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Polar vortex crystals: Emergence and structure
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Vortex crystals are quasiregular arrays of like-signed vortices in solid-body rotation
embedded within a uniform background of weaker vorticity. Vortex crystals are observed
at the poles of Jupiter and in laboratory experiments with magnetized electron plasmas
in axisymmetric geometries. We show that vortex crystals form from the free evolution
of randomly excited two-dimensional turbulence on an idealized polar cap. Once
formed, the crystals are long lived and survive until the end of the simulations (300
crystal-rotation periods). We identify a fundamental length scale, Lγ = (U /γ)1/3,
characterizing the size of the crystal in terms of the mean-square velocity U of the fluid
and the polar parameter γ = fp/a

2
p , with fp the Coriolis parameter at the pole and ap

the polar radius of the planet.
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The Juno spacecraft revealed a distinctive form of organized turbulence in the polar
atmosphere of Jupiter (1). The North Pole exhibits a central polar cyclone surrounded by
eight circumpolar cyclones; the South Pole is characterized by five cyclones surrounding
a central polar cyclone. These cyclones are organized into a vortex crystal: a symmetric
array of strong vortices in solid-body rotation within a background of weaker vorticity.
The Jovian vortex crystals are located within 8◦ of the poles and have endured since their
discovery in 2016 with very little change to their overall structure (2, 3). Jovian crystals
are approximately stationary in the System III reference frame (4). The essential physical
mechanisms responsible for the emergence and persistence of this peculiar polar dynamical
regime are poorly understood.

Although observations of polar vortex crystals began with Juno, the most basic
model of this phenomenon dates back to Kelvin’s 19th century theory of vortex atoms,
i.e., the dynamics of equally spaced point vortices arranged in concentric rings (5–7).
Laboratory experiments with magnetized pure-electron plasmas are another antecedent
(8–11). This experimental system is isomorphic to a near-ideal two-dimensional (2D)
fluid contained within a circular domain, with electron density equivalent to vorticity.
Through vortex nucleation, merger, and finally self-organization, regular vortex arrays, in
solid-body rotation (9), spontaneously crystallize from a filamented initial vorticity field.
These electron-plasma experiments are simpler than polar planetary dynamics in several
respects:

1) There is no analog of the variation of the Coriolis parameter with latitude (the β-effect);
2) The vorticity has strictly one sign (electrons are negatively charged);
3) The plasma is contained within a circular domain with a free-slip boundary;
4) Plasma dynamics are “barotropic” (the deformation length is infinite); and
5) There is effectively no dissipation and there is no energy source (small-scale convection)

required to sustain the vortices.

Nonetheless many authors have remarked on the striking resemblance between electron-
plasma vortex crystals and Jovian observations (1, 4, 12, 13). While these two systems
have many features in common, it is crucial to relax simplifications 1 and 2 in any model
of polar atmospheres. In particular, the small variation of the Coriolis parameter in the
vicinity of the poles is key.

Recent observations show that moist convection drives an upscale energy transfer at
Jovian high latitudes (14), consistent with the regime of rapidly rotating Rayleigh–Bénard
convection (15). The barotropic component of the flow (i.e., the circumpolar and polar
cyclones) exhibits kinetic energy spectra with a k−3 spectral slope, consistent with quasi-
geostrophic (QG) dynamics.

These results motivate the hypothesis that barotropic QG dynamics, specialized to an
idealized “polar-cap” geometry, might explain basic features of the polar planetary regime.
Here we show that useful dynamical information, such as the radius of the polar vortex
crystal, follows from dimensional analysis of the polar-cap QG dynamics, prepared with
an initial condition having a length scale characteristic of convective cells (14).

Significance

Vortex crystals, geometric arrays
of like-signed vortices, are
observed in natural systems with
vastly different space and time
scales: at the poles of Jupiter
(∼10,000-km radius and lifetime
of at least 5 y) and in laboratory
experiments with pure-electron
plasma (∼3.5-cm radius, lifetime
of about 1.7 s). We follow the
adage “less is more” and show
that minimal physics is required
for polar vortex crystals formation
and persistence. Crystals,
resembling those of Jupiter, form
from the free evolution of an
unstratified and rapidly rotating
fluid in an axisymmetric
geometry. An essential ingredient
in this minimal model is the
decrease of the vertical
component of the Coriolis force
with distance from the pole. Once
formed, the crystal seems to
survive indefinitely.
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A Barotropic QG Model of Polar-Cap Dynamics

An important characteristic of the QG polar-cap regime is that
planetary parameters occur only in the combination γ = fp/a

2
p ,

where fp is the Coriolis parameter at the pole and ap is the polar
radius of the planet. The parameter γ is significant because close
to the poles the Coriolis parameter is f (r)≈ fp − 1

2γr
2, where r

is the distance from the pole. We discuss the North Pole so that
fp is positive and cyclones are positive vortices.

The barotropic polar-cap QG system is

qt + ψxqy − ψyqx = 0, [1]
q = ζ + η, [2]

where ψ(x , y , t) is the stream function, ζ = ψxx + ψyy is the
relative vorticity, and q is the potential vorticity (PV). We em-
ploy a Cartesian coordinate system centered on the pole so that
r = (x 2 + y2)1/2. For the planetary PV η in [2], it is instructive
to compare two configurations. The first one is the polar-cap PV

ηpc(r) =− 1
2γr

2 1�(r), [3]

where 1�(r) is the indicator function of the disk with radius r�;
i.e., 1�(0< r < r�) = 1 and 1�(r� < r) = 0. Inside the speci-
fied radius r�, ηpc(r) is equal to the planetary PV, − 1

2γr
2. The

second configuration is the “flat-trap” PV

ηft(r) =− 1
2γr

2
� 1�(r). [4]

The flat-trap model ηft(r), with no planetary PV gradient within
the trap, is close to the electron-plasma experiments. Both ηpc(r)

and ηft(r) have a discontinuity of strength q� =
1
2γr

2
� at the

trap radius r�. This discontinuity results in an enclosure that
largely confines the QG turbulence within the disk 0< r < r�
(SI Appendix, section 2).

The model is solved as an unforced initial value problem using
a doubly periodic pseudospectral method provided by Geophys-
icalFlows.jl (16); the domain size is Ldom × Ldom. We use a trap
radius r� that is as large as possible, while still ensuring that there
is minimal interaction between neighboring periodic domains.
The vortex trap is an alternative to the dissipative sponge layer
used in earlier studies of polar-cap dynamics (17–19). The trap
approximately conserves energy throughout the 8-y duration of
the simulation. For further numerical considerations, and discus-
sion of the r� trap boundary, see SI Appendix, section 2.

The planetary radius ap does not appear in the formulation
above (nor in the initial condition below). Therefore, just as the
planetary radius ap is irrelevant for midlatitude β-plane dynamics,
ap is not a relevant length scale for polar-cap dynamics. The
irrelevance of ap can be appreciated intuitively because polar
vortex crystals are confined in regions that are within 8◦ of both
poles. These caps occupy less than 1% of the total area of Jupiter.
Within the QG framework, the Coriolis parameter fp is also
irrelevant: fp and ap are inextricably combined into the only
relevant planetary parameter γ = fp/a

2
p .

Initial Condition. The initial relative vorticity ζ0(x , y) is a ran-
dom monoscale field, multiplied by a taper that confines ζ0 to
the center of the trap: See Fig. 1A and SI Appendix, section 1
for further details of the initial condition. The untapered initial
relative vorticity is concentrated within a narrow annulus in
wavenumber space; the central radius of the annulus is 1/Linit
and the width of the annulus is much less than 1/Linit. In

addition to Linit, the initial condition provides a velocity scale U
defined by

U 2 =
〈
|∇ψ0|2

〉
, [5]

where 〈〉 is a domain average and ψ0 the initial stream function.
The kinetic energy is approximately conserved throughout the
evolution and thus U is the characteristic flow velocity. (More
precisely, 5% of the initial kinetic energy is lost in the first
19 h of evolution and another 5% in the remaining 8 y; see
SI Appendix, Table S1 and Fig. S1 for details.)

The Intrinsic Polar-Cap Length Scale. From U and γ one can
form the length

Lγ =

(
U

γ

)1/3

. [6]

Lγ is the polar analog of the Rhines length (20) on a midlatitude
β-plane. To develop this analogy in more detail, note that the mag-
nitude of the planetary PV gradient is β(r) = γr and therefore
the Rhines length at a distance r from the pole is

LR =

(
U

γr

)1/2

. [7]

Well-known arguments identifying LR in midlatitudes all assume
that the curvature of the planetary PV is negligible over the scale
LR itself, i.e., that one can approximate the planetary PV by a
linear function of latitude over a distance LR. Eq. 7 shows that
this assumption must fail as one approaches the poles: Curvature
becomes important. We proceed heuristically to identify the new
relevant length that replaces LR as r → 0: Equating r to LR

in [7] gives LR = (U /γLR)
1/2. Solving for LR then results in

the length Lγ on the left of [6]. Thus Lγ is identified as an
intrinsic polar length scale. We show below that Lγ is the radius
of emergent QG polar vortex crystals.

Disclaimer. Despite the adoption of Jupiter-like numbers in [8]
below, we do not claim quantitative Jovian accuracy for this
barotropic QG model. For example, we use barotropic dynamics
so that the deformation length Ldef is infinite (as it is in the plasma
experiments). Observations summarized in ref. 12 indicate that
the Ldef at the Jovian poles is somewhere in the range 350 to
1,300 km. This range encompasses various polar length scales,
such as the vortex diameter defined as the radius of maximum
azimuthal velocity (∼1,000 to 1,200 km). Thus baroclinic effects
associated with finite Ldef are likely to be quantitatively important
at the Jovian poles. While an unforced and weakly dissipative
model cannot claim strict application to the continuously forced
Jovian system, it does reveal the dominant evolutionary tendencies
resulting from inertia and planetary PV gradients. In other words,
the barotropic QG model, with the addition of γ, is sufficient
to capture the key vortex-dynamical processes responsible for the
genesis of polar vortex crystals.

Results: The Polar Cap

Fig. 1 shows a solution of [1] and [2] with ηpc(r) in [3]. This
“reference run” uses Jupiter-like parameters

fp = 3.5170× 10−4 s−1, ap = 6.6854× 104 km,

γ = fp/a
2
p = 7.8690× 10−20 m−2 · s−1,

U = 80 m · s−1, Lγ = 1.005× 104 km, Linit = 200 km.
[8]
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Fig. 1. (A–I) Evolution of the relative vorticity ζ of the reference run with parameters in [8]. The central circle in each panel has radius Lγ = 104 km; in G–I the
radius of the crystal is very close to Lγ . See Movies S1–S3 and SI Appendix, Fig. S2 showing the evolution of q = ζ + η.

Linit corresponds roughly to the length scale of the shallow atmo-
spheric convective cells (14). We used U = 80 m · s−1 based on
the latest observations of Jovian polar winds (14). We acknowledge
that a lower value might have been closer to the mean-square
velocity in Jovian high latitudes. However, a dimensional analysis
in SI Appendix, section 4 shows that all velocities in the polar-cap
QG system are proportional to the external parameter U and thus
it is easy to make adjustments.

We strive to achieve a large value of r�, so that the vortex crystal
with radius Lγ (see below) is well separated from complications at
the periphery of the trap. With available computational resources
we use r� = 5Lγ (see SI Appendix, section 7 for a discussion
of sensitivity to Lγ/r�). The PV discontinuity at r� = 5Lγ is
q� =

1
2γr

2
� = 9.9451× 10−5 s−1. The domain length scale is

Ldom = 12Lγ . The initial condition in Fig. 1A shows random
small-scale (Linit � Lγ) vorticity concentrated in the center of the
trap, with PV extrema qext ∼ 6× 10−3 s−1 ∼ 60 q�.

The development of a vortex crystal from random initial condi-
tions is shown in detail in Movies S1–S3. The process is summa-
rized by nine snapshots of the relative vorticity ζ in Fig. 1. There
are several distinct evolutionary stages corresponding to the three
rows of Fig. 1.

Vortex Nucleation. The nucleation of small-scale vortices from
the random initial condition in Fig. 1A is underway in Fig. 1B and,
after 7 d of evolution, is almost complete in Fig. 1C. Nucleation
produces roughly equal numbers of cyclones and anticyclones
(Fig. 1C ). Consistent with assumptions of vortex-gas scaling
theory (21–23), the PV extrema in Fig. 1A form the cores of the
nucleated vortices in Fig. 1 B and C. Some of these vortices pair to
form rapidly propagating dipoles, resulting in occasional collisions
with the trap boundary at r�. Most freshly nucleated vortices,
however, remain within the trap.
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Vortex Segregation and Merger. Subsequent evolution from the
state in Fig. 1C involves merger (24–26) of like-signed vortices to
form larger vortices and vortex segregation guided by γ. Vortex
segregation refers to the systematic migration of cyclones toward
the poles and anticyclones toward the equator (17, 18, 27–29).
Segregation is noticeable in Fig. 1E and is largely complete after
75 d in Fig. 1F : The pole is occupied by cyclones and anticyclones
have accumulated up against the trap boundary at r�.

In view of PV mixing arguments, invoked below in connection
with [9], it is interesting that vortex segregation is “antidiffusive”:
Cyclones (ζ > 0) move poleward and reinforce the initial r = 0
maximum in the planetary PV − 1

2γr
2. And the outward radial

motion of anticyclones (ζ < 0) reinforces the initial minimum in
ηpc(r) at r�.

Emergence of the Crystal. After segregation is complete there
are eight large cyclonic vortices moving chaotically within a cap
of radius Lγ centered on the pole; the snapshot in Fig. 1G is
representative of this state. The configuration in Fig. 1G is not a
crystal; the vortex octet is not in approximate solid-body rotation.
Moreover, the cyclones compete for occupancy of the central
position—one cyclone will command the center until jostled
out of position by a colleague (Movie S1). This jostling happens
repeatedly until the configuration in Fig. 1H is finally achieved
after about 1.5 y of evolution. The central cyclone in Fig. 1H
remains in place until the end of the run in Fig. 1I at 8 y.

Once the permanent central cyclone is established, the octet
crystallizes into solid-body rotation (Movie S3). The solid-body
rotation is not perfect: Vortices have small epicyclic oscillations
about their mean position, reminiscent of the oscillations of the
cyclones about their mean position at the South Pole of Jupiter
(3, 4). The oscillations may result from differences in strength
between the eight cyclones; e.g., the smallest cyclones have the
largest excursions.

Zonal-Mean Flow, Cooling, and PV Homogenization. Although
the polar cyclones in the lowest row of Fig. 1 are a promi-
nent feature of the flow, one should not ignore the zonal-mean
flow ū(r , t) and the associated zonal mean relative vorticity
ζ̄ = (r ū)r/r . (See SI Appendix, section 5 for a summary and
discussion of zonal mean dynamics.) The eight cyclones interact
with one another by mutual advection, but they also interact with
the zonal-mean flow ū . For example, and in analogy with the
electron-plasma experiments, we argue that the chaotic state in
Fig. 1G is “cooled” as the irregular motion of the polar cyclones
mixes the zonal-mean PV, q̄ = ζ̄ − 1

2γr
2. The vortex crystal is

formed as the chaotic motion of the circumpolar cyclones is
damped by transfer of angular momentum and energy to ū (10).

Following arguments along the lines of Taylor (30) and
Bretherton (31), a main result of the zonal-mean equations is
that the zonal-mean acceleration, ūt , is related to radial vorticity
transport, v ′ζ ′, by

ūt + v ′ζ ′ = 0. [9]

In the central Lγ circle chaotic vortex motion directly results in
v ′ζ ′ and mean-flow acceleration. But there is also far-field v ′ζ ′

and, through [9], far-field zonal-mean acceleration. (The “far
field” of the circumpolar cyclones is defined by r � Lγ .) Chaotic
vortex motion within the Lγ circle produces a fluctuating far-field
radial velocity, v ′ ∼ r−2, corresponding to the unsteady dipole
moment of the circumpolar cyclones. There is also an azimuthal
component, u ′ ∼ r−1, resulting from the constant-in-time total
circulation. But only the weaker radial component, v ′, results in

radial transport v ′ζ ′ and therefore far-field mean-flow acceleration
via [9].

Mixing is so strong that by the end of the reference run there
is striking PV homogenization (32). Fig. 2A shows that the PV is
mixed into discrete steps (33, 34). Thus, the vortex crystal coexists
with an axisymmetric version of the β-plane PV staircase. Because
of the axisymmetric geometry, this homogenized background PV
is more accurately described as a “PV terrace.” Once the PV terrace
is formed, γ-driven vortex segregation is no longer operative: The
planetary γ-effect is annulled by the relative vorticity of the mean
azimuthal flow ū . And there is no further mean-flow acceleration
because ζ ′ = 0; i.e., PV fluctuations cannot be created by stirring
homogeneous PV.

Because of PV homogenization the eight cyclones in Fig. 1
G–I sit on top of a flat PV terrace. Throughout the first PV
terrace in Fig. 2A, q ≈−q�/4 is less than the planetary vorticity,
− 1

2γr
2. Thus, the background relative vorticity, ζ̄, is negative,

i.e., opposite in sign to the circumpolar cyclones. A background
of homogeneous weaker vorticity, of opposite sign to that of
the polar cyclones, is an observed feature of the Jovian poles
(14, 35).

Fig. 2B shows a comparison of the azimuthally averaged
azimuthal velocity, ū(r), of the reference run with an analytic fit
based on homogenized PV steps and Gaussian vorticity profiles
for the polar cyclones (see SI Appendix, section 6 for details of
this PV terrace model). Although ζ̄(r)< 0 throughout the first
terrace, the azimuthal velocity ū(r) in Fig. 2B is dominated by
the irrotational r−1 far-field velocity of the central cyclone and
is therefore strongly positive. The secondary local maximum in
ū(r) at r/r� ≈ 0.25 is the signature of the seven circumpolar
cyclones.

PV terraces emerge in all our unforced simulations. But terrace
formation in a continuously forced-dissipative system is less cer-
tain: We do not claim that the high-latitude Jovian atmosphere is
PV terraced.

Anatomy of the Polar Cyclones. Fig. 3 shows that the emergent
polar cyclones are unshielded; i.e., in Fig. 3B the vorticity has one
sign (positive) and each cyclone has a nonzero circulation. There-
fore, the far-field azimuthal velocity around each polar cyclone is
u = κ/2πrv . (Here κ > 0 is the circulation of the cyclone; rv is
the distance from the vortex center; and “far-field” means that rv
is much greater than the vortex radius, defined as the radius of
maximum velocity in Fig. 3C.) Slow algebraic decay, u ∝ r−1

v ,
differs qualitatively from the exponential decay of u assumed in
recent models: Those models employ completely shielded vortices
with κ= 0 (12, 13).

In Fig. 3C the maximum cyclone velocity is between 5 and
10 × U, where U is the root-mean-square velocity defined in
[5] and set to 80 m · s−1. The velocity 80 m · s−1 is more typ-
ical of the maximum cyclone velocity of Jovian cyclones—see
figure 6 of ref. 36. Therefore, the cyclones in Fig. 3C have peak
velocities very much faster than those of Jovian polar cyclones.
All velocities in the polar-cap system are, however, proportional
to U (SI Appendix, section 4). Thus we can make an a posteriori
adjustment so that the maximum cyclone velocity in the polar-
cap model matches the Jovian observations: Reduce U by a factor
of 8, which reduces Lγ by a factor of 2. With this reduction in
U, the polar cyclones now have typical Jovian velocities, but the
polar-cap crystal has a radius Lγ = 5,000 km, which is somewhat
smaller than the 8,700-km radius of the Jovian crystals (36).

In addition to being too fast, the cyclones in Fig. 3 are also
too small relative to those of Jupiter. The average cyclone radius
indicated in Fig. 3C is about 0.05Lγ or, with U = 80 m · s−1, a
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Fig. 2. (A) PV as a function of r/r� along the diagonal cuts show in Fig. 4A. (B) Azimuthally averaged azimuthal velocity, ū(r) as a function of r/r�. The “numerical”
curve is ū(r) calculated from the final state (8 y) of the reference run; the “theoretical” curve is ū(r) inferred from an analytic fit to the azimuthally averaged PV.
The fit uses Gaussian polar cyclones embedded in a background of homogenized PV and does not attempt to model cyclonic vorticity outside the trap where
r > r� (see SI Appendix, section 6 for details).

cyclone radius of 500 km. Jovian polar cyclones range in radius
from 2,000 to 3,500 km (36).

In summary, if we useU = 80m · s−1, so that the crystal radius
is Lγ = 104 km, then the reference-run cyclones are much faster,
and much smaller, than those of Jupiter. We expect that these
results depend on the use of a barotropic model with infinite
deformation radius.
Sensitivity to Initial Conditions. Although the emergence of
Lγ as the radius of the crystal is robust and reproducible, the
exact number of vortices in the crystal is an accident of initial
conditions. For example, with the reference values in [8] fixed, if
we change the seed in the random number generator responsible
for initializing ζ0, we produce a diverse set of final configurations;
see Fig. 4 for six examples. In Fig. 4E there is a dipole consisting
of a large polar cyclone and a smaller cyclone; this dipole orbits
the pole. In Fig. 4C, a small anticyclone is paired with the
large polar cyclone, reminiscent of the Jovian observations. Small

anticyclones are also seen in between the large cyclones at the
North Pole of Jupiter; see figure 1 of Adriani et al. (1). In Fig. 4F
there is a lone polar cyclone. Electron-plasma experiments exhibit
an analogous sensitivity to initial conditions (8, 9).

The structure of the zonal-mean PV is less sensitive to initial
conditions: The six runs in Fig. 4 all have two major PV terraces
(see also the diagonal cuts in SI Appendix, Figs. S5 and S8). The
reference run in Fig. 4A has two impressively flat PV steps in
Fig. 2A. The strong PV mixing results from the chaotic vortex
motion in Fig. 1 D–F. Other runs in Fig. 4 and SI Appendix,
Fig. S3 have two major PV terraces and one or two additional
minor terraces.

The PV terraces in Fig. 4F, with a lone polar cyclone, are
not very flat; i.e., in SI Appendix, Fig. S5 the PV is imperfectly
mixed. Imperfect mixing in Fig. 4F may result from the early
establishment of approximate axisymmetry, and therefore small
v ′ζ ′, in this particular run. In the other examples in Fig. 4 there is

Fig. 3. (A) Zoom-in on the PV field of the reference-run polar vortex crystal. This crystal is composed of eight cyclones (numbered). The black circle has radius
Lγ . (B) Diagonal cuts through the center of four of the cyclones (numbered) showing relative vorticity (rv indicates the distance from the vortex center). The solid
line is one diagonal cut and the dashed line is an orthogonal cut. The two diagonal cuts overlap almost perfectly, highlighting the axisymmetry of the cyclones.
(C) Azimuthal velocity of the eight cyclones as a function of distance from their center, rv , divided by Lγ . The thick curve is the average azimuthal velocity of
the eight cyclones; the average profile has a maximum azimuthal velocity ∼7.5U at radius rv ≈ 0.05Lγ or 500 km. In C the slow r−1 decrease of the far-field
azimuthal velocity is evident.
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Fig. 4. The PV, q = ζ + ηpc, of six final states. (A) The reference solution shown in Fig. 1. Fig. 2 shows the PV along the diagonal sections in A. (B–F) The other
five examples differ from the reference solution in A only by changing the seed in the random number generator used to construct the initial condition. We
show the PV, q = ζ + ηpc, rather than the relative vorticity (e.g., ζ in Fig. 1) to make the PV steps visible.

protracted radial mixing by the chaotic nonaxisymmetric motion
of the vortices as they crystallize.

Crystal Radius and Lγ . In Fig. 1 the central circle has radius Lγ

and this circle passes rather closely through the seven circumpolar
cyclones in Fig. 1 H and I. Dozens of solutions, with different
initial conditions and variations in r�, U, γ, and Linit away from
those of the reference solution in [8], confirm that Lγ is invariably
the radius of the central cyclonic crystal (additional examples
are in Fig. 4 and SI Appendix, Fig. S3). Perhaps one might have
anticipated that the radius of the crystal is c Lγ—but numerical
solutions show that the dimensionless constant c is close to one.
Identification of Lγ as the radius of the vortex crystal is the most
important result of this work.

Vortex Radius, Linit, and Stability of a Multivortex Crystal. In
Fig. 1 G–I the radii of the eight polar cyclones are less than the
radius of the crystal, Lγ , and also greater than the initial exci-
tation wavelength Linit. Our simulations indicate that formation
of a multicyclone crystal requires Lγ 
 Linit (in the reference
run Lγ/Linit = 50). The final cyclone radii fall in the large gap
between Linit and Lγ .

Varying Linit, with all other parameters fixed at the reference
values, changes the size and number of cyclones in the final state.
Because of sensitivity to initial conditions, the following discus-
sion of Linit is qualitative. Increasing Linit results in fewer, larger
cyclones in the final state (SI Appendix, Fig. S3). We find vortex
crystals with a central polar cyclone surrounded by five or more
circumpolar cyclones for Linit ∈ {100 km, 200 km, 300 km}. We
show results only for Linit = 200 km because the three values pro-
duce qualitatively similar crystals. If 400 km ≤ Linit ≤ 1,200 km,
we find either a single central cyclone or crystals consisting of two

to four vortices. Six runs with Linit = 2,000 km all resulted in a
single central cyclone.

We speculate that to form a stable multicyclone crystal the
constituent vortices must be separated from each other with
an intervortex spacing that is significantly greater than a vortex
radius; e.g., a rough criterion for vortex merger is that two like-
signed vortices come within a critical separation distance equal to
3.3 times the average of the two radii (24–26). If Linit is too large,
then after a few vortex mergers the resultant big vortices cannot
avoid merger and also fit into the Lγ circle. And with rather
large Linit—for example Linit = 2,000 km in the bottom row of
SI Appendix, Fig. S3—only one or two cyclones form during the
nucleation phase.

Results: The Flat Trap

In Fig. 5 we use the same initial condition and parameters as those
in the polar-cap reference run in Fig. 1. But instead of ηpc(r), we
employ the flat-trap ηft(r) in [4]. This configuration resembles
the electron-plasma experiments, except that the initial vorticity
has both signs. The rapid initial vortex nucleation in Fig. 5 A–C
is similar to that of the reference run in Fig. 1 and produces
equal numbers of cyclones and anticyclones. Note, however, that
in Fig. 5 G–I the emergent vortex ensemble consists mainly of
anticyclones moving through a uniform background of weakly
positive vorticity.

Because there is no planetary PV gradient, vortex segregation
does not occur in the flat-trap configuration. In Fig. 5 the
only process discriminating between cyclones and anticy-
clones is the anticyclonic retention and cyclonic expulsion
(SI Appendix, section 2): The final crystal is anticyclonic because
most of the cyclones have escaped from the trap. In Fig. 5 G–I
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Fig. 5. (A–I) This flat-trap run uses the same parameters as the reference run in Fig. 1. But with the flat-trap planetary PV in ηft(r) in [4] there is no vortex
segregation. In contrast to Fig. 1the final state in G–I consists mainly of anticyclones distributed throughout the trap.

there is an ensemble of anticyclones distributed much more uni-
formly throughout the trap than in its polar-cap cyclonic cousin
(Fig. 1). There are also a few small stray cyclones protectively
paired with much larger anticyclones. Without vortex segregation,
many more dipoles strike the r� boundary and so at long time
there are many more cyclonic escapees in Fig. 5 than in Fig. 1.

The large ensemble in Fig. 5 G–I is not as beautifully regular
and crystalline as some of the electron-plasma examples (8, 9).
Moreover, in Fig. 5 only the larger vortices in the ensemble are in
approximate solid-body rotation. We speculate that this difference
between the flat trap and the electron-plasma experiments may re-
sult from different initial conditions. The plasma initial condition
is a spiral vorticity filament with a well-defined width: See figure 2
of Fine et al. (8). In our numerical solutions increasing Linit results
in fewer and larger vortices, and a more regular crystal, persisting
in time and in quasi–solid-body rotation (SI Appendix, Fig. S4).

The flat-trap results in Fig. 5 and SI Appendix, Fig. S4 highlight
the importance of γ in forming polar vortex crystals. Even though

the vortex-core PV extrema are much greater than the trap PV
discontinuity in both configurations, the relatively weak polar-cap
planetary PV gradient, γ r , is essential to vortex segregation and
to the formation of a polar crystal with radius Lγ .

Discussion

The polar-cap dynamical regime differs qualitatively from 1) plain
and simple 2D turbulence, which, in doubly periodic geometry,
leads eventually to two opposite-signed final vortices (22), and
2) β-plane turbulence, which produces zonal jets characteristic of
Jovian low- and midlatitudes. In this respect, polar-cap dynamics
are a different regime of geostrophic turbulence, with polar vortex
crystals being the analog of β-plane zonal jets.

The variation of the Coriolis parameter in the vicinity of the
poles (the γ-effect) is crucial, as can be seen from comparison
of Fig. 1 with the flat-trap solution in Fig. 5: Even though the
total variation of planetary PV resulting from γ is much smaller
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than the relative vorticity of individual cyclones, γ is nonetheless
essential for the formation of a crystal such as those observed at
the poles of Jupiter. γ is essential to the definition of the intrinsic
length scale Lγ , which emerges as the radius of the vortex crystals
in the polar-cap configuration. Crystals form without γ, but these
anticyclonic flat-trap crystals occupy the entire domain.

In Earth’s oceans a length scale analogous to Lγ may be
important for the dynamics of long-lived anticyclones contained
within roughly axisymmetric topographic bowls (37). The to-
pographic PV gradient of the bowl greatly exceeds β. In these
ocean situations, however, only solitary trapped anticyclones (the
Loften eddy, the Mann eddy, etc.) have been observed. Another
example is the suggestion of Bouchet and Sommeria (38) that
the emergence of propagating oval-shaped midlatitude vortices,
such as on Jupiter, requires compensation of the β-effect by vortex
motion relative to the background flow. Because the β-effect is
compensated, remaining quadratic terms in the environmental
PV, analogous to γ, are important in determining the size of these
midlatitude ovals.

Although γ is necessary for polar crystal formation, γ is not
sufficient. Several authors have studied γ-driven polar vorticity ac-
cumulation and documented the formation of a lone polar cyclone
(17–19, 29); these studies did not find multivortex crystals. We
find that multivortex crystals most readily form with small values
of Linit/Lγ . If Linit/Lγ is too large, then we also find only lone
polar cyclones. We speculate that earlier studies may have involved
cyclones that were too large relative to Lγ to form crystals.

For simplicity, and by analogy with the electron-plasma case,
we have used a barotropic model. A finite deformation radius Ldef
complicates our model because the conversion between kinetic
and potential energies resulting from finite Ldef implies that the
initial root-mean-square velocity, U defined in [5], is not constant
during the evolution. We take comfort in recent observations and
numerical results (3, 14, 39, 40) indicating that polar cyclones
might have a strong barotropic component.

Recent discussions (12, 13) of the stability and structure of
polar cyclones model the crystal using shielded vortices; e.g.,
azimuthal velocity decreases exponentially with distance from the
vortex center (much faster than r−1). These authors emphasize
the role of a shielded central polar cyclone and the planetary PV,
− 1

2γr
2, in forming a circumpolar PV ridge, i.e., a local radial

maximum in PV. Cyclones move up the PV gradient and thus this
local maximum of q is a stable radial location at which circumpolar
cyclones might sit (12, 13).

The scenario above does not apply to the numerical solutions in
this paper. Within the polar cap, PV homogenization eliminates
the poleward drift of cyclones. The vortex crystal, consisting of
unshielded vortices, sits on top of a flat PV terrace.

Thus, although shielded vortices and the presence of a shielded
central polar cyclone may help form a stable crystal (12, 13), it
is clear from the minimal model presented here that these two
ingredients are by no means necessary: The unshielded vortices
in Fig. 3 B and C indicate that shielding is not necessary to
crystal formation and stability. No shielding is also consistent with

Jovian observations (14) and with electron-plasma experiments.
Moreover, in a few of our numerical solutions emergent vortex
crystals are “hollow”; i.e., there is no central cyclone. There are
five examples of hollow crystals in SI Appendix, Fig. S3A and
three examples in figure 1 of Schecter et al. (9). These results
are consistent with Kelvin’s point-vortex crystal, which consists
of unshielded point vortices that form stable hollow crystals, with
as many as seven vortices arranged in a ring (7).

Several differences between our crystals and Jovian crystals
need to be mentioned. Jovian crystals have a preferred rotational
frame of reference: They are quasi-stationary with respect to the
System III reference frame (2), whereas the rotational frame of
our crystals varies between realizations; i.e., the five multivortex
crystals in Fig. 4 A–E are in solid-body rotation with different
rotation rates in the different realizations. Our simple model
purposely omits processes that probably contribute to the sta-
bility and persistence of Jovian crystals and to the selection of a
preferred rotational reference frame. Such processes may include
the deep convective origin of the cyclones (39) and dissipation
via deep magnetohydrodynamic coupling to the Jovian magnetic
field (41).

Jovian vortices are more closely packed than those emerging in
our simulations. This may reflect the absence of forcing, as sug-
gested by the forced-dissipative nonhydrostatic polar-cap model
of Cai et al. (40), which produces deep, closely packed and long-
lived polar cyclones. A future avenue of research is examination of
crystal formation and rotation and the vortex spacing in forced-
dissipative configurations. It is hoped that sensitivity to initial
conditions is less important in the forced-dissipative case.

Our integrations lasted only 300 crystal rotation periods with
no indication of significant changes in the crystal on that time
scale. Is this final state actually final, or are there spontaneous
transitions to other states in the unexamined future? For example,
one experimental electron-plasma crystal endured for about 104

rotation periods, after which one vortex disappeared and a new
crystal reformed with one less vortex (11). Barotropic β-plane
turbulence also presents examples of spontaneous transitions out
of long-lived metastable states (42); e.g., on extremely long time
scales, turbulent solutions abruptly switch to new configurations
with a different number of zonal jets. It is possible that 300 crystal
rotation periods are not long enough to reveal analogous rare
transitions in the structure of a polar vortex crystal.

Data Availability. There are no data underlying this work. The code used
to generate the runs have been deposited in GitHub, https://github.com/
FourierFlows/GeophysicalFlows.jl.
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