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Abstract 

CRISPR-Cas9 screens facilitate the discovery of gene functional relationships and 

phenotype-specific dependencies. The Cancer Dependency Map (DepMap) is the largest 

compendium of whole-genome CRISPR screens aimed at identifying cancer-specific genetic 

dependencies across human cell lines. A mitochondria-associated bias has been previously 

reported to mask signals for genes involved in other functions, and thus, methods for 

normalizing this dominant signal to improve co-essentiality networks are of interest. In this 

study, we explore three unsupervised dimensionality reduction methods - autoencoders, 

robust, and classical principal component analyses (PCA) - for normalizing the DepMap to 

improve functional networks extracted from these data. We propose a novel “onion” 

normalization technique to combine several normalized data layers into a single network. 

Benchmarking analyses reveal that robust PCA combined with onion normalization 

outperforms existing methods for normalizing the DepMap. Our work demonstrates the 

value of removing low-dimensional signals from the DepMap before constructing 

functional gene networks and provides generalizable dimensionality reduction-based 

normalization tools. 
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Introduction 

Deciphering the functional relationships among genes is imperative for understanding the 

mechanism of diseases with genetic components. Whole-genome CRISPR screening is one state-

of-the-art method for identifying phenotype-specific genetic dependencies for diseases like 

cancer (Shalem, et al., 2014; Wang, Wei, Sabatini, & Lander, 2014; Tsherniak, et al., 2017). In 

addition to identifying cancer-specific dependencies, high-throughput data generated from 

whole-genome CRISPR screens can be mined to map functional relationships between genes 

(Pan, et al., 2018; Boyle, Pritchard, & Greenleaf, 2018; Wainberg, et al., 2021; Kim, et al., 2019; 

Buphamalai, Kokotovic, Nagy, & Menche, 2021). Therefore, the development of novel 
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algorithms to process, normalize and mine whole-genome CRISPR screening data could prove 

particularly fruitful for identifying such functional relationships. 

Most CRISPR screens use CRISPR-Cas9 guides to introduce targeted knockouts across the 

vast majority of the human genome in human cell culture. In brief, the workflow for a typical 

screen involves the infection of human cell culture with a lentiviral vector containing a library 

of ~70,000 guide (g)RNAs targeting around 18,000 genes. After passaging the cell population 

over several days, sequencing performed at various timepoints measures the dropout of gRNAs 

from the population. At the end of the experiment, computational analyses are performed to 

quantify observed fitness effects relative to controls, such as known non-essential guides or 

screens performed in wildtype cells. Current experimental techniques for performing whole-

genome CRISPR screens are perhaps best exemplified by the Cancer Dependency Map 

(DepMap) project’s efforts to discover genetic dependencies across human cell lines (Tsherniak, 

et al., 2017; Meyers, et al., 2017; Behan, et al., 2019; Dempster, et al., 2019; Pacini, et al., 2021; 

Dharia, et al., 2021). As of the 22Q4 version, the Cancer Dependency Map project has performed 

such CRISPR screens to identify cancer-specific genetic dependencies across 1,078 cell lines 

(Data ref: (Broad, 2022)). 

In addition to directly identifying cancer-specific genetic dependencies, co-essentiality 

between genes can be measured and used to group genes into functional modules by measuring 

correlations between CERES scores in the DepMap - a type of analysis pioneered in the yeast 

genetic interaction research community (Baryshnikova, et al., 2010; Costanzo, et al., 2016). 

Indeed, this profile similarity analysis has been directly applied to the DepMap dataset to reveal 

functional similarities between human genes (Pan, et al., 2018; Boyle, Pritchard, & Greenleaf, 

2018; Wainberg, et al., 2021; Kim, et al., 2019; Buphamalai, Kokotovic, Nagy, & Menche, 2021; 

Gheorghe & Hart, 2022). However, previous research has posited that profile similarities in the 

DepMap are confounded by technical variation unrelated to the cancer-specific phenotypes of 

interest (Rahman, et al., 2021). 

To address this problem, two methods for computationally enhancing cancer-specific 

signals and identifying the source of variation attributable to technical factors from the DepMap 

have been proposed. Boyle et al. proposed to remove principal components derived from 

olfactory receptor gene profiles, which are assumed to contain variation irrelevant to cancer-

specific dependencies, from the data (Boyle, Pritchard, & Greenleaf, 2018). A separate method 

proposed by Wainberg et al. to enhance signals within the DepMap applied generalized least 

squares (GLS) to account for dependence among cell lines (Wainberg, et al., 2021). Our own 
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functional evaluation of DepMap profiles using external gold-standards such as CORUM 

(Comprehensive Resource of Mammalian protein complex) protein co-complex annotations 

revealed substantial bias related to mitochondrial complexes, which dominate typical 

correlation analyses of DepMap profiles (Rahman, et al., 2021). These signals are highly 

biologically relevant, but their dominance may eclipse contributions of genes in smaller 

complexes, which also represent cancer-specific dependencies. Because these existing 

normalization techniques have shown mixed results for boosting signal within smaller and non-

mitochondrial complexes, in this study, we explore the use of unsupervised dimensionality 

reduction approaches for normalizing the DepMap dataset. 

We explore classical principal component analysis (PCA) as well as two state-of-the-art 

dimensionality reduction normalization methods’ abilities to boost the signal of cancer-specific 

dependencies and remove mitochondrial signal from the DepMap (Wold, Esbensen, & Geladi, 

1987). We also propose a novel method for integrating signal across different levels of 

normalized data. Specifically, we apply a variant of PCA called robust PCA (RPCA) as well as 

autoencoder neural networks (AE) to learn and remove confounding low-dimensional signal 

from the DepMap (Candès, Li, Ma, & Wright, 2011; Hinton & Salakhutdinov, 2006). In addition, 

we propose a novel method named “onion” normalization as a general-purpose technique for 

integrating multiple layers of normalized data across different hyperparameter values into a 

single normalized dataset. We apply onion normalization using either PCA-normalized, RPCA-

normalized or AE-normalized data as input. Our benchmarking analyses of the normalized 

versions of the DepMap demonstrate that, while autoencoder normalization most efficiently 

captures and removes mitochondrial-associated signal from the DepMap, aggregating signals 

across different layers with onion normalization applied to RPCA-normalized networks is most 

effective at enhancing functional relationships between genes in the DepMap dataset. 

Results 

Removing low-dimensional signal from the DepMap boosts the performance of 

non-mitochondrial complexes 

Dimensionality reduction techniques aim to transform a high-dimensional dataset into a low-

dimensional one, and although they are typically applied under the assumption that low-

dimensional signal is desirable (Way & Greene, 2018; Lotfollahi, Wolf, & Theis, 2019; Ding, 

Condon, & Shah, 2018; Lopez, Regier, Cole, Jordan, & Yosef, 2018; Sun, Zhu, Ma, & Zhou, 2019), 

we flip that assumption in order to normalize DepMap data. We posit that two properties of the 
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DepMap hold:  we assume that true genetic dependencies are rare, based on estimations from 

large-scale yeast genetic interaction studies (Costanzo, et al., 2016), and we assume that 

dominant low-dimensional signal in the DepMap is likely to represent mitochondrial-

associated bias that is plausibly driven by technical variation or non-specific biological 

variation. For example, in the only genome-wide study of GIs to date, it was estimated that an 

average gene interacts with others roughly 3% of the time (Costanzo, et al., 2016). Therefore, 

instead of assuming that low-dimensional representations of DepMap data are desirable for 

data mining and visualization purposes, we instead propose to capture and remove that 

dominant signal from the DepMap (Figure 1A, 1B). We applied multiple dimensionality 

reduction methods to the DepMap to accomplish this goal, beginning with classical PCA 

normalization. To explore the extent to which normalization improves the detection of 

functional relationships between genes and removes mitochondrial bias from the DepMap, we 

applied benchmarking analyses with a software package developed for this purpose called 

FLEX (Rahman, et al., 2021). 

Benchmarking analyses with FLEX based on the CORUM protein complex standard reveal 

the extent of mitochondrial dominance in the DepMap for both the original dataset and all 

normalized versions (Giurgiu, et al., 2019). To summarize this benchmarking process, a gene-

level similarity matrix is created from the per-gene dependency scores by calculating Pearson 

correlation coefficients (PCCs) between all pairs of genes. Taking these similarity scores and a 

set of gold standard co-annotations for genes as input, FLEX generates precision-recall curves 

(PR curves) that measure how many true positive gene pairs in the gold standard set are 

recapitulated by PCCs taken at different similarity thresholds. More detailed information such 

as which complexes drive the performance of PR curves are also output by FLEX and are 

illustrated graphically by diversity plots. To interpret these plots, a visually larger area 

corresponds to more contribution to the overall PR curve from a complex at the corresponding 

precision threshold. An examination of the original DepMap’s CORUM PR curve performance 

alongside a diversity plot reveals that most performance in the PR curve is driven by two 

mitochondria-related complexes - the 55S ribosome and respiratory chain complexes (Figure 

1C). Therefore, to ascertain how much signal the DepMap contains for all other protein 

complexes, we generated PR curves that exclude a set of mitochondrial genes and observed a 

drastic but expected drop in overall performance (Figure 1D, Methods).  

As a reference dimensionality reduction technique, we first examined the extent to which 

classical PCA captures mitochondrial signal and boosts signal from other complexes post-
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normalization. In the PCA-normalization approach, PCA is first applied to gene perturbation 

profiles to capture low-dimensional signal. Then, the original dataset is projected onto a subset 

of the strongest PCs to generate a “reconstructed” version of the DepMap. Directly subtracting 

the reconstructed DepMap from the original DepMap produces a PCA-normalized version of the 

DepMap that does not contain the signal from the selected PCs. 

While PCA-normalization has already been applied to DepMap versions starting from 2019 

Q3 to remove several principal components, this is insufficient to reduce the mitochondrial 

dominance of the dataset or to boost signal within smaller complexes (Data ref: (Broad, 2019)). 

Repeating analyses detailed in Rahman et al., which analyzed the 18Q3 and 19Q2 versions of 

the DepMap, for the 20Q2 version, which is used for all analyses in this manuscript, reveals that 

co-dependency profiles are still dominated by mitochondrial signals (Rahman, et al., 2021) 

(Data ref: (Broad, 2018; Broad, 2019; Broad, 2020)). In addition to removing this signal, 

successful normalization methods have the potential to uncover relationships masked by this 

signal, which can be measured by observing boosts in the performance of smaller complexes in 

terms of their contributions to CORUM PR curves. 

Surprisingly, removing a large number of principal components from the DepMap improves 

the dataset’s ability to capture signal within non-mitochondrial complexes (Figure 1D, 1E). We 

applied PCA-normalization to the DepMap 20Q2 dataset and removed a varying number of 

principal components - either 1, 5, 9 or 19 (Broad, 2020). In addition to generating standard 

CORUM PR curves with FLEX as described above, to measure the ability of each dataset to 

recover signal within non-mitochondrial complexes, we also generated PR curves where 

mitochondrial gene pairs were removed as positive examples from the CORUM standard 

(Figure 1D). While this only affects gene pairs where both genes are members of a set of 1,266 

genes (see Methods), these mitochondrial-attenuated PR curves nevertheless reveal that 

removing 5 or more principal components boosts signal for non-mitochondrial complexes 

compared to the original DepMap. Diversity plots generated with FLEX confirm this observation 

(Figure 1E, Figure S9, Figure S10). We conclude that functional signal for most protein 

complexes remains and even improves while mitochondrial signal in the DepMap decreases 

after removing many principal components. These observations suggest that the strongest low-

dimensional components of the DepMap are likely to represent technical variation, or at least 

non-specific variation that clouds more specific functional information, and that removing a 

large number of low-dimensional components is valuable in measuring functional relationships. 
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In the following section, we introduce two state-of-the-art dimensionality reduction 

techniques for normalizing the DepMap before characterizing their ability to both reduce the 

dominance of mitochondrial-associated signal and boost the performance of smaller complexes. 

Autoencoder and robust PCA normalization robustly capture and remove 

technical variation from the DepMap 

Autoencoders are a type of deep neural network method designed for unsupervised 

dimensionality reduction (Hinton & Salakhutdinov, 2006). They function by optimizing the 

generation of reconstructed profiles that are similar to a training dataset after passing the 

training data through a neural network constructed in an “hourglass” shape. A crucial 

parameter of autoencoders is the latent space size, referred to as LS throughout, which is the 

number of nodes contained in the bottleneck layer at the center of the hourglass. 

Strikingly, our analysis shows that deep convolutional autoencoders trained with a single-

dimensional latent space can both generate realistic reconstructed profiles as well as capture 

and remove the majority of signal contributed by mitochondrial complexes in the DepMap. 

Similar to PCA-normalization, after training the autoencoder and observing high gene-wise 

correlations between reconstructed profiles and the original profiles, we created AE-

normalized data by directly subtracting the reconstructed matrix from the original data, 

thereby removing the low-dimensional signal. FLEX benchmarking shows that AE-normalized 

data for LS = 1, where the bottleneck layer consists of only a single node, strongly reduces the 

dominance of mitochondrial complexes while boosting the signal of non-mitochondrial 

complexes (Figure 2A, Figure S13, Figure S14), similar to PCA-normalization with many 

principal components. This provides evidence that the mitochondrial signal in the DepMap is 

low-dimensional and can be captured efficiently with an autoencoder model. 

The second normalization technique that we apply to the DepMap is robust principal 

component analysis (Candès, Li, Ma, & Wright, 2011). RPCA, a modified version of PCA, is an 

unsupervised technique used to decompose a matrix into two components:  a low-dimensional 

component and a sparse component, which are assumed to be superimposed. In this context, 

we expect the low-rank component to capture technical or non-specific biological variation and 

the sparse component to capture true genetic dependencies. Indeed, when we applied RPCA to 

the DepMap, it separated most of the dominant mitochondrial signals into the low-rank 

component (the “reconstructed” dataset) while the sparse component retained high-quality 

information about other functional relationships (the “normalized” dataset; Figure 2B, Figure 
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S11, Figure S12). Dialing λ, a hyperparameter of RPCA, controls the dimensionality of the low-

rank component, with smaller values increasing the dimensionality of the low-rank component. 

Autoencoder and RPCA normalization consistently generated realistic reconstructed data 

and boosted the performance of smaller complexes across different values of LS and λ, 

respectively. Autoencoders trained with different values of LS generated reconstructed data 

with similarly high Pearson correlations to the original DepMap dataset, consistent with the 

observation that an autoencoder with a bottleneck layer consisting of a single layer efficiently 

captures most mitochondrial signal in the DepMap. On the other hand, RPCA runs for larger 

values of λ resulted in reconstructed datasets with drastically improved correlation to the 

original DepMap, similar to the behavior of classical PCA (Figure 2C). Both autoencoder and 

RPCA normalization contributed consistent performance increases for non-mitochondrial 

complexes within CORUM PR curves (Figure 2A, 2B). 

Interestingly, closer examination of the complexes with improved signal revealed that 

different complexes peaked in terms of performance at different hyperparameter settings for 

all methods (Figure S1, Figure S2, Figure S3). Therefore, we sought to apply a method that could 

integrate normalized datasets across several different hyperparameter choices to maximize 

performance in detecting varied functional relationships in normalized data. 

Onion normalization integrates normalized data across hyperparameter values 

The final normalization technique we propose directly addresses this problem and involves the 

integration of several “layers” of normalized data - where different layers are versions of the 

DepMap normalized based on specific hyperparameter values, such as AE-normalized data for 

varying values of LS - in order to assimilate rare signals that may not be present in all layers of 

the data. The core assumption of “onion” normalization, which is supported by our previous 

analyses of both PCA-normalized and AE-normalized data, is that dialing the parameter values 

of a specific normalization method yields normalized gene effect scores containing information 

specific to individual layers as well as information common to multiple layers. As a result, 

similarity networks created using differently-normalized networks may convey information 

with substantial variation, with each one capturing informative relationships between genes. 

Thus, to summarize the diverse information contained in separate layers of normalized data 

and to avoid computational and analytical redundancy, “onion” normalization aims to 

incorporate many different layers of normalized data into a single network. 

We used a previously-published, unsupervised technique called similarity network fusion 

(SNF) to perform this integration (Wang, et al., 2014). SNF operates by integrating several 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.02.22.529573doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529573
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 
 

similarity networks using a network fusion technique based on multiview learning that 

considers the neighborhood and sparsity information of individual networks, which can 

integrate networks with subtle differences in an unbiased manner. 

A key strength of onion normalization is that any effective dimensionality reduction method 

can be employed in the normalization step to generate different layers of the “onion.” The 

similarity network layers to be fused are created from the same data normalized by varying key 

parameters of the chosen normalization method. For this study, we compared onion 

normalization applying PCA-normalization with varying numbers of PCs (PCO), autoencoder 

normalization with varying latent space sizes (AEO), and RPCA normalization with varying 

lambda values (RPCO) (Figure 3A). 

FLEX benchmarking reveals that onion normalization improves performance compared to 

individual layers of normalized data for all normalization methods, with RPCO normalization 

showing the strongest performance of the three approaches (Figure 3B, 3D). Mitochondrial-

attenuated PR curves reveal a substantial performance benefit for all onion-normalized 

datasets compared to the original DepMap. Moreover, due to improved performance for 

boosting weaker signal later in the PR curve (i.e., at thresholds corresponding to higher recall), 

RPCO outperforms both PCO and AEO (Figure 3B). Diversity plots of CORUM PR curves suggest 

that RPCO-normalization greatly reduces the mitochondrial dominance observed in the original 

DepMap dataset (Figures 3C, Figure S15). However, a closer analysis of the complexes driving 

the RPCO diversity plot reveals that, in addition to a partial reduction of mitochondrial-

associated signal, signal within non-mitochondrial complexes is boosted such that the ten 

complexes driving PR curve performance no longer include mitochondrial-associated 

complexes. Thus, rather than normalizing mitochondrial signal entirely out of the DepMap, 

RPCO normalization instead boosts signal within smaller, non-mitochondrial complexes such 

that the strongest gene-gene similarities are no longer dominated by mitochondria-related 

genes. All onion-normalized datasets also outperform their individual normalized layers for 

boosting signal within smaller complexes (Figure 3D). 

A detailed analysis of complexes with boosted signal across normalization techniques 

shows that RPCO normalization best improves the signal contained in complexes with low 

signal in the original DepMap. We plotted the number of complexes with strongly boosted or 

weakened signal, defined as those with AUPRCs that differ by “small” magnitudes of 0.1 or 

“large” magnitudes of 0.5 in normalized data compared to the original DepMap, and binned 

those across complex size for all normalization techniques (Figure 3D). This analysis shows that 
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integration with onion normalization, especially with RPCA, outperforms all individually-

normalized layers at boosting the signal contained across complexes of different sizes. For 

example, even though autoencoder normalization efficiently removes mitochondrial signal, it 

also removes signal from many non-mitochondrial complexes - a drawback rescued by 

integration with onion normalization. 

Similar benchmarking analyses show that RPCO and AEO-normalization outperform the 

GLS normalization technique proposed by Wainberg et al. and the olfactory receptor 

normalization (OLF) technique proposed by Boyle et al. (Wainberg, et al., 2021; Boyle, Pritchard, 

& Greenleaf, 2018). Mitochondrial-attenuated PR curves show improved performance of RPCO 

over AEO and GLS, which perform similarly (Figure 4A), while diversity plots reveal that both 

AEO and RPCO reduce mitochondrial-associated signal more distinctly than GLS (Figure 4B, 

Figure S16). Plotting per-complex AUPRC values based on the magnitude of differences 

compared to un-normalized data for all methods details a similar pattern for magnitude 

thresholds of 0.1 and 0.5, where RPCO performs best and AEO and GLS perform similarly 

(Figure 4C). For the complexes with the most pronounced difference between unnormalized 

and normalized data at a magnitude threshold of 0.7 AUPRC, both RPCO and AEO perform 

similarly and substantially outperform GLS. Across all evaluations, OLF normalization does not 

substantially reduce mitochondrial signal or boost signal contained within non-mitochondrial 

complexes compared to the other three methods. 

Network analysis of onion-normalized DepMap data uncovers biologically 

relevant clusters 

To visually examine functional relationships between genes pre- and post-RPCO normalization 

and the expected reduction in mitochondrial signal, we created correlation networks for both 

versions of the DepMap in Cytoscape version 3.7.2 (Shannon, et al., 2003) using the yFiles 

organic layout algorithm. We performed this for five, ten, and fifteen thousand of the top-ranked 

edges sorted in decreasing order of correlations for pre- and post-normalization data, plotting 

the five and fifteen-thousand edge networks (Figure 5A, 5B). Rather than forming a handful of 

connected components centered around hub genes, RPCO-normalized data formed up to 2,073 

discrete clusters for the fifteen-thousand edge network (Figure 5A). On the other hand, pre-

normalization DepMap data represented nearly an order of magnitude fewer clusters for the 

fifteen-thousand edge network, 290, with the majority of edges instead concentrated into a 

single connected component with many mitochondrial-associated edges (Figure 5B). 

Comparing the number of genes represented across networks further illustrates that RPCO 
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normalization uncovers relationships previously masked by mitochondrial-associated signal, 

with 10,493 more genes in the fifteen thousand-edge RPCO network than the corresponding 

pre-normalization network (Figure 5C). 

An investigation of clusters derived from RPCO-normalized data which lack signal in the 

original DepMap reveals potentially novel functions for the genes KPRP, DNTTIP1, TMEM59L 

and ELMSAN1. Twelve out of thirteen of a cluster of genes with a mean z-score of 43.8 in RPCO-

normalized data, compared to a z-score of 1.9 in the original DepMap, are enriched for GO terms 

related to metal homeostasis (Figure 5D). The remaining gene, KPRP, is mostly uncharacterized 

and is not annotated to any GO biological process term. Therefore, we hypothesize that KPRP is 

also involved in metal homeostasis, perhaps working in conjunction with its nearest neighbor 

MT1X. A separate cluster of twelve genes, with a z-score of 30 in RPCO-normalized data 

compared to a z-score of 1.5 in the original DepMap, is enriched for MAP kinase signaling-

related genes such as MAPK14 (Figure 5E). Intriguingly, while the gene ELMSAN1 (since 

renamed to MIDEAS) is known to be involved with histone deacetylation but little else, it is 

connected to both MAPK14 and MAP2K3. Through these connections, the similarly-

uncharacterized genes DNTTIP1 and TMEM59L are associated with this cluster as well, 

indicating a potential connection between ELMSAN1, DNTTIP1, TMEM59L and MAPK14 

activity. 

Onion-normalization enhanced signals in gene-expression data 

To explore the generalizability of our onion normalization methods to other genome-scale 

datasets, we applied onion normalization to a single-cell gene expression dataset31 

generated from healthy Peripheral blood mononuclear cells (PBMCs) using Chromium 

scRNA-seq technology and Cell Ranger (Data ref: (10xgenomics, 2019)). The pre-processed 

data contains log-normalized expression readouts for 12,410 genes across 1195 cells. A 

FLEX PR curve from the un-normalized data benchmarked against the CORUM protein 

standard shows the detection of 2,000 true positive gene pairs at a precision threshold of 

0.8 (Figure S17A). However, the corresponding diversity plot shows that the majority of 

the strong performance (high precision) indicated by the PR curve comes from the 

cytoplasmic ribosome complex. PR-curves from RPCA- and RPCO-normalized data 

outperform un-normalized data by increasing the number of true positive (TP) gene pairs 

from 2,000 to 5,000 at a precision threshold of 0.8 (Figure S17B left). Moreover, PR curves 

without ribosomal gene pairs in the evaluation reveal that the normalized data performs 

better than the un-normalized data (Figure S17B right). For example, at a precision 
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threshold of 0.2 the un-normalized data has around 50 TP gene pairs, whereas RPCO-

normalization has 100. This suggests that the normalization process enhances signals in 

gene pairs within non-ribosomal complexes. For example, a closer look at the per-complex 

AUPRC values reveals that RPCO-normalization increased AUPRC for the Ferritin complex 

from 0.036 to 0.25 and for the Cofilin-actin-CAP1 complex from 0.028 to 0.146 (data not 

shown). This indicates that an optimized Onion-normalization method can be used to 

generally boost signals in gene expression data as well as CRISPR screen data. 

 

Discussion 

In this study, we explored the use of unsupervised dimensionality techniques to identify 

functional relationships between genes within whole-genome CRISPR screening data and 

proposed a novel method called “onion” normalization for integrating signal between different 

“layers” of normalized data. While deep learning with autoencoders efficiently removed 

unwanted mitochondrial signal from the DepMap, this performance came at the expense of 

signal within smaller, non-mitochondrial complexes. Onion normalization rescued this poor 

performance for small complexes while still reducing mitochondrial signal and outperformed 

all proposed and state-of-the-art normalization methods when paired with robust principal 

component analysis (RPCO). 

Co-essentiality maps derived from RPCO-normalized data show an unprecedented ability 

to recover signal from most of the genome when contrasted against the un-normalized DepMap 

and previous DepMap-derived co-essentiality maps. The fifteen-thousand edge RPCO network, 

constructed in a completely unsupervised way by measuring Pearson correlations above a 

given threshold, contained a total of ~12k genes with an average of 2.5 neighbors per gene. The 

same approach applied to the original DepMap captured only ~1,500 genes with an average of 

19.7 neighbors per gene, likely due to the dominance of mitochondrial-associated hub genes 

within the network. Previous co-essentiality maps constructed from the DepMap either filtered 

out the majority of the genome or initialized the network structure based on a set of pre-

existing clusters6,7 (Wainberg, et al., 2021; Kim, et al., 2019), techniques ill-suited for mapping 

the functions of understudied genes. RPCO-normalization overcomes these limitations and 

allows us to ascribe putative functions to previously weakly-connected genes. 

Our exploration provides a compendium of resources for studying functional relationships 

within the DepMap at an improved resolution, including a novel co-essentiality map and the 
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onion normalization method. While our results show a strong performance benefit for robust 

principal component analysis, future work could investigate both deep learning approaches for 

normalizing the DepMap and onion normalization applied to different input normalization 

approaches. Perhaps other deep-learning approaches that learn meaningful latent spaces, such 

as variational autoencoders (Kingma & Welling, 2013), could better learn and remove 

mitochondrial signal without reducing signal within mitochondrial-associated complexes. As 

the key technical limitation of onion normalization is its high memory cost, which scales with 

the number of layers, future work could also investigate the choice of optimal hyperparameters 

across different layers of normalized data. Additionally, onion normalization is a general 

framework that our initial analyses suggest may be applicable to other types of genomic data 

such as bulk and single-cell RNA-seq. 

 

Methods 

Principal component analysis normalization 

We applied the R function prcomp (an SVD-based R implementation of PCA) to the original 

DepMap 20Q2 data (Data ref: (Broad, 2020)) with scale and center parameters set to true and 

generated corresponding principal component (PC) outputs. Prior to that, NA values were 

replaced with gene-wise mean CERES scores in the downloaded DepMap data 

(Achilles_gene_effect.csv). The rotation variable of the PCA output corresponds to loadings of 

the principal components. Multiplying DepMap CERES scores with the complete rotation matrix 

transforms the data to a coordinate space defined by the principal components. Multiplying this 

resulting matrix with the transpose of the loadings matrix re-transforms data into the original 

coordinate space. In our method, the original data matrix Mr×c multiplied by only a subset of the 

principal component loadings matrix (Lc×c) and its transpose. This creates a ‘PCA-reconstructed’ 

version of the original data matrix from the low dimensional signal-space defined by that 

particular subset of principal components (Equation 1.1). The n-PC PCA-reconstruction of the 

original data is thus generated using the first n columns of the rotation matrix. Subtracting the 

PCA-reconstructed matrix from the original data matrix generates the n-PC removed PCA-

normalized version of the data (Equation 1.2). 

  (1.1) 

  (1.2) 
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Robust principal component analysis normalization 

Robust principal component analysis (RPCA) decomposes matrix Xr×c into low-rank, Lr×c , and 

sparse, Sr×c, component matrices so that they satisfy Equation 1.3 (Candès, Li, Ma, & Wright, 

2011). RPCA is an unsupervised method, designed to optimize the values of L and S to minimize 

Equation 1.4, where ||L||∗ is the nuclear-norm of L and ||S||1∗ is the l1-norm of S. λ is a 

hyperparameter whose suggested value is  1 ÷ √max(𝑟, 𝑐) 

X = L + S (1.3) 

min ||L||∗+||S||1 s.t. M = L + S (1.4) 

 

For this work, we applied the rpca R-package (an R implementation of RPCA) (Sykulski, 

2015) to the original DepMap data (Data ref: (Broad, 2020)). As a pre-processing step, NA 

values replaced with gene-wise mean CERES scores in the downloaded DepMap data 

(Achilles_gene_effect.csv). Variables S and L in rpca output are the RPCA-normalized data and 

RPCA-reconstructed data, respectively. 

Autoencoder normalization 

The 20Q2 DepMap data, Achilles_gene_effect.csv (Data ref: (Broad, 2020)), was processed in the 

following way to prepare data for fitting with an autoencoder model. First, NA values were 

replaced with gene-wise mean CERES scores. Second, the dataset was row-standardized. Third, 

the 0.12% of resulting z-scores below -4 or above 4 were clipped to -4 or 4, respectively. Lastly, 

the entire dataset was min-max scaled to fall between -1 and 1. 

A deep convolutional autoencoder was then trained on the DepMap for 1 epoch and a latent 

space size of LS = 1, 2, 3, 4, 5 or 10. The encoder architecture consisted of a 1D convolutional 

layer converting from 1 channel into 10 with a subsequent 1D max pooling layer, another 1D 

convolutional layer converting from 10 channels into 20 with a subsequent 1D max pooling 

layer, and flattening followed by a linear layer with size equal to the chosen latent space. The 

decoder architecture consisted of inverse operations with max unpooling, transposed 

convolutional layers and a final linear layer to reshape output into the original input size. All 

convolutional kernel sizes were set to 3 and all pooling kernel sizes were set to 2. 

Onion normalization 

The onion normalization method combines signals from different normalized data (that we 

refer to as ‘layers’) generated by dialing parameter values of a normalization method. It has 
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three components - normalizing gene effect scores with a dimensionality reduction method, 

creating similarity-networks from normalized data, and finally integrating the similarity-

networks into a single network. 

Any effective dimensionality reduction method can be employed in the normalization step. 

The layers to be fused are produced from the same data normalized by varying a parameter of 

the normalization method. We created such layers by applying PCA, RPCA or AE normalization 

methods as described in their respective sections. For example, we created six AE-normalized 

layers using AE-normalization with latent space sizes of 1, 2, 3, 4, 5, and 10. Similarly, we 

removed the first n principal components (for n = 1, 3, 5, 7, 9, 11, 13, 15, 17, or 19) and generated 

ten PCA-normalized layers. For RPCA-normalization, we regulated λ applying the formula f÷

√max(𝑟, 𝑐) for f = 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3 and generated seven RPCA-normalized layers for 

integration. From each normalized layer, we created a gene-level similarity network by 

computing Pearson correlation coefficients among the gene profiles. 

For the network integration module of the Onion method, we selected the Similarity 

Network Fusion (SNF) approach developed by Wang et. al. as it outperformed baseline 

integration techniques we explored (Figure S6, Figure S7, Figure S8) (Wang, et al., 2014). SNF 

is a network fusion technique based on multiview learning that enhances or diminishes 

network edge weights by considering the neighborhood and sparsity information of the 

individual networks. We converted Pearson correlation coefficients to distance metrics by 

subtracting them from 1 before applying a scaled exponential similarity kernel (the 

affinityMatrix function in the SNF package) to generate an affinity score matrix. These affinity 

matrices generated from each layer of normalized data are then integrated into one network 

with the SNF package. 

SNF has three relevant hyperparameters. The first parameter, σ, is a standard deviation 

regulator of the exponential similarity kernel and is used to create the affinity matrices. Another 

hyperparameter, k, regulates the number of neighboring vertices to be considered during 

calculating edge weights in the integrated network and is used both in the affinity matrix 

creation and the final integration stages. A third hyperparameter controls the number of 

iterations in the integration stage. We dialed σ = 0.1, 0.3, 0.5, 0.7 and k = 3, 5, 10, 20 in 

integrating AE, PCA and RPCA normalized layers and settled on σ = 0.3, k = 5 for PCO and σ = 

0.5, k = 5 for RPCO and AEO, based on how much diversity it can introduce during the evaluation 

process (Figure S5). We set the number of iterations to 10 for all methods. While integrating 
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AE-normalized layers, we also included the similarity network generated from the un-

normalized data as a layer, fusing a total of seven layers. 

Functional evaluations 

To evaluate normalization methods we used the CRISPR screen benchmarking package FLEX 

and the CORUM (Giurgiu, et al., 2019) protein complex database as FLEX’s gold standard to 

benchmark against (Rahman, et al., 2021). FLEX’s evaluation is based on the idea that gene-

level similarity scores, calculated from gene knock-out profiles, connotes functional similarity 

among genes and a higher similarity score between two genes implies membership in the same 

protein complex. FLEX orders gene pairs from high to low similarity scores and evaluates 

complex membership predictions at different precision points against the CORUM standard. 

The precision-recall (PR) curve from FLEX depicts how many true positive (TP) gene pairs are 

both strongly correlated within the data and members of the same CORUM protein complex. 

This visualization is augmented by diversity plots, which illustrate specific complexes that 

contain most true-positive gene pairs at various precision points. A visually larger area denotes 

more TP contribution from a complex. Another evaluation metric in FLEX is the per-complex 

area under the PR curve (AUPRC) value. In calculating AUPRC for a complex, gene pairs 

belonging to that complex are considered as positive examples whereas gene pairs from other 

complexes are set as negative examples. A higher per-complex AUPRC indicates more gene 

pairs associated with that complex have been identified based on their similarity scores. 

Conversely, a lower per-complex AUPRC means that scores for the within-complex genes are 

poorly correlated compared to between-complex gene pairs. 

FLEX also facilitates removing specific gene pairs from the evaluation process. To evaluate 

the influence of mitochondrial complexes in the DepMap data, we compiled 1,266 

mitochondrial genes from three sources to remove from our analysis. A total of 1,136 genes 

were collected from the Human MitoCarta3.0, an inventory of human mitochondrial proteins 

and pathways by the Broad Institute (Rath, et al., 2021). All genes from the KEGG OXIDATIVE 

PHOSPHORYLATION and the REACTOME RESPIRATORY ELECTRON TRANSPORT pathways 

were included in the list. 436 genes were also assembled by an expert based on information 

from pathways and CORUM complexes, and the union of these lists formed a reference list of 

mitochondrial-associated genes. To modify FLEX analyses according to this list and better 

examine non-mitochondrial signal within the DepMap, gene pairs were excluded from FLEX 

analyses for pairs where both genes are contained in the mitochondrial gene list. Gene pairs 

that contain only one or no mitochondrial genes are not removed. 
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Network analysis 

Networks were constructed from the original 20Q2 DepMap and the RPCO-normalized 20Q2 

DepMap datasets by taking the top five, ten, or fifteen-thousand edges based on the strength of 

Pearson correlations across each respective dataset. Network layouts were performed with the 

yFiles organic layout algorithm in Cytoscape version 3.7.2 (Shannon, et al., 2003). All connected 

components within each network were treated as separate clusters and analyzed for 

enrichment. Enrichments tests were performed with hypergeometric tests using the 

clusterProfiler R package version 3.16.1 (Wu, et al., 2021) against human Gene Ontology- 

biological process and MSigDB C2 curated pathway annotations and a background set of all 

genes in the given network at a Benjamini-Hochberg FDR of 0.2. 

Analysis on gene-expression data 

The scRNA-seq gene expression dataset (5k_pbmc_v3_filtered_feature_bc_matrix.tar) was 

downloaded from 10xGENOMICS (10xgenomics, 2019) and was generated from Peripheral 

blood mononuclear cells (PBMCs) using Chromium and Cell Ranger. We applied the Seurat 

R package to filter the dataset and removed genes for which the number of cells with non-

zero values is smaller than or equal to 50. We also filtered out cells for which the number 

of unique genes detected in each cell is smaller than or equal to 100 and greater than or 

equal to 4500. Furthermore, we only included cells for which the percentage of reads that 

map to the mitochondrial genome is lower than 7. The final matrix contains 12410 genes 

and 1195 cells, around 20% of which is non-zero. We log-normalized the data using Seurat 

function NormalizeData with default parameters.  

We applied RPCA to the pre-processed scRNA-seq data and generated seven RPCA-

normalized layers by setting hyperparameter lambda to f÷√max(𝑟,c), where r = 12000, 

c=1200, and f = 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3. Seven gene-gene similarity networks were 

generated from the normalized data using Pearson Correlation Coefficients as the similarity 

metric. The networks were integrated by taking the maximum weight for each gene-pair 

across the seven networks. To demonstrate the dominance of cytoplasmic ribosomal gene 

pairs in the analysis results (Figure S17B right), we removed 81 Ribosome (cytoplasmic) 

complex-associated genes during the FLEX evaluation process. 
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(https://github.com/ArshiaZHassan/ONION_git) 

• Codes for autoencoder-normalization: GitHub (https://github.com/csbio/ae-norm) 
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• Data to reproduce the main figures and associated outputs: Zenodo 
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(https://zenodo.org/record/7671685#.Y_gi9nbMK5c) 
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Figure Legends 

Figure 1: Normalization schematic and exploration of mitochondrial bias within the DepMap 

for different numbers of PCs removed. A, A dimensionality reduction method is applied to the 

original DepMap data to extract a low-dimensional representation of the data. Reconstructed 

data is generated from that, which is subtracted from the original DepMap to normalize it. B, 

(Top) PCA generates reconstructed DepMap data by multiplying the DepMap against selected 

PCs derived from it and the transpose of those PCs. (Bottom) Autoencoders generate 

reconstructed data post-training by passing in the original DepMap as input. C, (Left) Precision- 

recall (PR) performance of un-normalized DepMap data evaluated against CORUM protein 

complexes. The x-axis depicts the log-scaled number of true-positives (TPs). (Right) 

Contribution diversity plot of CORUM complexes in un-normalized DepMap data. This plot is 

constructed by sliding a precision cutoff from high to low (indicated by the y-axis), and at each 

point, plotting a stacked bar plot across the x-axis at that point reflecting the breakdown of 

complex membership of the TP pairs identified at that threshold. The top ten contributing 

complexes are listed in the legend, with the light gray category representing all complexes 

represented at lower frequency. D, (Top) Precision-recall (PR) performance of PCA-normalized 

data with the first 5, 9, and 19 principal components removed evaluated against CORUM protein 

complexes. (Bottom) PR performance with mitochondrial gene pairs removed from evaluation. 

E, The contribution diversity plots depict CORUM complex contributions in PCA-reconstructed 

data and PCA-normalized data for the first 5, 9 and 19 principal components. 

 

Figure 2: Exploration of PCA, RPCA and AE normalization across hyperparameters. A, (Left) 

Precision-recall (PR) performance of AE-normalized data generated with latent space sizes 1, 3 

and 5 evaluated against CORUM protein complexes. (Right) Corresponding contribution 

diversity plots depicting CORUM complex contributions from AE-reconstructed and AE-

normalized data. B, (Left) PR performance of RPCA-normalized data generated with λ set to 
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0.0049, 0.007 and 0.0091 evaluated against CORUM protein complexes. (Right) Corresponding 

contribution diversity plots illustrating complex contributions in RPCA-reconstructed and 

RPCA-normalized data. C, Scatter plot of Pearson correlation coefficients between un-

normalized data and reconstructed data as well as between un-normalized data and normalized 

data generated by PCA, AE and RPCA normalization. Y-axis contains Pearson correlation 

coefficient values, and the X-axis contains the number of removed principal components (first 

1, 3, 5, 7, 9, 11, 13, 15, 17, 19) for PCA-normalization, latent space sizes (1, 2, 3, 4, 5, 10) for AE-

normalization and λ (approximately 0.0049, 0.0056, 0.0063, 0.007, 0.0077, 0.0084, 0.0091) for 

RPCA-normalization. 

 

Figure 3: Onion normalization and benchmarking for different normalization techniques as 

input. A, Schematic of onion normalization. Pearson correlation coefficients are computed from 

data normalized with a chosen technique - autoencoders (AE), PCA or robust PCA (RPCA) - for 

different choices of hyperparameters, which are then integrated with similarity network fusion 

(SNF). B, FLEX precision-recall (PR) performance of original DepMap CERES scores against 

onion normalization with AE (AEO), PCA (PCO) or RPCA (RPCO) as input for CORUM protein 

complexes as the standard. (Left) All CORUM co-complex pairs as true positives. (Right) 

Mitochondrial gene pairs are removed from true positives. C, Contribution diversity of CORUM 

complexes for the original DepMap, AEO, PCO and RPCO data. Fractions of predicted true 

positives (TP) from different complexes are plotted at various precision levels on the y-axis. D, 

Number of complexes for which area under the PR curve (AUPRC) values increase and decrease 

with respect to chosen AUPRC thresholds due to normalization as compared to un-normalized 

data. The bars on the left side of the dotted line correspond to AE-normalized layers (latent 

space size = 1, 2, 3, 4, 5, 10), PCA-normalized layers (first 1, 3, 5, 7, 9, 1, 13, 15, 17, 19 principal 

components removed) and RPCA-layers (λ ˜= 0.0049, 0.0056, 0.0063, 0.007, 0.0077, 0.0084, 

0.0091). The bars on the right side of the dotted line correspond to SNF integrated data of the 

respective layers for all three methods. The color gradient for each method represents four bins 

with complexes containing 2 to 3 genes, 4 to 5 genes, 6 to 9 genes, and 10 or more genes. (Left) 

t = 0.1. (Right) t = 0.5. 

 

Figure 4: Onion normalization and benchmarking for different normalization techniques as 

input. A, FLEX precision-recall (PR) performance of original DepMap CERES scores against 

onion normalization with AE (AEO), onion normalization with robust PCA (RPCO), generalized 

least squares (GLS) normalization from in Wainberg et al. (Wainberg, et al., 2021), and olfactory 

receptor (OLF) normalization from Boyle et al. (Boyle, Pritchard, & Greenleaf, 2018) as input 

for CORUM protein complexes as the standard. (Left) All CORUM co-complex pairs as true 

positives. (Right) Mitochondrial gene pairs are removed from true positives. B, Contribution 

diversity of CORUM complexes for the original DepMap, AEO, RPCO, GLS and OLF data. 

Fractions of predicted true-positives (TP) from different complexes are plotted at various 

precision levels on the y-axis. C, Number of complexes for which area under the PR curve 

(AUPRC) values increase and decrease with respect to chosen AUPRC thresholds due to 

normalization as compared to un-normalized data for AEO, RPCO, GLS and OLF data. The color 
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gradient for each method represents four bins with complexes containing 2 to 3 genes, 4 to 5 

genes, 6 to 9 genes, and 10 or more genes. (Left) t = 0.1. (Middle) t = 0.5. (Right) t = 0.7. 

 

Figure 5: Network analysis of RPCO-normalized and original DepMap data. a, Top-ranked edges 

between genes from RPCO data laid out with the yFiles organic layout algorithm in Cytoscape 

(Shannon, et al., 2003), with mitochondrial-associated genes highlighted in blue. (Left) The top 

5,000 edges for n = 3,850 genes. (Right) The top 15,000 edges for n = 12,017 genes. b, Top-

ranked edges based on Pearson correlations between genes from original DepMap data laid out 

with the yFiles organic layout algorithm in Cytoscape (Shannon, et al., 2003), with 

mitochondrial-associated genes highlighted in blue. The largest connected components of the 

networks are inset and represent many mitochondrial-associated genes. (Left) The top 5,000 

edges for n = 810 genes. (Right) The top 15,000 edges for n = 1,524 genes. c, The number of 

genes represented in above RPCO and original DepMap networks. d, Cluster derived from the 

15,000 edge RPCO network representing metal homeostasis genes. (Left) Edges present in 

15,000 edge RPCO network. (Right) Edges present in 15,000 edge original DepMap network. e, 

MAPK14-centric cluster derived from the 15,000 edge RPCO network. (Left) Edges present in 

15,000 edge RPCO network. (Right) Edges present in 15,000 edge original DepMap network. 

 

Figure S1: CORUM complex z-scores of AUPRC values for PCA normalization. Z-scores across 

rows for un-normalized DepMap data compared to DepMap data with the first 1, 3, 5, 7, 9, 11, 

13, 15, 17, or 19 PCs removed. 

 

Figure S2: CORUM complex z-scores of AUPRC values for robust PCA normalization. Z-scores 

across rows for un-normalized DepMap data compared to robust PCA-normalized DepMap data 

for λ ˜= 0.0049, 0.0056, 0.0063, 0.007,0.0077, 0.0084, 0.0091.  

 

Figure S3: CORUM complex z-scores of AUPRC values for autoencoder normalization. Z-scores 

across rows for un-normalized DepMap data compared to autoencoder-normalized DepMap 

data with latent space size (LS) = 1, 2, 3, 4, 5, 10. 

 

Figure S4: CORUM complex z-scores of AUPRC values for onion normalization. Z-scores across 

rows for un-normalized DepMap data compared to data from generalized least squares (GLS) 

normalization from Wainberg et al. (Wainberg, et al., 2021), olfactory receptor (OLF) 

normalization from Boyle et al. (Boyle, Pritchard, & Greenleaf, 2018), onion normalization with 

AE (AEO), onion normalization with PCA (PCO), and onion normalization with robust PCA 

(RPCO). 

 
Figure S5: SNF hyperparameter exploration for onion normalization. The number of CORUM 
protein complexes which contribute any true positive pairs at a precision threshold of 0.5 are 
plotted for SNF parameters of σ = 0.1, 0.3, 0.5, 0.7 on the y-axis and k = 3, 5, 10, 20 on the x-axis. 
A, Autoencoder-normalized data as input to onion normalization. B, PCA-normalized data as 
input to onion normalization. C, Robust PCA-normalized data as input to onion normalization. 
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Figure S6: A, Comparison of Precision-recall (PR) performance of original DepMap data, SNF 
integrated PCA-normalized layers (PCO), average of PCA-normalized layers and maximum 
across PCA-normalized layers evaluated against CORUM complex standard. Layers are 
generated by removing first n principal components where n = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19. B, 
Contribution diversity plots from original DepMap data, SNF integrated PCA-normalized layers 
(PCO), average of PCA-normalized layers and maximum across PCA-normalized layers 
evaluated against CORUM complex standard. 
 
Figure S7: A, Comparison of Precision-recall (PR) performance of original DepMap data, SNF 
integrated RPCA-normalized layers (RPCO), average of RPCA-normalized layers and maximum 
across RPCA-normalized layers evaluated against CORUM complex standard. Layers are 
generated by setting RPCA hyperparameter λ to approximately 0.0049, 0.0056, 0.0063, 0.007, 
0.0077, 0.0084, and 0.0091.  B, Contribution diversity plots from original DepMap data, SNF 
integrated RPCA-normalized layers (RPCO), average of RPCA-normalized layers and maximum 
across RPCA-normalized layers evaluated against CORUM complex standard. 
 
Figure S8: A, Comparison of Precision-recall (PR) performance of original DepMap data, SNF 
integrated AE-normalized layers (AEO), average of RPCA-normalized layers and maximum 
across RPCA-normalized layers evaluated against CORUM complex standard. Layers are 
generated by dialing auto-encoder latent space size to 1, 2, 3, 4, 5, and 10. B, Contribution 
diversity plots from original DepMap data, SNF integrated AE-normalized layers (AEO), average 
of RPCA-normalized layers and maximum across RPCA-normalized layers evaluated against 
CORUM complex standard. 
 
Figure S9: Contribution diversity plots depicting CORUM complex contributions in PCA-
reconstructed data with first 5, 9 and 19 principal components removed. 
 
Figure S10: Contribution diversity plots depicting CORUM complex contributions in PCA-
normalized data with first 5, 9 and 19 principal components removed. 
 
Figure S11: Contribution diversity plots illustrating complex contributions in RPCA-
reconstructed data generated with hyperparameter λ set to 0.0049, 0.007 and 0.0091 evaluated 
against the CORUM complex standard. 
 
Figure S12: Contribution diversity plots illustrating complex contributions in RPCA-normalized 
data generated with hyperparameter λ set to 0.0049, 0.007 and 0.0091 evaluated against the 
CORUM complex standard. 
 
Figure S13: Contribution diversity plots depicting CORUM complex contributions from AE-
reconstructed data generated with latent space sizes 1, 3 and 5 evaluated against CORUM 
complex standard. 
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Figure S14: Contribution diversity plots depicting CORUM complex contributions from AE-
normalized data generated with latent space sizes 1, 3 and 5 evaluated against CORUM complex 
standard. 
 
Figure S15: Contribution diversity of CORUM complexes in SNF integrated AE-normalized 
layers (AEO), SNF integrated PCA-normalized layers (PCO), and SNF integrated RPCA-
normalized layers (RPCO). 
 
Figure S16: Contribution diversity of CORUM complexes in generalized least squares (GLS) 
normalization from Wainberg et al. (Wainberg, et al., 2021), olfactory receptor (OLF) 
normalization from Boyle et al. (Boyle, Pritchard, & Greenleaf, 2018) 
 
Figure S17: Onion-normalization applied to RNA-seq gene expression data with RPCA as the 
normalization technique and maximum-weight as integration method. A, (Left) Precision-recall 
(PR) performance of un-normalized gene expression data evaluated against CORUM protein 
complexes. The x-axis depicts the log-scaled number of true-positives (TPs). (Right) 
Contribution diversity of CORUM complexes in un-normalized gene expression data. The x-axis 
is the fraction of TP gene pairs against those pairs correctly predicted as functionally related at 
different precision levels in the y-axis. The legend shows the top ten contributing complexes. B, 
(Left) PR performance of RPCA-normalized data generated with λ set to 0.0063, 0.009, and 
0.0117 as well as RPCO-normalized data evaluated against CORUM protein complexes. (Right) 
PR performance of RPCA-normalized data generated with λ set to 0.0063, 0.009, and 0.0117 as 
well as RPCO-normalized data evaluated against CORUM protein complexes excluding 
cytoplasmic ribosomal gene pairs from the evaluation process. 
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Figure 1: Normalization schematic and exploration of mitochondrial bias within the DepMap for 

different numbers of PCs removed. A, A dimensionality reduction method is applied to the 

original DepMap data to extract a low-dimensional representation of the data. Reconstructed 

data is generated from that, which is subtracted from the original DepMap to normalize it. B, 

(Top) PCA generates reconstructed DepMap data by multiplying the DepMap against selected 

PCs derived from it and the transpose of those PCs. (Bottom) Autoencoders generate 

reconstructed data post-training by passing in the original DepMap as input. C, (Left) Precision- 

recall (PR) performance of un-normalized DepMap data evaluated against CORUM protein 

complexes. The x-axis depicts the log-scaled number of true-positives (TPs). (Right) Contribution 

diversity plot of CORUM complexes in un-normalized DepMap data. This plot is constructed by 

sliding a precision cutoff from high to low (indicated by the y-axis), and at each point, plotting a 

stacked bar plot across the x-axis at that point reflecting the breakdown of complex membership 

of the TP pairs identified at that threshold. The top ten contributing complexes are listed in the 

legend, with the light gray category representing all complexes represented at lower frequency. 

D, (Top) Precision-recall (PR) performance of PCA-normalized data with the first 5, 9, and 19 

principal components removed evaluated against CORUM protein complexes. (Bottom) PR 

performance with mitochondrial gene pairs removed from evaluation. E, The contribution 

diversity plots depict CORUM complex contributions in PCA-reconstructed data and PCA-

normalized data for the first 5, 9 and 19 principal components. 
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Figure 2: Exploration of PCA, RPCA and AE normalization across hyperparameters. A, (Left) 

Precision-recall (PR) performance of AE-normalized data generated with latent space sizes 1, 3 and 

5 evaluated against CORUM protein complexes. (Right) Corresponding contribution diversity plots 

depicting CORUM complex contributions from AE-reconstructed and AE-normalized data. B, (Left) 

PR performance of RPCA-normalized data generated with λ set to 0.0049, 0.007 and 0.0091 evaluated 

against CORUM protein complexes. (Right) Corresponding contribution diversity plots illustrating 

complex contributions in RPCA-reconstructed and RPCA-normalized data. C, Scatter plot of Pearson 

correlation coefficients between un-normalized data and reconstructed data as well as between un-

normalized data and normalized data generated by PCA, AE and RPCA normalization. Y-axis contains 

Pearson correlation coefficient values, and the X-axis contains the number of removed principal 

components (first 1, 3, 5, 7, 9, 11, 13, 15, 17, 19) for PCA-normalization, latent space sizes (1, 2, 3, 4, 

5, 10) for AE-normalization and λ (approximately 0.0049, 0.0056, 0.0063, 0.007, 0.0077, 0.0084, 

0.0091) for RPCA-normalization. 
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Figure 3: Onion normalization and benchmarking for different normalization techniques as input. 

A, Schematic of onion normalization. Pearson correlation coefficients are computed from data 

normalized with a chosen technique - autoencoders (AE), PCA or robust PCA (RPCA) - for 

different choices of hyperparameters, which are then integrated with similarity network fusion 

(SNF). B, FLEX precision-recall (PR) performance of original DepMap CERES scores against onion 

normalization with AE (AEO), PCA (PCO) or RPCA (RPCO) as input for CORUM protein complexes 

as the standard. (Left) All CORUM co-complex pairs as true positives. (Right) Mitochondrial gene 

pairs are removed from true positives. C, Contribution diversity of CORUM complexes for the 

original DepMap, AEO, PCO and RPCO data. Fractions of predicted true positives (TP) from 

different complexes are plotted at various precision levels on the y-axis. D, Number of complexes 

for which area under the PR curve (AUPRC) values increase and decrease with respect to chosen 

AUPRC thresholds due to normalization as compared to un-normalized data. The bars on the left 

side of the dotted line correspond to AE-normalized layers (latent space size = 1, 2, 3, 4, 5, 10), 

PCA-normalized layers (first 1, 3, 5, 7, 9, 1, 13, 15, 17, 19 principal components removed) and 

RPCA-layers (λ ˜= 0.0049, 0.0056, 0.0063, 0.007, 0.0077, 0.0084, 0.0091). The bars on the right 

side of the dotted line correspond to SNF integrated data of the respective layers for all three 

methods. The color gradient for each method represents four bins with complexes containing 2 

to 3 genes, 4 to 5 genes, 6 to 9 genes, and 10 or more genes. (Left) t = 0.1. (Right) t = 0.5. 
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Figure 4: Onion normalization and benchmarking for different normalization techniques as input. A, 

FLEX precision-recall (PR) performance of original DepMap CERES scores against onion 

normalization with AE (AEO), onion normalization with robust PCA (RPCO), generalized least 

squares (GLS) normalization from in Wainberg et al.6, and olfactory receptor (OLF) normalization 

from Boyle et al.5 as input for CORUM protein complexes as the standard. (Left) All CORUM co-

complex pairs as true positives. (Right) Mitochondrial gene pairs are removed from true positives. B, 

Contribution diversity of CORUM complexes for the original DepMap, AEO, RPCO, GLS and OLF data. 

Fractions of predicted true-positives (TP) from different complexes are plotted at various precision 

levels on the y-axis. C, Number of complexes for which area under the PR curve (AUPRC) values 

increase and decrease with respect to chosen AUPRC thresholds due to normalization as compared 

to un-normalized data for AEO, RPCO, GLS and OLF data. The color gradient for each method 

represents four bins with complexes containing 2 to 3 genes, 4 to 5 genes, 6 to 9 genes, and 10 or 

more genes. (Left) t = 0.1. (Middle) t = 0.5. (Right) t = 0.7. 
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Figure 5: Network analysis of RPCO-normalized and original DepMap data. a, Topranked edges 

between genes from RPCO data laid out with the yFiles organic layout algorithm in Cytoscape29, with 

mitochondrial-associated genes highlighted in blue. (Left) The top 5,000 edges for n = 3,850 genes. 

(Right) The top 15,000 edges for n = 12,017 genes. b, Top-ranked edges based on Pearson 

correlations between genes from original DepMap data laid out with the yFiles organic layout 

algorithm in Cytoscape29, with mitochondrial-associated genes highlighted in blue. The largest 

connected components of the networks are inset and represent many mitochondrial-associated 

genes. (Left) The top 5,000 edges for n = 810 genes. (Right) The top 15,000 edges for n = 1,524 genes. 

c, The number of genes represented in above RPCO and original DepMap networks. d, Cluster derived 

from the 15,000 edge RPCO network representing metal homeostasis genes. (Left) Edges present in 

15,000 edge RPCO network. (Right) Edges present in 15,000 edge original DepMap network. e, 

MAPK14-centric cluster derived from the 15,000 edge RPCO network. (Left) Edges present in 15,000 

edge RPCO network. (Right) Edges present in 15,000 edge original DepMap network. 
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Figure S1: CORUM complex z-scores of AUPRC values for PCA normalization. Z-scores across rows 

for un-normalized DepMap data compared to DepMap data with the first 1, 3, 5, 7, 9, 11, 13, 15, 17, 

or 19 PCs removed. 
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Figure S2: CORUM complex z-scores of AUPRC values for robust PCA normalization. Z-scores across 

rows for un-normalized DepMap data compared to robust PCA-normalized DepMap data for λ ˜= 

0.0049, 0.0056, 0.0063, 0.007,0.0077, 0.0084, 0.0091.  
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Figure S3: CORUM complex z-scores of AUPRC values for autoencoder normalization. Z-scores across 

rows for un-normalized DepMap data compared to autoencoder-normalized DepMap data with latent 

space size (LS) = 1, 2, 3, 4, 5, 10. 
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Figure S4: CORUM complex z-scores of AUPRC values for onion normalization. Z-scores across rows 

for un-normalized DepMap data compared to data from generalized least squares (GLS) 

normalization from Wainberg et al.6, olfactory receptor (OLF) normalization from Boyle et al.5, onion 

normalization with AE (AEO), onion normalization with PCA (PCO), and onion normalization with 

robust PCA (RPCO). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.02.22.529573doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529573
http://creativecommons.org/licenses/by-nc-nd/4.0/


C

A

B

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.02.22.529573doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529573
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S5: SNF hyperparameter exploration for onion normalization. The number of CORUM protein 
complexes which contribute any true positive pairs at a precision threshold of 0.5 are plotted for SNF 
parameters of σ = 0.1, 0.3, 0.5, 0.7 on the y-axis and k = 3, 5, 10, 20 on the x-axis. A, Autoencoder-
normalized data as input to onion normalization. B, PCA-normalized data as input to onion 
normalization. C, Robust PCA-normalized data as input to onion normalization. 
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Figure S6: A, Comparison of Precision-recall (PR) performance of original DepMap data, SNF 

integrated PCA-normalized layers (PCO), average of PCA-normalized layers and maximum across 

PCA-normalized layers evaluated against CORUM complex standard. Layers are generated by 

removing first n principal components where n = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19. B, Contribution 

diversity plots from original DepMap data, SNF integrated PCA-normalized layers (PCO), average 

of PCA-normalized layers and maximum across PCA-normalized layers evaluated against CORUM 

complex standard. 
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Figure S7: A, Comparison of Precision-recall (PR) performance of original DepMap data, SNF 

integrated RPCA-normalized layers (RPCO), average of RPCA-normalized layers and maximum 

across RPCA-normalized layers evaluated against CORUM complex standard. Layers are 

generated by setting RPCA hyperparameter λ to approximately 0.0049, 0.0056, 0.0063, 0.007, 

0.0077, 0.0084, and 0.0091.  B, Contribution diversity plots from original DepMap data, SNF 

integrated RPCA-normalized layers (RPCO), average of RPCA-normalized layers and maximum 

across RPCA-normalized layers evaluated against CORUM complex standard. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.02.22.529573doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529573
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

1.0
Pr

ec
is

io
n 0.8

0.6
0.4
0.2
0.0

TP
10¹ 10³ 105

All gene pairs

Un-normalized
AEO
Maximum
Average

No mito. gene pairs

TP
10¹ 10³ 105

1.0

Pr
ec

is
io

n 0.8
0.6
0.4
0.2
0.0

0.0 0.4 0.8

Pr
ec

is
io

n

1.0
0.8
0.6
0.4
0.2

55S ribosome, 
mitochondrial

Respiratory chain I, 
mitochondrial

Top non-mito. 
complexes

Other 
complexes

Un-normalized AEO AverageMaximum

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.02.22.529573doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529573
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S8: A, Comparison of Precision-recall (PR) performance of original DepMap data, SNF 

integrated AE-normalized layers (AEO), average of RPCA-normalized layers and maximum 

across RPCA-normalized layers evaluated against CORUM complex standard. Layers are 

generated by dialing auto-encoder latent space size to 1, 2, 3, 4, 5, and 10. B, Contribution 

diversity plots from original DepMap data, SNF integrated AE-normalized layers (AEO), average 

of RPCA-normalized layers and maximum across RPCA-normalized layers evaluated against 

CORUM complex standard. 
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Figure S9: Contribution diversity plots depicting CORUM complex contributions in PCA-
reconstructed data with first 5, 9 and 19 principal components removed. 
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Figure S10: Contribution diversity plots depicting CORUM complex contributions in PCA-normalized 
data with first 5, 9 and 19 principal components removed. 
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Figure S11: Contribution diversity plots illustrating complex contributions in RPCA-reconstructed 
data generated with hyperparameter λ set to 0.0049, 0.007 and 0.0091 evaluated against the CORUM 
complex standard. 
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Figure S12: Contribution diversity plots illustrating complex contributions in RPCA-normalized data 
generated with hyperparameter λ set to 0.0049, 0.007 and 0.0091 evaluated against the CORUM 
complex standard. 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.02.22.529573doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529573
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0 0.4 0.8

1.0
0.8
0.6
0.4
0.2

Pr
ec

is
io

n

Fraction of TP

A

0.0 0.4 0.8
Fraction of TP

AE Reconstructed

B AE Reconstructed

C AE Reconstructed

0.0 0.4 0.8
Fraction of TP

LS=1

LS=3

LS=5

Pr
ec

is
io

n
55S ribosome, mitochondrial
Respiratory chain complex I (holoenzyme), mitochondrial
STAGA complex, SPT3−linked
Spliceosome
PTIP−HMT complex
TSC1−TSC2 complex
PA700−20S−PA28 complex
Ribosome, cytoplasmic
Mediator complex
HOPS complex
Other complexes

1.0
0.8
0.6
0.4
0.2

55S ribosome, mitochondrial
Respiratory chain complex I (holoenzyme), mitochondrial
STAGA complex, SPT3−linked
PA700−20S−PA28 complex
TSC1−TSC2 complex
Ribosome, cytoplasmic
Spliceosome
Mediator complex
Arp2/3 protein complex
PTIP−HMT complex
Other complexes

55S ribosome, mitochondrial
Respiratory chain complex I (holoenzyme), mitochondrial
STAGA complex, SPT3−linked
PTIP−HMT complex
TSC1−TSC2 complex
Spliceosome
Mediator complex
Ribosome, cytoplasmic
PA700−20S−PA28 complex
HOPS complex
Other complexes

Pr
ec

is
io

n

1.0
0.8
0.6
0.4
0.2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.02.22.529573doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529573
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S13: Contribution diversity plots depicting CORUM complex contributions from AE-
reconstructed data generated with latent space sizes 1, 3 and 5 evaluated against CORUM complex 
standard. 
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Figure S14: Contribution diversity plots depicting CORUM complex contributions from AE-
normalized data generated with latent space sizes 1, 3 and 5 evaluated against CORUM complex 
standard. 
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Figure S15: Contribution diversity of CORUM complexes in SNF integrated AE-normalized layers 
(AEO), SNF integrated PCA-normalized layers (PCO), and SNF integrated RPCA-normalized layers 
(RPCO). 
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Figure S16: Contribution diversity of CORUM complexes in generalized least squares (GLS) 
normalization from Wainberg et al.6, olfactory receptor (OLF) normalization from Boyle et al.5 
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Figure S17: Onion-normalization applied to RNA-seq gene expression data with RPCA as the 
normalization technique and maximum-weight as integration method. A, (Left) Precision-recall 
(PR) performance of un-normalized gene expression data evaluated against CORUM protein 
complexes. The x-axis depicts the log-scaled number of true-positives (TPs). (Right) 
Contribution diversity of CORUM complexes in un-normalized gene expression data. The x-axis 
is the fraction of TP gene pairs against those pairs correctly predicted as functionally related at 
different precision levels in the y-axis. The legend shows the top ten contributing complexes. B, 
(Left) PR performance of RPCA-normalized data generated with λ set to 0.0063, 0.009, and 
0.0117 as well as RPCO-normalized data evaluated against CORUM protein complexes. (Right) 
PR performance of RPCA-normalized data generated with λ set to 0.0063, 0.009, and 0.0117 as 
well as RPCO-normalized data evaluated against CORUM protein complexes excluding 
cytoplasmic ribosomal gene pairs from the evaluation process. 
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