1,

FR1 tð ÞzTC5 tð Þ§1

ð34Þ

TR2 tð ÞzFC1 tð ÞzFER2 tð Þ§1,

FR2 tð ÞzTC1 tð Þ§1, FR2 tð ÞzTER2 tð Þ§1
ð35Þ

TR3 tð ÞzFC4 tð ÞzFER3 tð Þ§1,

FR3 tð ÞzTC4 tð Þ§1,FR3 tð ÞzTER3 tð Þ§1
ð36Þ

TR4 tð ÞzFC3 tð ÞzFC5 tð ÞzFER4 tð Þ§1,

FR4 tð ÞzTC3 tð Þ§1,

FR4 tð ÞzTC5 tð Þ§1, FR4 tð ÞzTER4 tð Þ§1

ð37Þ

TR5 tð ÞzFC6 tð ÞzFER5 tð Þ§1,

FR5 tð ÞzTC6 tð Þ§1, FR5 tð ÞzTER5 tð Þ§1
ð38Þ

TC3 tð Þ~TR1 tð Þ ð39Þ

TC4 tð Þ~TR2 tð Þ ð40Þ

FC5 tð ÞzTR3 tð ÞzTR5 tð Þ§1,

TC5 tð ÞzFR3 tð Þ§1, TC5 tð ÞzFR5 tð Þ§1
ð41Þ

TC6 tð Þ~TSR4 tð Þ ð42Þ
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TC7 tð Þ~TSR4 tð Þ ð43Þ

TER2 tz1ð Þ~TER2 tð Þ,

TER3 tz1ð Þ~TER3 tð Þ,

TER4 tz1ð Þ~TER4 tð Þ,

TER5 tz1ð Þ~TER5 tð Þ

ð44Þ

TSR4 tz1ð Þ~TR4 tð Þ ð45Þ

TC1 tð Þ~1,TC2 tð Þ~1 ð46Þ

TC7 0ð Þ~0 ð47Þ

TSR4 0ð Þ~0 ð48Þ

TXzFX~1 for any X ð49Þ

where each variable takes either 0 or 1.

When compared to IP-MRI-A, (32),(33),(34)–(38), (39)–(43),

(44), (46), and (49) correspond to (1),(2),(3)–(7), (8)–(12), (13), (14),

and (17), respectively. fvr4g is chosen as a feedback vertex set, and

then decomposed into vr4 and vs4 as shown in Fig. 3.

Note that the number of time steps is 2 = f +1, and TSR4(t) = 1

represents vs4 = 1. In (42)–(43), the constraints for vc6 and vc7 are

represented by the variable corresponding to vs4 instead of that to

vr4. (45) represents that the time step increases by 1 when the value

of vr4 is copied to vs4 in Fig. 3. (48) represents vs4(0)~0 to obtain

the minimal valid assignment.

Additionally, if we use the FVS-based method and no cycles are

included in G1 and G2, the number of necessary time steps is only

one. For example, suppose that G1 and G2 are as shown in Fig. 4

(A). In this case, the correct solution of MRI is

Va~fvr2,vr3,vr4,vr5g. However, if we set TC1(0) = 1 and

TC6(0) = 0, IP can output no solution since the condition

TC6(0) = 1 is never satisfied. On the other hand, if we set

TC1(0) = 1 and TC6(0) = 1, an inappropriate solution Va~fg is

obtained by IP. To avoid such a case, in our method, if one of the

predecessors of an additional reaction node vr is included in the

host network, we decompose vr as if it were included in FVS. For

example, in the network of Fig. 4 (A), vr2 is decomposed into vr2

and vs2 as shown in Fig. 4 (B) so that the values of the source nodes

and the target node are calculated in different time steps.

Results

Computer Experiments
We conducted computer experiments for solving MRI with data

downloaded from the KEGG database. The experiment was

conducted on a PC with an Intel(R) Xeon(R) 3.33 GHz CPU and

10 GB RAM having the SUSE Linux (version 12.2) operating

system, where CPLEX (version 12.4.0.0) was used as the solver of

integer programming.

In this study, a reference network consists of the central

metabolism and the related modules necessary for producing the

target compound. A map of the KEGG PATHWAY is a

minimum unit, and three or four maps of the KEGG PATHWAY

are chosen and integrated as the reference network in each of our

experiments. As for species, a reference network includes the

chemical reactions of all species, whereas the metabolic networks

of E. coli are used for the host networks. The major difference

between the pathway alignment methods by KEGG and our

developed method is that our method is based on a Boolean

model, whereas the pathway alignment methods consider only the

topology of networks.

In synthetic biology, it is of great interest to construct a minimal

genome that realizes the desired functions [33–35]. Since

glycolysis, gluconeogenesis, citrate cycle and pentose phosphate

pathway are considered to be essential even in artificial organisms,

it is reasonable to assume that the host networks in the computer

experiments have some of these pathways in one of the simplest

organisms, E. coli. Because the purpose of this study is not focused

on the reconstruction of genome-scale metabolic network model,

but the design of a minimal genome in addition to the existing

pathways to produce a desired compound, each reference network

consists of the maps of the KEGG pathway located between the

central metabolism and each target compound.

In the first computer experiment, the target compound is

propanol (C00479 in KEGG ID), the host network is glycolysis

and gluconeogenesis of E. coli (eco00010.xml), and the reference

network covers glycolysis, gluconeogenesis and glycerolipid metab-

olism of other species (ko00010.xml and ko00561.xml). The

numbers of compound and reaction nodes are 58 and 85,

respectively, where 30 reactions are reversible. The source nodes

are D-glucose (C00031), oxaloacetate (C00036), salicin (C01451),

arbutin (C06186), UDP-glucose (C00029), acyl-CoA (C00040), and

diglucosyl-diacylglycerol (C06040), which are represented by black

circles in Fig. 5. It took 0.19 s to solve MRI. The obtained additional

reactions are Va~fR01514, R01752, R01036, R01048, R02577,

R02376g, where these reactions produce propanol from 3-phospho-

D-glycerate (C00197) via glycerol (C00116) as shown in Fig. 5.

Since 3-phospho-D-glycerate (C00197) is producible by glycolysis

and gluconeogenesis of E. coli and works as a connection between

glycolysis and glycerolipid metabolism, the obtained Va can be

considered an appropriate solution of MRI.

Difference between Developed Model and Shortest Path-
Based Model

To show the difference between the developed model and the

shortest path-based models, we conducted the second experiment

where PathComp of KEGG (‘‘http://www.genome.jp/tools/

pathcomp/’’) was used to calculate the solution of the shortest

path-based model. In the experiment, the host network consists of

glycolysis, gluconeogenesis and citrate cycle of E. coli

(eco00010.xml and eco00020.xml), and the reference network

consists of glycolysis, gluconeogenesis, citrate cycle and pentose

phosphate pathway of other species (ko00010.xml, ko00020.xml

and ko00030.xml). The numbers of compound and reaction nodes

are 64 and 108, respectively, where 59 reactions are reversible.

There are four source nodes, D-glucose(C00031), arbu-

tin(C06186), salicin(C01451), and acetate (C00033), and the

number of candidates for the additional reactions is 66. When

the target compound is sedoheptulose 7-phosphate (C05382), as

shown in Fig. 6, the solution of MRI is Va~fR01827, R01830g,
where the substrates of R01827 are beta-D-fructose 6-phosphate

(C05345) and D-erythrose 4-phosphate (C00279). It took 32.58 s

to obtain the solution. Since D-erythrose 4-phosphate (C00279) is
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not included in the host network, it is necessary to add R01830 in

which substrates are beta-D-fructose 6-phosphate (C05345) and

D-glyceraldehyde 3-phosphate (C00118) and the products are D-

xylulose 5-phosphate (C00231) and D-erythrose 4-phosphate

(C00279). It is to be noted that both beta-D-fructose 6-phosphate

(C05345) and D-glyceraldehyde 3-phosphate (C00118) are pro-

ducible by the host network.

On the other hand, PathComp just connects the producible

compounds and the target compound adds only R01827 since

R01827 is adjacent to both beta-D-fructose 6-phosphate (C05345)

and sedoheptulose 7-phosphate (C05382). However, it is clear that

R01827 does not occur if D-erythrose 4-phosphate (C00279) does

not exist. Thus the difference between the shortest path-based

method and the developed method is that the developed method

considers Boolean constraints for each reaction and compound

whereas the shortest path-based method only considers the

connectivity of nodes.

Scalability
Next, we conducted the third experiment to show the scalability

of our method. The host network consists of the source nodes of

glycolysis and gluconeogenesis of E. coli (eco00010.xml), that is, D-

glucose(C00031), arbutin(C06186), salicin(C01451), oxaloaceta-

te(C00036) and acetate (C00033). The reference network consists

of glycolysis, gluconeogenesis, citrate cycle, pentose phosphate

pathway and butanol metabolism of other species (ko00010.xml,

ko00020.xml, ko00030.xml and ko00650.xml), where R01172 is

treated as a reversible reaction. The target compound is butanol

(C06142). The numbers of compound and reaction nodes are 93

and 150, respectively, where 87 reactions are reversible. It took

919.79 s (15m19s) for the developed method to solve MRI and the

solution was Va~fR00235, R00238, R01977, R03027, R01171,

R01172, R03545g. These seven reactions form a path from

acetate to 1-butanol via acetyl-CoA, acetoacetyl-CoA, crotonoyl-

CoA and butanoyl-CoA, which satisfies the Boolean constraints.

Since the number of reactions in the reference network is 150, it is

necessary to examine 150C7 cases if an exhaustive search is

conducted. Since examining 150C7^2:941|1011 cases is almost

impossible, it is seen that the IP-based method is useful for solving

MRI, particularly when the given networks are not small.

Difference between Developed Model and FBA-Based
Model

Finally, we conducted an experiment to show the difference

between the developed model and the FBA-based model. We

assume that the reference network consists of glycolysis, gluco-

neogenesis, citrate cycle, pentose phosphate pathway and butanol

metabolism of other species (ko00010.xml, ko00020.xml,

ko00030.xml and ko00650.xml), and the host network includes

only one reaction R04394 between salicin (C01451) and salicin 6-

phosphate (C06188) as shown in Fig. 7. Therefore, the source

node is only salicin (C01451). Note that reversible reactions are

decomposed into two reactions, and denoted by P and Q. The

target compound is maleic acid (C01384). The numbers of

compound and reaction nodes are 93 and 150, respectively, where

87 reactions are reversible.

Then, the solution of MRI in our Boolean model is {R05134,

R02736, R02035, R02036, R05605, R00344, R00342, R01082,

R01087}, whereas the solution of FBA-based model is {R05134,

R02736, R02035, R02036, R05605, R01058, R01518, R00658,

R00200, R00344, R00342, R01082, R01087}. It is to be noted

that {R01058, R01518, R00658, R00200} is not necessary for the

Boolean model, but necessary for the FBA-based model. In the

Boolean model, R01058 is not necessary to produce C01384 since

the lack of reactions in downstream does not affect. However, in

the FBA model, R01058 is necessary. Otherwise, C00118 is not

consumed and then R05605 (denoted as Q05605 in Fig. 7) cannot

occur. Thus, the solution of MRI in the FBA-based model tends to

include more reactions than that in the Boolean model. It took

7896.46 s (2h11m36s) to solve the Boolean model of MRI.

Theoretical Results
Although solving IP is NP-complete, a problem that can be

formalized as IP is not always NP-complete. Therefore, in the

following paragraphs, we prove that MRI is NP-complete and

show the appropriateness of formalizing MRI of the Boolean

model as IP.

Theorem 1: Minimum Reaction Insertion is NP-

complete even when the maximum indegree and outdegree are

bounded by 2.

Proof: Since the problem is clearly in NP, it suffices to show NP-

hardness. The proof is by a polynomial time reduction from

minimum vertex cover (MVC), which is a problem for a given

graph to find the minimum number of nodes so that each edge is

incident to at least one of the selected nodes. For example, for the

graph shown in Fig. 8 (A), fv1,v5,v6g is an optimal solution of

MVC.

Let G~(V ,E) be an instance of MVC, where V~fv1, . . . ,vng
and E~fe1, . . . ,emg. We construct the corresponding MRI as

follows. The host network G1~(Vc1
|Vr1

,E1) is given by

Vc1
~fc11, . . . ,cn1g|fc12, . . . ,cn2g,

Vr1~fr11, . . . ,rn1g,

E1~ffci1,ri1gji~1, . . . ,ng|ffri1,ci2gji~1, . . . ,ng:

The reference network G2~(Vc2
|Vr2

,E2) is given by

Vc2
~Vc1

|fc1, . . . ,cmg|fctg,

Vr2
~Vr1

|fr1, . . . ,rng|frtg,

E2~E1|ffci2,rigji~1, . . . ,ng

|ffri,cjgjif vi is an end point of ejg

|ffci,rtgji~1, . . . ,mg

|frt,ctg:

For example, MVC for the graph shown in Fig. 8 (A) is

converted into MRI shown in Fig. 8 (B). It is clear that this

conversion can be done in polynomial time.
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In the following paragraphs, we show that MVC for G has a

solution of size z if and only if MRI has a solution in which

jVaj~zz1 holds. When G has a vertex cover of size z,

Va~frijvi is included in the vertex coverg|frtg satisfies ct~1
in the minimal valid assignment and jVaj~zz1 holds. On the

other hand, suppose that Va satisfies ct~1 in the minimal valid

assignment and jVaj~zz1. Since rt[Va is necessary for ct~1, z
nodes are included in Va from fr1, . . . ,rng. Since each cj must be

1 to satisfy rt~1, at least one predecessor of each cj must be

included in Va for each j. Since there is an edge between ri and cj

if and only if vi is incident to ej , fvijri[Vag is a vertex cover of size

z. Nodes whose degrees are more than 2 can be converted by the

methods shown in Fig. 9.

Theorem 2: Given a host network, a reference network and a

set of additional reactions, a minimal valid assignment is uniquely

determined.

Proof: For any valid assignment A, the assignment obtained by

assigning 0 to all nodes that are not source connected is also a valid

assignment. On the other hand, for any valid assignment A, the

assignment obtained by assigning 0 to a source connected node is

not a valid assignment. Since source connected nodes Vsc are

uniquely determined for Va, Vsc is a minimal valid assignment and

uniquely determined.

Discussion

In this paper, we formalized an optimization problem MRI in a

Boolean model with a notion of minimal valid assignment. We

proved that MRI in the Boolean model is NP-complete and the

minimal valid assignment is uniquely determined when Va is

given. Since an exhaustive search cannot be used to solve MRI

when the given networks are not small, we developed an IP-based

method for MRI. To improve the scalability of the developed

method, it is necessary to reduce the number of variables

appearing in IP formalization since the computational time of IP

is considered to be exponential to the number of variables.

Although the simple IP formalization with the notion of time is

useful for solving MRI, it needs O((mzn)2) variables in IP

formalization. If the notion of FVS is used, the number of

necessary time steps reduces to f , where f denotes the size of FVS,

and the number of variables in IP is O(f (mznzf )). Although the

idea of using FVS is similar to [32], many modifications are

necessary since the minimal valid assignment and the maximal

valid assignment have many different properties.

We also conducted four computer experiments in which data

were downloaded from the KEGG database, CPLEX was used as

the IP solver, and propanol, butanol, sedoheptulose 7-phosphate,

and maleic acid were used as the target compound for each

experiment. The host network was a metabolic network of E. coli

and the reference network of KEGG was used as the reference

network. The results of the computer experiments confirmed the

correctness and the scalability of the developed method, and the

appropriateness of the problem setting of MRI.

An important advantage of our Boolean model is its capability

of detecting the lack of substrates, whereas the connectivity-based

methods cannot appropriately handle this point. An extended type

of connectivity-based method is BNICE, which enumerates all

possible pathways from the source nodes to the target compound,

and uses thermodynamical feasibility and pathway length to

evaluate each candidate pathway. In contrast, the developed

method evaluates each candidate pathway based on the number of

additional reactions. Another advantage of the developed model is

its capability of handling branches and/or cycles in a pathway

from the source compounds to the target compound, whereas

BNICE considers only the non-branching paths. However, since

BNICE nicely evaluates each pathway by the thermodynamic free

energy of the included compounds and length, considering the

thermodynamic free energy in a Boolean model represents an

important direction of our future work.

It is to be noted that the solution of MRI in the FBA-based

model is different from that in the Boolean model. In particular, if

the reference network includes a large redundant part, the FBA-

based model tends to output a larger solution than the Boolean

model, although the FBA-based model is very fast when compared

to the Boolean model. Therefore, one of our future works is to

develop a hybrid method combining the FBA-based method and

the Boolean-based method. Petri-net-based methods [36] are also

interesting since they may extract the good points of both Boolean-

based methods and FBA-based methods.
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