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Background: Hepatocellular carcinoma (HCC) is a life-threatening and refractory
malignancy with poor outcome. Genetic mutations are the hallmark of cancer. Thus far,
there is no comprehensive prognostic model constructed by mutation-gene
transcriptome in HCC. The prognostic value of mutation-gene signature in HCC
remains elusive.

Methods: RNA expression profiles and the corresponding clinical information were
recruited from The Cancer Genome Atlas (TCGA) and International Cancer Genome
Consortium (ICGC) databases. The least absolute shrinkage and selection operator
(LASSO) Cox regression analysis was employed to establish gene signature. Kaplan–
Meier curve and time-dependent receiver operating characteristic curve were
implemented to evaluate the prognostic value. The Wilcoxon test was performed to
analyze the expression of immune checkpoint genes, cell cycle genes, and tumor drug
resistance genes in different risk groups. Finally, quantitative real-time PCR (qRT-RCR)
and immunohistochemistry (IHC) were performed to validate the mRNA and protein
expression between HCC and adjacent nontumorous tissues in an independent cohort.

Results: A prognostic model consisting of five mutated genes was established by LASSO
Cox regression analysis. The prognostic model classified patients into high- and low-risk
groups. Compared with the low‐risk group, patients in the high‐risk group had significantly
worse survival results. The prognostic model can accurately predict the overall survival of
HCC patients and predict overall survival more accurately when combined with stage.
Furthermore, the immune checkpoint genes, cell cycle genes, and tumor drug resistance
genes were higher expressed in the high-risk group compared in the low-risk group. In
addition, the expression level of prognostic signature genes was validated in an
independent sample cohort, which was consistent with RNA sequencing expression in
the TCGA database.
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Conclusion: The prediction model of HCC constructed using mutation-related genes is
of great significance for clinical decision making and the personalized treatment of patients
with HCC.
Keywords: hepatocellular carcinoma, drug resistance, mutation gene, overall survival, immune status,
cell cycle pathway
INTRODUCTION

Liver cancer ranks sixth among the most common type of
malignant tumor and is the second most common cause of
tumor-related mortality worldwide (1). Despite advances being
made in surgery, radiotherapy, chemotherapy, and other
potentially curative treatment of hepatocellular carcinoma (HCC),
it remains a formidable threat to human health (2). Most patients
are diagnosed when the metastatic process is already present. The
frequency of tumor recurrence, metastasis, and drug resistance led
to the unsatisfactory 5-year survival rate of HCC patients (3).
Conventional models based on vascular invasion, tumor-node-
metastasis staging, and other parameters can help predict HCC
prognosis (4). However, clinical heterogeneity caused by the
simultaneous presence of two life-threatening diseases, cancer,
cirrhosis, etc. often affects the effect of routine prognosis assessment.

Genetic mutations are the hallmark of cancer, resulting in a
change in cell fate. The process of cell mutation reflects what
happens in the cell, which helps us to understand the biological
process of these mutations. In general, tumor occurrence is thought
to require two to eight so-called driver gene mutations, as well as
numerous passenger gene mutations (5, 6). Liver cancer is
associated with a high degree of genomic instability and
mutations of multiple genes. Metastasis and recurrence of HCC is
a multistep and multifactorial process, including HCC oncogene
activation, tumor suppressor gene inactivation, and mismatch
repair gene mutation (7–10). Almost 30% of HCC, for example,
harbor p53 mutation, which is associated with increased
invasiveness, recurrence, and decreased survival rate (11, 12).
Mutations in the TERT promoter, ARID1A, CDKN2A, CTNNB1,
AXIN1, and CCND1 are very common in HCC (13–15). However,
despite the importance of these gene mutations, they are rarely
applied in routine clinical practice due to high cost and
limited availability.

Next-generation sequencing technology has been widely
exploited in biological studies. Genome-wide approaches provide
detailed information of disease diversity, bringing a new dimension
to disease diagnosis and prognosis evaluation. The Cancer Genome
Atlas (TCGA) program provides whole-genome sequencing data
and clinical data for 33 types of cancer (16). HCC is known to be a
heterogeneous disease with multifactorial etiology, diverse
characteristics, and clinical outcomes. Thus, it is necessary to
establish a reliable prognostic model to monitor HCC patients
and subsequently optimize the clinical treatment decision. It is well
known that alpha-fetoprotein (AFP) was the clinically important
tumor marker for HCC diagnosis and prognosis (17, 18).
Meanwhile, some valuable biomarkers in HCC prognosis
prediction were identified based on high-throughput data (19,
2

20). It has been reported that ferroptosis-related gene signature
(21) and immune-related gene signature (22) constructed by
transcriptome can predict the overall survival of HCC patients,
but they do not provide a multifaceted dissection of the
mechanisms. Thus far, a comprehensive prognostic evaluation
model constructed by mutation-gene transcriptome has not been
established to evaluate the prognosis, immune response, and tumor
vascular growth of HCC patients. Therefore, the prognostic value
and related mechanism of mutation-gene signature have not been
explored. Identification and comprehensive analysis of mutation-
gene signature for prognosis is meaningful in HCC.

In the current work, a cluster of genes with frequent mutations
in HCC was screened from TCGA and International Cancer
Genome Consortium (ICGC) databases. We then constructed a
mutation-gene signature associated with overall survival (OS) in
TCGA database. The mutation-gene signature has a capability to
discriminate the immune status and tumor drug resistance in two
subgroups. When integrated with the TNM stages, the prognostic
performance of the gene signature is superior to that of a single
biomarker. In addition, the prognostic signature generated from this
study had robust validity in both the discovery cohort and the
validation cohort. Moreover, the expression levels of the prognostic
genes were validated in an independent sample cohort. The gene
signature constructed in this study is conducive to cover the
imperfection of the current prognosis evaluation of HCC.
MATERIALS AND METHODS

Data Retrieval and Processing
The RNA sequence data and corresponding clinical information
of 370 HCC patients were manually downloaded from TCGA
data portal (https://portal.gdc.cancer.gov/). The samples of 231
HCC patients were obtained from the International Cancer
Genome Consortium (ICGC) database (https://dcc.icgc.org/
projects/LIRI-JP) for further validation. The 500 top mutation
genes of HCC retrieved from TCGA and the ICGC databases are
presented in Supplementary Table 1.

Gene-Signature Development
The different expression of mutation genes between HCC and
adjacent normal tissues was analyzed using the “limma” R
package, with a false-discovery rate (FDR) of <0.05. Univariate
Cox regression analysis was performed on the different expression
genes (DEGs) to obtain DEGs significantly related to survival.
Mutation-related genes then associated with HCC patient survival
were analyzed by least absolute shrinkage and selection operator
(LASSO) Cox regression method to remove confounding factors
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and reduce the number of genes in the risk model. A more refined
Cox model was initially generated by employing the penalized
maximum likelihood method, which can compress some
coefficients and set others strictly equal to 0. The formula was
established as follows: risk score = esum (each gene ’s

expression × corresponding coefficient). Based on the median risk score, the
patients in TCGA dataset were separated into high- and low-risk
groups. The patients in the ICGC dataset were divided into two
subgroups according to the median risk score of TCGA. PCA and t-
distributed stochastic neighbor embedding (t-SNE) analysis were
performed with “Rtsne” and “ggplot2” R packages to explore the
distribution of two subgroups. The Kaplan–Meier method was used
to evaluate the relevance of overall survival in risk score groups. The
time-dependent ROC curves were developed to evaluate the
predictive value of the prognostic model at 1, 2, and 3 years.
Furthermore, the value of independently prognostic for risk score
was investigated by univariate and multivariate Cox
regression analysis.

Immune Status Analysis
The single-sample gene set enrichment analysis (ssGSEA) program
was applied to evaluate the relationship between immune cell
infiltration, immune pathway activity, immune function, and
immune-related risk characteristics, so as to establish immune-
related term enrichment scores. The scores corresponding to
immune-related terms were determined for HCC patients. The
Wilcoxon test was used to analyze the scores between high- and
low-risk groups. In addition, the association of the risk score with
immune checkpoint gene expression was also analyzed by the
Wilcoxon test. The immune exclusion ability of HCC was
analyzed through the TIDE database (://tide.dfci.harvard.edu/
login). The model was subsequently applied to IMvigor210 trial, a
phase II trial used to assess the activity of the PD-L1 antibody in
patients with metastatic UC (23). The immune exclusion levels of
the two subgroups and immune response of the two groups were
analyzed by the Wilcoxon test. The correlation of immune subtypes
with risk score was tested by the ANOVA analysis.

The Gene Set Enrichment Analysis
In order to explore the underlying mechanisms, the gene set
enrichment analysis (GSEA) was conducted between the high-
and low-risk groups with GSEA 4.1 software to perform the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses. p-value was adjusted by BH method.

Cell-Cycle, Tumor Angiogenesis, and Drug
Resistance Analysis
The associations of the risk score with cell cycle gene expression,
tumor angiogenesis gene expression, and tumor drug resistance
gene expression were tested by the Wilcoxon test.

Chemotherapy Sensitivity Analysis
We obtained drug response data and genomic markers of sensitivity
through the Genomics of Drug Sensitivity in Cancer (GDSC)
database (https://www.cancerrxgene.org/). The transcriptome data
and drug sensitivity data were extracted from 17 types of HCC cells
Frontiers in Oncology | www.frontiersin.org 3
in the GDSC, then Pearson’s correlation analysis was employed to
explore the relationship between prognostic gene expression and
antitumor drug sensitivity. The efficacy of 367 antitumor drugs was
analyzed by correlation analysis (Supplementary Table 2).

Validation of mRNA Expression of
Prognostic Genes by Quantitative Real-
Time PCR
Twenty paired HCC tissues and matched paracancerous tissue
samples were recruited from patients undergoing surgery at the
First Affiliated Hospital of WenzhouMedical University. This study
was reviewed and approved by the Ethical Board at the First
Affiliated Hospital of Wenzhou Medical University with written
informed consent from all patients. All the HCC tumor samples
were confirmed by two pathological specialists independently. The
samples were immediately frozen and stored in liquid nitrogen.
Total RNA was isolated fromHCC cancer and paracancerous tissue
samples by Trizol reagent (Servicebio, Wuhan, China). Extracted
RNA was then transcribed into cDNA. GAPDH was utilized to
standardize the gene expression. The sequence of primers is
provided in Supplementary Table 3. Real-time PCR analysis was
performed using the StepOne Real-Time PCR System and FastStart
Universal SYBR Green Master (Roche, Basel, Switzerland). Each
sample was extracted in triplicate and amplified in triplicate. The
gene expression was calculated using the 2−DDCtmethod.

Validation of Protein Expression of
Prognostic Genes by Immunohistochemistry
Ten paired HCC tissues and matched paracancerous tissues were
utilized for immunohistochemistry (IHC) validation. This study was
reviewed and approved by the Ethical Board at the First Affiliated
Hospital of Wenzhou Medical University with written informed
consent from all patients. Each group of HCC samples was fixed in
10% formalin at room temperature, then embedded in paraffin.
Four-micrometer sections were cut from each paraffin block. The
sections were then dewaxed and rehydrated. For antigen retrieval,
the slices were boiled in 10 mmol/L citrate buffer (pH = 6.4) for
10 min. To inactivate the endogenous peroxidase, methanol
containing 3% hydrogen peroxide was used to treat the slices.
Citric acid buffer (pH = 6.0) was subsequently used to obtain
optimal antigen recovery. Serum was added to block some
nonspecific sites, and then the slices were placed in the incubator
for half an hour at 37°C. After that, the slices were incubated with
primary antibodies overnight at 4°C and secondary antibody
polymer HRP for 50 min at 37°C and stained by diaminobenzidine.
The cell nucleus was stained blue by hematoxylin. Lastly, the slices were
sealed, subsequently observed, and photographed. The detailed primary
antibody information is provided in Supplementary Table 4.

Statistical Analysis
The Wilcoxon test was used to compare gene expression between
cancer and paracancerous tissues. The Kaplan–Meier curve was
visualized using the “survival” R package and “survminer” R
package. The ssGSEA function in the “gsva” R package was used
to quantify immune cell infiltration, and the scores between high-
and low-risk groups were analyzed by the Wilcoxon test. The
March 2022 | Volume 12 | Article 748557
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associations of the risk score with immune checkpoint gene
expression, cell cycle key gene expression, and tumor angiogenesis
gene expression were tested by the Wilcoxon test. The associations
of the risk score with tumor drug resistance gene expression were
tested by Spearman’s correlation analysis. The correlation of drug
sensitivity with prognostic gene expression was explored by
Pearson’s correlation. TIMER2.0 (https://timer.comp-genomics.
org/) was applied to investigate the prognostic gene expression
between pan-cancers and paracancerous tissues. A two-tailed p-
value <0.05 was considered statistically significant in this study.
RESULTS

The flow chart of this research is shown in Figure 1. A total of 370
HCC patients retrieved from TCGA database were defined as
discovery dataset, and 231 HCC patients retrieved form ICGC
Frontiers in Oncology | www.frontiersin.org 4
(LIRI-JP) database were defined as validation dataset. The detailed
clinical features of these patients are summarized in Table 1.
Furthermore, an independent sample cohort including 30
matched samples were applied to validate the different expression
of prognostic genes betweenHCC tissues and paracancerous tissues.

Landscape of Gene Mutation in HCC
A total of 225 top mutated genes were screened out from both
TCGA database and the ICGC database (Figure 2A). Univariate
Cox analysis indicated that 30 of the 135 differentially expressed
mutant genes were correlated with overall survival. Among these 30
genes, the expression of 4 genes was 0 in more than 40 samples,
which were eliminated. The mutation frequency ranking of the 26
mutated genes in the HCC samples from TCGA cohort is presented
in Figure 2B. Meanwhile, the gene expression profiles of the 26
candidate mutant genes were demonstrated in the heatmap
(Figure 2C). These candidate genes were preserved as prognostic
FIGURE 1 | Workflow graph for this study.
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indicators (Figure 2D). The TMB difference between the patients
with wild gene and patients with mutation gene and the interaction
network among the candidate genes are shown in Supplementary
Figure 1. Subsequently, according to the optimal value of l, the
LASSO Cox regression method was employed to generate a
prognostic signature model (Figure 2E).

Development of Mutant Gene-Related
Signature in TCGA Dataset and Validation
in ICGC Dataset
A prognostic model consisting of five mutated genes was
established by LASSO COX regression analysis. The risk score
of each patient was calculated based on the following formula: risk
score = (0.0071 * expression level of MAP2) + (0.1866 * expression
level of DYNC1H1) + (−0.0197 * expression level of CPS1)
+ (−0.0312 * expression of PTPRB) + (0.1226 * expression level
of MKI67). The HCC patients were stratified into high- and low-risk
groups according tomedian risk scores (SupplementaryFigure 2A), and
the survival status of patients in the high- and low-risk groups is shown in
Supplementary Figure 2B. PCA and t-SNE analysis indicated that the
patients in the two subgroups were distributed in discrete directions
(Supplementary Figures 2C, D). Baseline characteristics of the patients
in different risk groups were presented in Table 2. Kaplan–Meier curves
demonstrated low-risk group had a noticeably better survival than
patients in high-risk group (p = 5.792-05), indicating the risk score has
an effective value of prognosis (Figure 3A). Also, time-dependent ROC
curveswere applied to assess the precision of themutation gene signature
in predictingOS of HCCpatients at 1, 2, and 3 years. The area under the
ROC (AUC) values of 1, 2, and 3 years were 0.737, 0.675, and 0.663,
respectively (Figure 3B).

To verify the stability of the prognostic model constructed from
TCGA dataset, the patients from the ICGC dataset were also
categorized into high- and low-risk groups based on the median
value from TCGA (Supplementary Figure 2E). Likewise, the
outcomes of patients were also poorer in high-risk group
Frontiers in Oncology | www.frontiersin.org 5
compared with low-risk group (Supplementary Figure 2F). PCA
and t-SNE analysis confirmed a discrete distribution of patients in
two risk groups (Supplementary Figures 2G, H). Kaplan–Meier
curves similarly showed that patients in the high-risk group had an
inferior OS compared with their counterparts (p = 3.101e−04,
Figure 3C). Furthermore, the AUC of the mutation-related gene
signature reached 0.719 at 1 year, 0.674 at 2 years, and 0.692 at
3 years, respectively (Figure 3D).

Independent Prognostic Value of the
Prognostic Signature Model
Univariate and multivariate Cox regression analyses were employed
to evaluate the prognostic value of the risk scores. In the univariate
Cox regression analysis, the risk score was significantly correlated
with OS in both TCGA and the ICGC dataset (TCGA: HR = 2.137,
95% CI = 1.459–3.129, p < 0.001, Figure 3E; ICGC: HR = 3.575, 95%
CI = 1.707–7.490, p < 0.001, Figure 3F). The multivariate Cox
regression analysis confirmed the risk score was also an independent
predictor of OS (TCGA cohort: HR = 1.876, 95% CI = 1.273–2.766,
p = 0.001; ICGC cohort: HR = 3.255, 95% CI = 1.550–6.832,
p = 0.002). In addition, the prognostic performance of risk score
combined with tumor stage was evaluated by time-dependent ROC
curve, which exhibited a higher prognostic value for 3-year OS than
tumor stage, wherever in TCGA set (stage AUC = 0.675, risk score +
stage AUC = 0.719, Figure 4A) and ICGC cohort (stage
AUC = 0.675, risk score + stage AUC = 0.743, Figure 4B).

Prognostic Model Risk Score and
Clinical Features
The correlation between the risk score based on the signature of
mutation gene and several clinical features was assessed
(Supplementary Figure 3). The results revealed that high-risk
score was significantly associated with grades G3–G4 and stages
III–IV, while low-risk score was significantly associated with
grades G1–G2 and stages I–II (p < 0.001, Supplementary
TABLE 1 | Clinical characteristics of the HCC patients used in this study.

TCGA-LIHC cohort ICGC-LIRI-JP cohort

No. of patients 365 231
Age (median, range) 57 (16–90) 67 (31–89)
Gender
Female 119 (32.6%) 61 (26.4%)
Male 246 (67.4%) 170 (73.6%)
Grade
Grade 1 55 (15.1%) NA
Grade 2 175 (47.9%) NA
Grade 3 118 (32.3%) NA
Grade 4 12 (3.3%) NA
Unknown 5 (1.4%) NA
Stage
I 170 (46.6%) 36 (15.6%)
II 84 (23.0%) 105 (45.5%)
III 83 (22.7%) 71 (30.7%)
IV 4 (1.1%) 19 (8.2%)
Unknown 24 (6.6%) 0 (0%)
Survival status
Alive 235 (64.4%) 189 (81.8%)
Deceased 130 (35.6%) 42 (18.2%)
March 2022 | Volu
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A

C

B

D E

FIGURE 2 | Landscapes of frequently mutated genes in HCC. (A) Venn diagram of mutated genes. The 225 mutated genes were from both TCGA and ICGC
datasets. The 30 mutated genes with prognostic value were from TCGA dataset. (B) Waterfall plot displays the 26 mutated genes in HCC from TCGA dataset. The
left panel presents the genes ordered by mutation frequencies. The right panel shows different types of mutation. (C) The heatmap of the 26 DEGs between 365
HCC tissues and 50 nontumor tissues. (D) Forest plot shows the 26 DEGs for OS. (E) LASSO coefficient spectrum of candidate genes in HCC.
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Figures 3C, D). Consistently, the ICGC dataset exhibited similar
results (No data about the tumor grade of HCC in the ICGC
dataset, p < 0.001, Supplementary Figure 3G).

The expression of MAP2, DYNC1H1, and MKI67 was
obviously higher expressed in tumor tissues, while CPS1 and
PTPRB were downregulated in tumor tissues compared with
normal tissues in TCGA dataset (Supplementary Figures 4A–E).
Interestingly, Kaplan–Meier curves for individual predictive of each
Frontiers in Oncology | www.frontiersin.org 7
prognostic gene demonstrated that high expression of MAP2,
DYNC1H1, and MKI67 was infaust for OS, while high expression
of CPS1 and PTPRB were helpful for prognosis (Supplementary
Figures 4F, G). Furthermore, the correlation between prognostic
gene expression and clinical characteristics of HCC patients
indicated that DYNC1H1 and MKI67 were significantly
upregulated in tumor grades G3–G4 and tumor stages III–IV
compared with tumor grades G1–G2 and tumor stages I–II, while
A B C

E F

D

FIGURE 3 | Survival analysis and independent prognostic analysis of the prognostic signature. TCGA cohort (A, B, E) and ICGC cohort (C, D, F). (A, C) The
Kaplan–Meier plot showed overall survival between two subgroups. (B, D) ROC curves of the five-gene signature for prediction of 1-, 2-, and 3-year OS. (E, F)
Univariate and multivariate Cox regression analyses to screen prognostic factors for OS.
TABLE 2 | Baseline characteristics of the patients in different risk groups.

Characteristics TCGA-LIHC cohort ICGC-LIRI-JP cohort

High risk Low risk p-value High risk Low risk p-value

Age
<60 years 86 (23.6%) 79 (21.6%) 0.433 28 (12.1%) 16 (6.9%) 0.199
≥60 years 96 (26.3%) 104 (28.5%) 99 (42.9%) 88 (38.1%)
Gender
Female 67 (18.4%) 52 (14.2%) 0.087 34 (14.8%) 27 (11.7%) 0.889
Male 115 (31.5%) 131 (35.9%) 93 (40.3%) 77 (33.3%)
Grade
G1 + G2 96 (26.3%) 134 (36.7%) <0.001 – –

G3 + G4 83 (22.7%) 47 (12.9%) – –

Unknown 3 (0.8%) 2 (0.5%) – –

Stage
I + II 112 (30.7%) 142 (38.9%) 0.001 67 (29.0%) 74 (32.0%) 0.004
III + IV 57 (15.6%) 30 (8.2%) 60 (26.0%) 30 (13.0%)
Unknown 13 (3.6%) 11 (3.0%) 0 (0.0%) 0 (0.0%)
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A B

C D

FIGURE 5 | Immune status in different risk groups. TCGA cohort (A, B), ICGC cohort (C, D). (A, C) The relative enrichment of 5 immune-related risk terms in
different risk groups. (B, E) The associations of risk score with PD-L2 expression and galectin-9 expression. (B, D) Expression levels of immune checkpoints in
different risk groups. P values were showed as: ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001.
A B

FIGURE 4 | The prognostic value validated by multi-index ROC curves. (A) TCGA cohort, n = 365, curves in different colors represent time-dependent ROC of age,
gender, AFP, grade, stage, risk score, and risk score with stage variables, respectively. (B) ICGC cohort, n = 231, curves in different colors represent time-
dependent ROC of age, gender, stage, risk score, and risk score with stage variables, respectively.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lin et al. Gene Signature Predicts HCC Prognosis
CPS1 expression was downregulated in tumor grades G3–G4 and
tumor stages III–IV (p < 0.05, Supplementary Figures 5C, D).

Immune Status Between High-Risk and
Low-Risk Groups
To further clarify the mechanism underlying the functions of the
risk score, the differences in immune function and immune cell
infiltration between the two groups are presented in Figure 5.
The ssGSEA results showed that the abundance of Check point,
Macrophages, and Th2 cells were significantly elevated in the
high-risk group. On the contrary, NK cells and type II IFN
response were significantly downregulated in the high-risk
group. Considering that the expression levels of immune
checkpoints serve as important indicators for individualized
immunotherapy, the present study identified that the
expression of PD-1, PD-L2, CTLA4, CD80, CD86, HAVCR2,
LAGLS9, CD274, and VTCN1 was higher in high-risk patients
compared with their low-risk counterpart.

The present study revealed that the capability of immune
exclusion in HCC was significantly higher in high-risk group
compared with low-risk group (p < 0.001, Figure 6A). When the
prognostic model was applied to the IMvigor210 study, a clinical
study to evaluate the safety and efficacy of PD-L1 monoclonal
antibody in the treatment of metastatic urothelial carcinoma, the
risk score of patients with complete response (CR) or partial
response (PR) was higher than that of patients with stable disease
(SD) or progressive disease (PD) (Figure 6B, p = 0.00093).

Thorsson et al. have identified a pan-cancer immune
classification which encompasses almost all human malignancies
and consists of six immune subtypes ranking from tumor
promoting to tumor inhibiting, respectively: C1 (wound healing),
C2 (INF-r dominant), C3 (inflammatory), C4 (lymphocyte
depleted), C5 (immunologically quiet), and C6 (TGF-b dominant)
(24). No patient sample belonged to C5 immune subtype in HCC
and only one sample belonged to C6 immune subtype, which was
eliminated. In the present study, high-risk score was significantly
Frontiers in Oncology | www.frontiersin.org 9
associated with C1 and C2, while low-risk score was significantly
associated with C3 and C4 (Supplementary Figure 6A). In
addition, the correlation of each prognostic gene with immune
subtype showed high expression of DYNC1H1 and MKI67 had a
significant association with C1 and C2 immune subtypes, while high
expression of CPS1 and PTPRB was significantly associated with C3
and C4 immune subtypes (Supplementary Figure 6B).

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Analyses by
Gene Set Enrichment Analysis
To elucidate the potential mechanism of the mutation-related
classifier on HCC, GSEA was applied to compare the high-risk
group and low-risk group. Based on the mutation-related risk
groups, GSEA revealed that cell cycle-related biological
processes, including cell cycle checkpoint, cell cycle G1 S phase
transition, cell cycle G2 M phase transition, mitotic cell cycle
checkpoint, and regulation of cell cycle phase transition, were
significantly enriched in the high-risk group (Figure 7A;
Supplementary Figure 7). Also, KEGG pathway analysis
indicated that cell cycle pathways, immune-related pathways
(B-cell receptor and T-cell receptor signaling pathway), and
tumor-related pathways (pathway in cancer and VEGF, JAK-
STAT, mTOR, MAPK, WNT, and NOTCH signaling pathways)
were significantly enriched in the high-risk group (Figure 7B;
Supplementary Figure 8).

Cell Cycle Gene and Tumor Angiogenesis
Gene Analysis
GO and KEGG analyses revealed that cell cycle biological process
and cell cycle pathways were enriched in the high-risk groups.
The correlation analysis was then conducted to analyze the
relation of risk score with cell cycle genes. The results
indicated that cell cycle genes (CCNA2, CCNB1, CCNB2,
CCND2, CCND3, CCNE1, CDC20, CDC23, CDC25A,
CDC25B, CDC25C, CDK1, CDK2, CDK4, CDK7, CHEK1,
A B

FIGURE 6 | The difference in immune exclusion between high- and low-risk groups and the distribution of risk scores in immunotherapy response group. (A) Immune
exclusion levels in two subgroups. (B) Distribution of risk scores in the distinct anti‐PD‐1 clinical response group. P values were showed as: ns, not significant; *P < 0.05;
**P < 0.01; ***P < 0.001.
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CHEK2, E2F1, E2F3, E2F4, and GSK3B) had substantially higher
expression in the high-risk group (Figure 8A). In addition, we
also analyzed tumor angiogenesis genes, and the results showed
that seven tumor angiogenesis genes (HIF1A, PDGFB, NRP1,
VEGFB, FGFR1, ROBO1, and SLIT1) had substantially higher
expression in the high-risk group compared with the low-risk
group (Figure 8B). Corresponding results for the validation
cohort (Figures 8C, D) were similar to the training cohort.
Frontiers in Oncology | www.frontiersin.org 10
Multidrug Resistance Gene and Anti-tumor
Drug Resistance Analysis
To evaluate the prognostic model for HCC treatment, we further
explored correlations of the prognostic genes with the multidrug
resistance-related genes. As demonstrated in Figure 9, multidrug
resistance protein 1 (MRP1), MRP4, and MRP5 were obviously
elevated in the high-risk group and they all had a strong positive
correlation with the risk score. Moreover, the correlation of drug
A B

C D

FIGURE 8 | The associations of risk score with cell cycle genes and tumor angiogenesis genes. TCGA cohort (A, B) and ICGC cohort (C, D). P values were
showed as: ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001.
A B

FIGURE 7 | GSEA of biological functions and pathways. (A) Gene Ontology. (B) Kyoto Encyclopedia of Genes and Genomes.
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resistance of HCC cells with prognostic genes revealed that the
prognostic genes were significantly associated with resistance of
HCC cells to chemotherapy drugs (Supplementary Figure 9).
For example, expression of MAP2, DYNC1H1, and MKI67 were
positively correlated with drug resistance of HCC cells to
trametinib, bleomycin, methotrexate, and talazoparib. By
contrast, there was a significantly negative correlation of the
expression of CPS1 and PTPRB with resistance of HCC cells to
antitumor drugs such as palbociclib, talazoparib, and bosutinib.

Experimental Verification of the
Expression of the Five Prognostic Genes
To further validate our findings, we measured the expression of the
five prognostic genes in HCC tissues and paracancerous tissues. As
Frontiers in Oncology | www.frontiersin.org 11
shown in Figure 10A, quantitative real-time PCR (qRT-PCR)
exhibited that expression of CPS1 and PTPRB was downregulated
in tumor tissues compared with paracancerous tissues, whileMAP2,
DYNC1H1, and MKI67 were overexpressed in tumor tissues.
Consistently, IHC staining showed similar results as qRT-PCR
(Figure 10B). The above results were consistent with the RNA
sequencing expression of 5 mutation-related prognostic genes in
TCGA dataset (Supplementary Figure 4).

The Expression Analysis of the Five
Prognostic Genes in Pan-Cancers and
Para-cancerous Tissues
The expression of five prognostic genes in other types of cancer
samples was analyzed, and we found that five prognostic genes
A

B

FIGURE 10 | Prognostic gene expression between HCC and paracancerous tissues was validated by independent sample cohorts. (A) qRT-RCR. (B) IHC.
A B C

D E F

FIGURE 9 | The associations between tumor drug resistance genes and risk score. TCGA cohort (A–C) and ICGC cohort (D–F).
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had differential expression in most of other cancers and
paracancerous tissues (p < 0.05) (Supplementary Figure 10).
DISCUSSION

HCC is known as a high incidence and mortality malignancy
globally, which is the major contributor to the worldwide cancer
burden. The pathology of HCC is complex, presenting a
challenge in the development of effective treatments for HCC.
Surgical resection has been the main treatment for HCC in
recent decades. Although the treatment of HCC such as
chemotherapy, molecular-targeted therapies, microwave
ablation, interventional therapy, and liver transplantation has
evolved considerably, the patients with HCC continue to have a
dismal prognosis. AFP is the widely used as a serum biomarker
for evaluating prognosis and is incorporated into several staging
systems. However, the application of AFP in the diagnosis and
prognosis prediction of HCC is limited due to its low sensitivity
(25). Thus, screening novel biomarkers and prognostic predictors
of HCC remains an urgent need in order to reduce the mortality
and improve outcomes.

In this study, a mutation-related gene signature was
constructed by integrating the transcriptomic data and clinical
information of patients with HCC. LASSO Cox regression
method identified 5 mutated prognostic genes to construct a
prognostic model, including CPS1, DYNC1H1, MAP2, MKI67,
and PTPRB. In addition to the prognostic model based on
traditional prognostic markers, genomics and bioinformatics
have made it possible to identify prognostic gene signatures.
Some research confirmed that a number of gene signatures have
recently been developed to predict outcomes of patients with
HCC (21, 22, 26). However, these gene signatures could not
predict the immune status of the body and drug resistance of
cancer cells. Compared with these models, the prognostic
signature in this study can distinguish the immune status and
risk score was strongly associated with cell cycle and drug
resistance. Moreover, the independent sample cohort was
employed to validate the differential expression of prognostic
genes. Among these genes, MKI67, MAP2, and DYNC1H1 are
well-known genes in regulating cell cycle and cell divisions.
Antigen Ki-67, also known as MKI67, which is a prototypic
cell cycle nuclear protein expressed in G1, S, and G2 and peaking
at M phase (27). MKI67 is strictly associated with cell
proliferation and is widely used as a prognostic marker in
several tumors (28, 29), including identifying patients who are
at greatest risk for postsurgical recurrence of HCC (30). MAP2
has been found to perform a range of functions in regulating
microtubule cytoskeleton dynamics (31) and DYNC1H1 carries
organelles and key signals from distal sites to the cell body (32).
Thus, MAP2 and DYNC1H1 are closely related to cell cycle.
However, few studies have focused on the role of MAP2 in
tumorigenesis and development. A critical factor in the
progression of hepatocytes into malignant HCC cells may be
metabolizing reprogramming through decreased CPS1 RNA
expression and hypermethylation of CPS1 to transform cells
Frontiers in Oncology | www.frontiersin.org 12
dedicated to normal body support function into cells that only
support their own growth and division (12). Recently, it has been
found that PTPRB may function as a tumor suppressor in
tumorigenesis and development (33). Most of these genes have
not been proved to be directly related to HCC, and the
underlying mechanisms are worthy of further theoretical and
experimental investigations.

To elucidate the potential correlation, ssGSEA algorithm was
adopted for quantifying the activities or abundances of several
types of immune pathways and immune cells in every HCC
specimen. Due to the importance in immune invasion, tumor-
associated macrophage has been reported to closely associate
with poor prognosis in patients with HCC (34, 35). Also,
antitumor immunity was impaired more seriously in the high-
risk group as the reduced proportion of NK cells and the
decreased activity of type II IFN response. Additionally,
acquired properties enable tumor cells to activate immune
checkpoint pathways that evade immunosurveillance and
suppress immune system responses (36). The abnormal
expression of immune checkpoint markers may lead to the
occurrence or progression of many diseases (37). Immune
checkpoint blockades recently gain substantial ground, which
have become the benchmark treatment for cancer therapy (38).
The positive correlation between risk score and the levels of
immune checkpoints was demonstrated, suggesting that HCC in
high-risk patients has a stronger ability to evade immune
monitoring and suppress antitumor immunity. In this
perspective, the predictive model may offer insights for
accelerating the pace of individualized cancer immunotherapy.
Furthermore, in the present study, risk scores appeared to
positively associate with immune exclusion, a process whereby
tumor lacks T-cell infiltration (39–41). Interestingly, in the
IMvigor210 cohort, the high-risk group was linked to a
stronger response to anti-PD-L1 immunotherapy, which may
be explained by abnormally elevated immune checkpoint gene
expression, indicating that the prognostic model can distinguish
the efficacy of immunotherapy in urothelial carcinoma. The
robust predictive capability of the model may also play a role
in the efficacy evaluation of immunotherapy for HCC in
the future.

Deregulated cell proliferation is the most fundamental
biological feature of tumors, which is based on the disturbed
cell cycle regulation (42). Although tumorigenesis involves
various processes that also provide targets for cancer
treatment, in almost all instances, deregulated cell proliferation
and inhibited cell death together provide the underlying platform
for tumorigenesis and progression (43). Identification of the
definite mechanism of such pivotal steps in tumor progression
and development of therapies that directly attack these points of
convergence are the major challenges before the research
community. In this study, cell cycle-related biological processes
were observed to be significantly enriched in the high-risk group
and key genes in cell cycle was substantially higher expressed in
the high-risk group. CDK2 was reported to have the ability of
accelerating S phase initiation in cell cycle (44) and
is related with the tumorigenesis of HCC (45). Unlike CDK2,
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the enzymatic activities of CDK4 are governed by D-type
cyclins, which respond to various extracellular signals. Rapidly
emerging data with selective CDK4/6 inhibitor have
corroborated these kinases in cell cycle as antitumor drug
targets and long-standing preclinical predictions (46).
Abnormal expression of cyclin E was detected in various high-
grade malignant cells (47–51), which is a key link in the
chemotherapy resistance mechanism of various tumor cells
and may be used as a potential treatment target to reverse or
reduce antitumor drug resistance in cancer therapy (52).
CDC25A, as the oncogene, is overexpressed in a variety of
human malignancies and could be used as an independent
prognostic marker for HCC (53). Therefore, facilitating the
division of tumor cells may be the pivotal approach of high-
risk score to influence the prognosis of HCC patients.

Chemoresistance remains the major unmet obstacle
encountered during the clinical therapy of HCC. Notably
upregulated MRPs that are famous for their function in
actively extruding chemotherapeutic substrates are essential
components of multidrug resistance (54). Interestingly, the risk
score was significantly positively correlated with expression of
MRPs. Modulating the function of MRPs in HCC to resensitize
chemotherapeutic drugs may have great prospects of utilization.
However, although there is a correlation between prognostic
gene and the drug resistance of HCC patients to some antitumor
drugs, the link between high-risk group and increased drug
resistance is quite complex. Thus, the direct relationship
between prognostic genes and antitumor drugs cannot be
determined, which needs further experimental proof.
CONCLUSION

Our study provides a comprehensive and systematic characterization
of the profiles of the novel prognostic model constructed with 5
mutated genes retrieved from a public database. Taken together, our
work will greatly contribute to uncover the role of prognostic model
in the prognosis of HCC. The underlying mechanism between the
model and tumor immunity inHCCremains poorly understood and
warrants further investigation.
LIMITATION

In this study, there is a lack of independent sample set to further
verify the predictive power of mutation gene signature on the
survival of HCC patients. In addition, the effect of mutation-gene
signature on immune function of HCC patients needs to be
further verified by independent samples.
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